
Executable Graphics for PBNM
Rui Lopes, Nuno Raimundo, Maria João Varanda

ESTiG
Polytechnic Institute of Bragança
5301-854 Bragança, PORTUGAL

Email: {rlopes,neves,mjoao}@ipb.pt

Jośe L. Oliveira
DET

University of Aveiro
3810-193 Aveiro, PORTUGAL

Email: jlo@det.ua.pt

Vitor Roque
ESTG

Polytechnic Institute of Guarda
6301-559 Guarda, PORTUGAL

Email: vitor.roque@ipg.pt

Abstract— Policy-Based Network Management (PBNM) is the
application of specific, organisation-level rules in the context of
networking, in particular for network management operations.
The specification of a policy is performed in a policy language,
usually following a textual representation. However, humans
process images faster than text and they are prepared to process
information presented in two or more dimensions: sometimes it is
easier to explain things using figures and their graphical relations
than writing textual representations.

This paper describes a visual language, in the form of graphics
that are executed in a networking environment, to define a
network management policy. This approach allows to map visual
tokens and corresponding arrangements into other languages to
which a mapping is defined.

I. I NTRODUCTION

Network management has been a constant worry among
organisations and network operators in the last decades. We
have seen several approaches being developed and proposed,
from distributed systems solutions (such as CORBA – JIDM,
for example – or Mobile Agent based solutions) to specific
solutions, such as the SNMP or CMIP. Among them, the
SNMP model has, probably, been the most well known and
widely used. However, none of them has fully satisfied the
community which is still searching for an appropriate model or
paradigm that can be used efficiently in network management
scenarios.

Policy-Based Network Management (PBNM) has become a
promising solution for managing enterprise-wide networks and
distributed systems. It is targeted to systems that are dynamic
in nature and where stopping and recoding is undesirable –
changing the policy rules allows the system to modify its
behaviour [1].

The PBNM paradigm has proved, at least in theory, that is
a good solution for network management. The ideas involved
in this paradigm helps greatly network managers in the com-
plicated tasks of the network administration. In fact, when all
the theoretical PBNM concepts are applied to practical and
effective management applications, the network administration
task will be much easier in terms of time, money and difficulty.

Central to the PBNM is the concept ofpolicy, usually
considered the link between high-level business specification
of desired services and low-level device configurations that
provide those services [2]. This definition implies some form
of communication and, consequently, a means of describing

the concepts associated with the business-level goals – apolicy
description language.

Currently, there are several languages that can be used in
policy definition. Some authors have already discussed some
of them and have also presented new approaches [3], [4].

However, most of the approaches rely on formalisms that
are hard to remember and, sometimes, hard to use, forcing the
user to learn new terms and even new constructions. Much of
this effort can be reduced by using visual languages, where
the user combines pictorial elements to build a flowchart like
arrangement or other similar structure [5].

In this paper, we propose the construction of a graphical
editor to describe policies. The idea is to create a visual
language to specify policies and than use an editor for that
language to produce a textual output language.

II. V ISUAL LANGUAGES FORPBNM

The purpose of a policy description language is to translate
from a business specification, such as those found in a Service
Level Agreement (SLA), to a common vendor and device-
independent intermediate form.

Although there are several approaches and formalisms for
specifying policies, there is a common understanding on the
concepts involved [1], [3], [6], [7]. This implicit “understand-
ing” allows the specification of a common representation of
policies. In general, we can classify policies in two broad
classes:configurationpolicies andmanagementpolicies.

Configuration policies are used to define initial, or otherwise
condition independent, rules, used in the configuration of
resources and in the definition of state independent policies.
As an example, consider the following sentences:

“file ‘X’ can be accessed by users from group ‘students”’ (1)

“when booting, router Y

must download configuration from server ‘Z”’ (2)

Management policies can be used to define adaptable man-
agement actions, usually based onevent-triggered, condition-
action rules. For example:

“users are not allowed to launch more processes

when they are already exceeding the CPU quota” (3)

“when the error rate of outgouing packets is increasing

send a notification to the administrator” (4)

vitor.roque
Text Box
R. Lopes, N. Raimundo, M.J. Varanda, J.L. Oliveira, V. Roque Executable Graphics for PBNM Operations and Management in IP-Based Networks Vol. 3751 

vitor.roque
Text Box
Pag. 108-117 Springer Schönwälder, J.; Magedanz, Th.; Madeira, E.R.M.; Dini, P. (Eds.) 2005, X, 213 p., Softcover 

vitor.roque
Text Box
ISBN: 978-3-540-29356-9 

vitor.roque
Text Box
http://www.springer.com/computer/communication+networks/book/978-3-540-29356-9 



More focused in the latter approach, the IETF together with
the DMTF, has done a remarkable work with the Policy Core
Information Model (PCIM) [8] and corresponding extensions
– PCIMe [9]. The Policy Framework WG definespolicy as an
aggregation of policy rules [2]. Each policy rule is made up
of a set of conditions and a corresponding set of actions. It
can be expressed semantically as:

if (policyCondition) then (policyAction) (5)

Although this type of policy rule does not explicitly specify
an event to trigger the execution of the actions, it assumes an
implicit event, such as a process being lauched or a particular
traffic flow. In this case, the rules will include an event
part [10]:

(policyEvent) causes (policyAction) if (policyCondition) (6)

Grouping is also implicit, as it represents the aggregation
of related objects. Finally, each network component may
represent or act in a role or in a set of roles. The role is
a label which indicates a function that an interface or device
in the network serves.

In other words, a policy is a set of rules, which can belong
to one ou more groups, and which is to be applied to devices
with a specific role.

A. Using PBNM Languages

At the highest level, policies may resemble human language,
such as: “user xpto may transfer files”. At system level the
same policy may assume a different form, still device and
technology independent (the following format was adapted
from QPIM – http://www.ietf.org/proceedings/
00dec/slides/POLICY-3/index.html ):
Group A: Role=[fileTransfer] {

if(user=’xpto’)
authorize file transfer

}

Usually, policies are specified in a format which is relatively
easy to convert to network configuration commands. This
paper does not intend to be a survey of the existing approaches,
however it is important to provide some insight into how some
of the languages are and how do they look like.

Several languages have been developed, resulting from the
effort of the academia as well as private enterprises, such as
IBM or Sun. Probably, one of the most popular is the Ponder
Policy Specification Language [11].

Ponder is a declarative, object-oriented language that can be
used to specify both configuration and management policies. It
supports obligation policies that are event triggered condition-
action rules for policy based management of networks and
distributed systems. Key concepts of the language include
domains to group the object to which policies apply, roles to
group policies relating to a position in an organisation, rela-
tionships to define interactions between roles and management
structures to define a configuration of roles and relationships
pertaining to an organisational unit such as a department.

The following example shows how Ponder can be used in
policy description:
inst auth+ filter {

subject /Agroup + /Bgroup;
target UAStaff - DETUAgroup;
action VideoConf(BW, Priority)

{in BW=2; in Priority=3;} // default filter
if(time.after("1900")) {in BW=3; in Priority=1;}

}

The above policy says that the members of the predefined
groupsAgroup and Bgroup may use the video-conference
service to the groupUAStaff excluding DETUAgroup. If
the service is used after 7 PM, the bandwidth is set to 3Mb/s
with priority 1. In other circumstances, the bandwidth is 2Mb/s
and the priority is 3.

XACML [12] is an XML specification for expressing poli-
cies mainly dedicated to access control and is being defined
by the Organisation for the Advancement of Structured In-
formation Standards (OASIS). The language supports roles,
which are the same as groups, and are defined as collections
of attributes relevant to a principal. It includes conditional
authorization policies, as well as policies with external post-
conditions to specify actions that must be executed prior to
permitting an access.

The following example was retrieved from [13] and de-
scribes a scenario where a set of video streaming servers in
a university campus offers tutorials to registered and unregis-
tered students (visitors). Registered students have permission
to access any server in the campus offering a service without
time restrictions. Unregistered students can have access to the
video-streaming service only from the internal network and
not in business-time.
<service serviceId="TutorialVideoStreaming">

<description>tutorial video-stream</description>
<sap>

<inetaddress> 192.168.200.10 </inetaddress>
<inetaddress> 192.168.5.3 </inetaddress>
<protocol>tcp</protocol>
<port>8976</port>

</sap>
<serviceLevel serviceId="Gold">

<ResourceRsvp AttributeId="qosG7" RsvpClass="G7">
<TspecBucketRate_r>9250</TspecBucketRate_r>
<TspecBucketSize_b>680</TspecBucketSize_b>
<TspecPeakRate_p>13875</TspecPeakRate_p>
<TspecMinPoliceUnit_m>340</TspecMinPoliceUnit_m>
<TspecMaxPacketSize_M>340</TspecMaxPacketSize_M>
<RsvpService>Guaranteed</RsvpService>
<RsvpStyle>FF</RsvpStyle>

</ResourceRsvp>
</serviceLevel>
<serviceLevel serviceId="Silver">

. . .
</serviceLevel>
<serviceLevel serviceId="Bronze">

<ResourceRsvp AttributeId="qosH2C" RsvpClass="H2C">
<TspecBucketRate_r>16000</TspecBucketRate_r>
<TspecBucketSize_b>8192</TspecBucketSize_b>
<TspecPeakRate_p>16000</TspecPeakRate_p>
<TspecMinPoliceUnit_m>80</TspecMinPoliceUnit_m>
<TspecMaxPacketSize_M>8192</TspecMaxPacketSize_M>
<RsvpService>Controlled-load</RsvpService>
<RsvpStyle>WF</RsvpStyle>

</ResourceRsvp>
</serviceLevel>

</service>



The Routing Policy System WG of the IETF has defined
the RPSL (Routing Policy Specification Language) [14]. It
was one of the first languages for specifying routing policies
and aims at generating router configuration from the policy
specification [15]. A possible example is:
aut-num: AS2
as-name: CAT-NET
descry: Teste
import: from AS1 accept ANY
import: from AS3 accept <ˆAS3+S>
export: to AS3 announce ANY
export: to AS1 announce AS2 AS3
admin-c: AO36-RIPE
tech-c: CO19-RIPE
mnt-by: OPS4-RIPE
changed: estig@ipb.pt
source: RIPE

The IETF did not define a specific language to express net-
work policies but rather a generic object-oriented information
model for representing policy information (Figure 1).

Fig. 1. Generic view of PCIM classes.

An advantage of the information modelling approach fol-
lowed by the IETF is that the model can be easily mapped to
structured specifications such as XML, which can then be used
for policy analysis as well as distribution of policies across
networks. The mapping of CIM to XML is already undertaken
within the DMTF [16]. The IETF has defined a mapping of
the PCIM to a form that can be implemented in a directory
that uses LDAP as its access protocol [17].

Considering the following example, we will try to specify
the attributes of all the necessary PCIM classes.
Group students: Role=[studentPrinters] {

if (studentPrinterQuota < 0) {
deny printing job;

}
}

The first thing to do is to create an instance of
CIM PolicyRule (Table I) to define the base of the policy.
Then, the condition is created by defining an instance of
CIM VendorPolicyCondition (Table II). After creat-
ing the condition, it must be associated to the policy with
an instance ofCIM PolicyConditionInPolicyRule
(Table III). Now the action is specified by creating an

CIM PolicyRule
Caption “Policy”
CommonName “Students printer quota”
ConditionListType ‘DNF’
CreationClassName “CIM PolicyRule”
Description “Controles the printing jobs”
ElementName “Students printer quota”
Enabled ‘Enabled’
ExecutionStrategy ‘Do Until Failure’
PolicyDecisionStrategy ‘First Matching’
PolicyRuleName “Students printer quota”
RuleUsage “Test the students printer quota”
SequencedActions ‘Don’t Care’
PolicyKeywords ‘USAGE’

TABLE I

CIM POLICYRULE

CIM VendorPolicyCondition
Caption “Condition”
CommonName “Students printer quota”
ConstraintEnconding “UTF-8”
CreationClassName “CIM VendorPolicyCondition”
Description “Test students print jobs”
ElementName “Test print quota”
PolicyConditionName “Test print quota”
PolicyRuleCreationClassName “CIM PolicyRule”
PolicyRuleName “Students printer quota”
Constraint “studentPrinterQuota< 0”
PolicyKeywords ‘USAGE’

TABLE II

CIM VENDORPOLICYCONDITION

instance of CIM ActionPolicyCondition (Table IV)
and it is associated to the policy through an instance of
CIM PolicyActionInPolicyRule (Table V).

The resulting policy must be associated to a group, so we
need to create the group (Table VI) and create the association
object (Table VII).

Finally, the policy must be set to a role (Tables VIII and
IX).

B. Using Visual Languages

A visual language is characterized by the use of graphical
notation – a graphical vocabulary and sentences constructed
by a spacial combination of symbols (two dimensions). There
are several reasons to use visual languages. The basic idea
is that humans process images faster than text and that they
are prepared to process information presented in two or more
dimensions [18].

The human reasoning is image-oriented: sometimes it is

CIM PolicyConditionInPolicyRule
ConditionNegated ‘FALSE’
GroupNumber 1
GroupComponent “Students printer quota”
PartComponent “Test print quota”

TABLE III

CIM POLICYCONDITIONINPOLICYRULE



CIM VendorPolicyAction
ActionEncoding “UTF-8”
Caption “Action”
CommonName “Students printer quota”
CreationClassName “CIM VendorPolicyAction”
Description “Deny printing job”
DoActionLogging “Denying printing job”
ElementName “Deny printing”
PolicyActionName “Deny printing”
PolicyRuleCreationClassName “CIM PolicyRule”
PolicyRuleName “Students printer quota”
ActionData “deny printing job”
PolicyKeywords ‘USAGE’

TABLE IV

CIM VENDORPOLICYACTION

CIM PolicyActionInPolicyRule
ActionOrder 1
GroupComponent “Students printer quota”
PartComponent “Deny printing”

TABLE V

CIM POLICYACTIONINPOLICYRULE

CIM PolicyGroup
Caption “Policy Group”
CommonName “Students printer quota”
CreationClassName “CIM PolicyGroup”
Description “Students policy group”
ElementName”CIMPolicyRule“ “Students”
Enabled ‘Enabled’
PolicyDecisionStrategy ‘First Matching’
PolicyGroupName “Students”
PolicyKeywords ‘USAGE’

TABLE VI

CIM POLICYGROUP

CIM PolicySetComponent
Priority 4
GroupComponent “Students printer quota”
PartComponent “Students”

TABLE VII

CIM POLICYSETCOMPONENT

CIM PolicyRoleCollection
Caption Role
Description “Students printers”
ElementName “Role1”
InstanceID “IPB:role1”
PolicyRole “studentPrinters”

TABLE VIII

CIM POLICYROLECOLLECTION

CIM PolicySetInRoleCollection
Collection “IPB:role1”
Member “Students printer quota”

TABLE IX

CIM POLICYSETINROLECOLLECTION

easier to explain things using figures and their graphical
relations than writing textual representations. A text has a
sequential structure and its visual aspect is always the same.
When we read a text we must understand each character to
read a word and we must understand all the words to read and
understand sentences.

In visual languages each figure can give different informa-
tion depending on its size, on its colour, on its form and so
on. A visual sentence can be more attractive and easier to
understand. So, it is common to use drawings to explain things.
Many pedagogical tools use visualisations and animations
as a simple way to achieve their purposes. However, visual
languages are not as simple to specify, process or traduce than
textual languages.

There are some visual language compiler generators and
other interesting tools (some of them are very specific) that
can be used to process visual languages in order to generate
other representations.

The idea of using a visual language to specify policies
allows the user to work with a graphical editor to produce
a textual output language. Some grammar-based tools can
construct these kind of editors automatically. A possibility is
VLCC (A Compiler-Compiler for Visual Languages) [19] and
Diagraḿatica [20]. More recently a system called VLPEG was
created with the specific purpose of generate a rapid visual
language prototyping process based on the Symbol Relation
Grammar Model [21].

The first one implements visual languages in a YACC-like
fashion and has two editors: a graphical editor for the design of
the visual tokens and a graphical/alphanumerical editor for the
definition of the syntax and semantics. The user of a VLCC-
generated visual environment can create visual sentences by
putting the tokens on the screen and compiling those sentences.
If the syntax and semantic is correct, the output specified by
the user is automatically generated. The second is an Argentine
project and it consists of a tool used for the rapid prototyping
of visual languages. This tool uses a textual grammar for the
specification of the syntax and a set of images for tokens.
The user can construct diagrams with basic elements by drag
and drop and their positions are automatically evaluated by
applying the grammar productions.

III. E XECUTABLE GRAPHICS FORPBNM

In the previous sections we described some approaches to
specify policies through the use of textual languages. This
section presents a visual language, composed of graphical el-
ements which are executed into a textual description. Because
we like to interpret the visual richness of objects as executable
charts we use the termexecutable graphics[22].

The main idea is to describe the policy language using a
grammar and the appearance of the tokens using images. The
first step is to specify the language grammar. The advantages
of formal specification of programming language semantics
are well known. First, the meaning of a program is precisely
and unambiguously defined; second, it offers a unique possi-
bility for automatic generation of compilers or interpreters.



Before advancing to the language specification, we start
with some standard definitions about languages that make
automatic implementation of programming languages and
language-based tools possible [23]. AnalphabetΣ is a finite
nonempty set of symbols, which are assumed to be indivisible.
A string over an alphabetΣ is a finite sequence of symbols
of Σ.

A context-free grammarG is a quadruple(V, T, P, S),
where V is a set of non-terminal symbols,T is a set of
terminal symbols withT ⊆ Σ∗, T ∩ V = ∅, the relation
P ⊆ V × (V ∪ T )∗ is a finite set of production rules and
S the start symbol withS ∈ V . The production of the form
A → α meansA derivesα, whereA ∈ V is a non-terminal
symbol andα ∈ (V ∪T )∗ a string of terminal and non-terminal
symbols.

The context-free languageL(G) produced from grammar
G is the set of all strings consisting only of terminal symbols
that can be derived from the start symbolS by sequential
application of production rules.

So, we will present now a grammar to describe our policy
language. A visual sentence must define a policy. This policy
can be applied to several roles. Each resource has one or more
roles. Each policy is composed of a rule. Each rule has a
condition, an action and may be activated by an event. Each
condition is an AND sequence of OR expressions (CNF) or an
OR sequence of AND expressions (DNF) [24]. The grammar
terminals are: VAR, NAME, STRING, OR and AND.
screen : policy resources
resources : resources resource

| resource
resource : NAME roles
policy : rule roles
roles : roles role

| role
role : STRING
rule : if condition then actions

| if condition then actions when events
condition : dnf | cnf
dnf : exp1

| dnf OR exp1
cnf : exp2

| cnf AND exp2
exp1 : cterm AND cterm
exp2 : cterm OR cterm
cterm : STRING
actions : actions action

| action
action : STRING
events : events event

| event
event : STRING

From the above grammar it is easier to understand the
necessary elements for our visual language. We have chosen a
spatial paradigm for the policy definition instead of a chart
like approach because we think it is easier to fill spaces
than connecting lines. The user will need to drag and drop
elements to specific spaces in the user interface, thus making
the definition of policies easier.

We assume that the terminals (resource , role , cterm ,
action and event ) are represented as blocks in the user
interface in a corresponding pallet. This tablet is the initial

drag point and the source for the conditions, actions events
and roles.

A condition is a combination of condition terms (cterm )
in CNF or DNF form. Considering that we want to build a
conjunction of two conditions (Condition1∧Condition2) it
is necessary to drag and drop both of them into the same screen
space. The user interface will show the resulting condition
inside the same block (Figure 2).

�����������

����������	


��
�����������

����������	

Fig. 2. Building a condition: AND.

If we further want to have the result of a conjunction of three
more conditions in DNF form, we need to build a disjunction
of the resulting blocks (Figure 3).

�����������

����������	


�

�����������

����������

�����������

�����������

����������	

�����������

����������

�����������

Fig. 3. Building a condition.

The colours represent the type of operation. A light colour
(light gray, in this case) represents the AND operation and the
darker colour represents the OR operation. Using CNF instead
of DNF would reverse the colours, as shown in Figure 4.

�����������

����������	

����������


�����������

�����������

�����������

����������	

����������


�����������

�����������

�� ��

Fig. 4. Building a condition: CNF vs. DNF.

Actions can be sequenced or not. The former implies that
the policy, when the condition is true, executes the actions in
the order defined by the user. In this situation, as the user drops
the actions in the specific place, the actions are connected with
arrows (Figure 5).

We considered that the policy can be triggered by one or
more events, so we defined a dark area to allow the user to
drop a disjunction of events (Event1 ∨ Event2 ∨ Event3).

The resulting interface groups roles, conditions, actions and
events in a logical distribution and with well defined spatial
distribution (Figure 6).



��������

�������	

�������


��������

Fig. 5. Building a sequence of actions.

������ ������ ������ �����	 �����
 ������

���������

���������

���������

��������	

��������


���������

���������

�����

�����

�����

�������

�������

�������

������	

�����

����

���	
�
����������� ���
������������	�������� �����������
���

Fig. 6. Visual specification of a policy.

A. Policy translation

The translation of visual policies into textual languages or
some other form of persistence is out of the scope of this
paper, where we intended to describe a visual language for
the definition of network management policies. However, we
cannot finish without alerting to the importance of the process.

After defining the policy by using a spatial arrangement of
graphical tokens, the user may save the policy into persistent
storage. There are several possibilities but, following the PCIM
model, we provide two approaches: storing the policy in an
LDAP server and in XML.

Although PCIM does not accept explicit events, they do
exist implicitly. We provide a means to explicitly define events
because we believe that it is more flexible. Moreover, it also
allows our language to cope with other formalisms, such as
the DEN-ng.

IV. CONCLUSIONS

The way users communicate with computational entities is
usually based on some form of language. Textual languages,
although easier to process by automatic processes, are seldom
as user friendly as its visual equivalents. A visual sentence can
be more attractive and easier to understand. In fact, humans
recall faster, and understand better, a subject through some
form of visual representation – it is common to use drawings
to explain things.

We have defined a visual language for the definition of
network management policies. We hope that this approach

helps reducing the difficulty in specifying and remembering
policies which, some times, are written in a form difficult to
understand and to remember.

REFERENCES

[1] M. Sloman, “Policy driven management for distributed systems,”
Journal of Network and Systems Management, vol. 2, no. 4, Dec.
1994, http://www-dse.doc.ic.ac.uk/dse-papers/management/pdman.ps.Z
last accessed on the 15/4/2004.

[2] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser, “Termi-
nology for Policy-Based Management,” IETF,RFC 3198, Nov. 2001.

[3] G. Stone, B. Lundy, and G. Xie, “Network policy languages: A survey
and a new approach,”IEEE Network, vol. 15, no. 1, pp. 10–21, Jan.
2001.

[4] N. Damianou, “A policy framework for management of distributed
systems,” Ph.D. dissertation, Imperial College, 2002.

[5] B. Shneiderman, “Direct manipulation. a step beyond programming
languages,”IEEE Transactions on Computers, vol. 16, no. 8, pp. 57–69,
Aug. 1983.

[6] R. Wies, “Policies in network and system management – formal defi-
nition and architecture,”Journal of Network and Systems Management,
vol. 2, no. 1, Jan. 1994.

[7] J. Strassner,Policy Based Network Management – Solutions for the Next
Generation, D. Clark, Ed. Morgan Kaufman, 2003.

[8] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy Core
Information Model – Version 1 Specification,” IETF,RFC 3060, Feb.
2001.

[9] B. Moore and Ed., “Policy Core Information Model (PCIM) Extensions,”
IETF, RFC 3460, Jan. 2003.

[10] J. Chomicki, J. Lobo, and S. Naqvi, “Conflict resolution using logic
programming,”IEEE Transactions on Knowledge and Data Engineering,
vol. 15, no. 2, Mar. 2003.

[11] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder
policy specification language,” inPolicy 2001: Workshop on Policies
for Distributed Systems and Networks. Bristol, UK: Springer-Verlag,
2001.

[12] OASIS, “extensible access control markup language (xacml) version
2.0,” OASIS, Tech. Rep., Feb. 2005.

[13] E. Toktar, E. Jamhour, and C. Maziero, “Rsvp policy control using
xacml,” in IEEE 5th International Workshop on Policies for Distributed
Systems and Networks (POLICY 2004), New York, June 2004.

[14] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer,
T. Bates, D. Karrenberg, and M. Terpstra, “Routing Policy Specification
Language (RPSL),” IETF,RFC 2622, June 1999.

[15] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu, “Using
RPSL in Practice,” IETF,RFC 2650, Aug. 1999.

[16] DMTF, “Representation of cim in xml (xml mapping specification),
v2.0.0,” DMTF, Tech. Rep., June 1999.

[17] J. Strassner, B. Moore, R. Moats, and E. Ellesson, “Policy Core
Lightweight Directory Access Protocol (LDAP) Schema,” IETF,RFC

3703, Feb. 2004.
[18] J. G. Rocha, “Especificação de linguagens visuais de programação,”

Master’s thesis, Universidade do Minho, 1995.
[19] G. Costagliola, A. D. Lucia, S. Orefice, and G. Tortora, “Automatic gen-

eration of visual programming environments,”IEEE Computer, vol. 28,
no. 3, pp. 56–66, March 1995.

[20] F. C. Repond, P. M. Lopes, and G. Baum, “Diagramática: Una formal-
izacion para la construccion de lenguajes visuales,” Universidad de la
Plata, Argentina, Tech. Rep., 2005.

[21] F. Ferrucci, G. Tortora, M. Tucci, and G. Vitiello, “A system for rapid
prototyping of visual language environments,” inSymposia on Human-
Centric Computing - Language and Environments, I. C. Society, Ed.,
September 2001, pp. 382–390.

[22] F. Lakin, “Spatial parsing for visual languages,” inVisual Languages,
S.-K. Chang, T. Ichikawa, and P. Ligomenides, Eds. New York: Plenum
Press, 1986, pp. 35–85.

[23] P. Henriques, M. J. Varanda, M. Mernik, and M. Lenic, “Automatic
generation of language-based tools,” inLDTA - Workshop on Language,
Descriptions, Tools and Applications (ETAPS’02), April 2002.

[24] E. Mendelson,Introduction to Mathematical Logic, 4th edition. Chap-
man and Hall, 1997.




