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The aim was to develop a path-flow analysis model for young swimmers’ perfor-
mance based on biomechanical and energetic parameters, using structural equation 
modeling. Thirty-eight male young swimmers served as subjects. Performance was 
assessed by the 200-m freestyle event. For biomechanical assessment the stroke 
length, the stroke frequency and the swimming velocity were analyzed. Energet-
ics assessment included the critical velocity, the stroke index and the propulsive 
efficiency. The confirmatory model explained 79% of swimming performance after 
deleting the stroke index-performance path, which was nonsignificant (SRMR = 
0.06). As a conclusion, the model is appropriate to explain performance in young 
swimmers.

The goal of competitive swimming is to travel the race distance as fast as 
possible. The identification of the variables that predict swimming performance 
is one of the main aims of the swimming “science” community. Anthropometrics, 
hydrodynamics, psychology, pedagogy, medicine and traumatology are some of 
the main scientific approaches used to understand swimming performance (9). 
Even so, it is consensual that biomechanics and physiology/energetics are the 
most determinant areas to enhance performance and achieve high-standard levels 
in competitive swimming (5).
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Some research groups dedicate their attention to understanding the relationships 
established between energetics and biomechanical variables on adult swimmers, with 
special emphasis on elite adult swimmers (e.g., 2,3,29). Several research projects 
explored those relationships and identified the links between them. It was reported 
that, on one hand, performance is strongly related to several energetic variables, 
such as oxygen up-take (e.g., 13), energy cost (e.g., 7) or time limit and minimum 
velocity to achieve maximal oxygen up-take (e.g., 16). On the other hand, energetics 
variables appear to depend on biomechanical ones, such as speed fluctuation (e.g., 
1), swimming velocity (e.g., 2) or stroke mechanics (e.g., 3). In this sense, there are 
relationships that might be described as a “flow chart” type. These types of explor-
atory and confirmatory models are often used in other scientific domains, such as 
economy, genetics or epidemiology. However, to our knowledge, the development 
of “flow chart” models was never attempted in competitive swimming.

Furthermore, the research dedicated to competitive swimming in young people 
is reduced in comparison with the one about adult/elite swimmers. Investigation 
on the relationships between performance, energetics and biomechanics in young 
swimmers has to change some of the variables analyzed. Not only economical 
but also ethical issues are raised when children are evaluated. Several parameters 
commonly assessed in adult swimmers cannot be used in young swimmers due 
to several reasons. Assessments in young swimmers are less expensive, invasive, 
complex or time consuming in comparison with the ones assessed in adult/elite 
swimmers. Nevertheless, on a regular basis, young swimmers’ coaches also perform 
biomechanical and energetic assessments. Besides, there are assessment batteries 
suggesting procedures for data collection, its analysis and interpretation for young 
swimmers in particular. They include both energetic and biomechanical assessment 
procedures among others (e.g., 6,13,34).

While children are swimming, the relationships established between perfor-
mance, energetics and biomechanics domains, seem not to be fully understood. 
Some papers examined the influence of the energy cost of swimming, body compo-
sition, drag coefficient and technical parameters on swimming performance (e.g., 
22–25,30). There, it was reported that stroke index (R2 = .898), in-water VO

2
peak 

(R2 = .358), and arm span (R2 = .454) were the best predictors of swimming per-
formance in young swimmers (22). Higher levels of leg-kick force, peak VO

2
, 

stroke efficiency and muscularity were the most potent variables contributing to 
the classification of the faster swimmers (23). When scaling for body surface area 
and body mass, children were less economical than adults; when scaling for body 
length, children were equally economical and; when considering energy cost per 
meter and absolute VO

2
, children were more economical than the adults computing 

two-sample student’s t test (24). For young swimmers, anthropometric character-
istics, stroke frequency and stroke length did not present large association with 
energy cost in front-crawl swimming (R < .57; 30). Stepwise regression showed 
that biomechanical factors (R2 > .32) best characterized the 400-m event in young 
females, followed by energetic (R2 > .31) and physical ones (R2 > .20; 25). These 
researches contributed to a higher level in the state of the art about performance in 
children swimming. Nevertheless, several evaluated parameters are not often at the 
disposal of young swimmers’ coaches, such as, energy cost, blood lactate or VO

2
. 

So, there is a chance to develop a model to explain young swimmers’ performance 
based on variables assessed on a regular basis by field practitioners (e.g., 34).
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The aim of this research was to develop a path-flow analysis model for young 
swimmers’ performance based on biomechanical and energetic parameters using 
structural equation modeling. The theoretical model adopted is presented in Figure 
1. This model was developed according to the main review papers about these 
relationships in competitive swimming (e.g., 5,26). It was reported that swim-
ming performance is determined by energetic profile and the latter by biome-
chanics behavior (5). So, the sequence of the path-flow domains was respectively 
biomechanics-energetic-performance. For biomechanical assessment the most 
cited variables are the stroke length, stroke frequency and swimming velocity (14). 
In the energetic domain, aerobic capacity is often estimated through the critical 
velocity concept in young swimmers (20). Estimation of swimming efficiency has 
been accomplished in the past by the stroke index (12) and more recently by the 
propulsive efficiency estimation concept (40) based on the theoretical model of 

Figure 1 — Theoretical path-flow model. SL—stroke length; SF—stroke frequency; 
CV—critical velocity; SI—stroke index; ηp—propulsive efficiency; βx
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Martin et al. (27). All these parameters are easy to record and have an ecological 
validity for young swimmers’ coaches.

Methods

Subjects

Thirty-eight male young swimmers with several competitive levels volunteered 
as subjects (12.53 ± 0.58 years old; 1.56 ± 0.10 m of height; 46.58 ± 9.25 kg of 
body mass; 14.98 ± 4.95% fat mass by bioimpedance; Tanner stages 1–2 assessed 
by self-evaluation). Parents and coaches gave their consent for the swimmers’ 
participation in this study. All procedures were in accordance to the Declaration 
of Helsinki in respect to Human research. The Institutional Review Board of the 
Polytechnic Institute Bragança approved the study design.

Biomechanical Data Collection

For biomechanical assessment swimming velocity, stroke frequency and stroke 
length were measured. Each swimmer made a maximal 25-m swim with an underwa-
ter start. Subject performed the bout alone with no other swimmer in the same swim 
lane to reduce the drafting or pacing effects. The swimmers were advised to reduce 
gliding during the start. Swimming velocity was measured in the middle 15-m as:

  
Equation 1

Where v is the mean swimming velocity, d the distance covered by the swim-
mer, t the time spent to cover such distance and measured with a chronometer by an 
expert evaluator on the swimming pool deck during the bout. The stroke frequency 
(SF) was measured with a crono-frequency meter from 3 consecutive stroke cycles, 
in the middle of the 15-m distance by another expert evaluator on the swimming 
pool deck during the bout. Stroke length was estimated as (14):

  
Equation 2

Energetics Data Collection

The assessment of energetics included the analysis of the stroke index and the 
propulsive efficiency as swim efficiency estimators as well as critical velocity as 
an aerobic capacity estimator. Stroke index (SI), considered as one of the swim 
stroke efficiency indexes was computed as (12):

  Equation 3

Propulsive efficiency (hp) was estimated as being (40):

  

Equation 4



Age-Group Swim Performance    383

Where v is the swim velocity, SF is the stroke frequency and l is the arm’s length.
The l was computed trigonometrically measuring the arm’s length and taking 

into account the average elbow angles during the insweep of the arm pull reported 
by Zamparo (41) for subjects of similar chronological age and gender. Equation 
4 is properly speaking the Froude efficiency. The difference between Froude and 
propelling efficiency is that the first one does not take into account the effect of 
the internal mechanical work to total mechanical work production. As reported by 
Zamparo et al. (40), at the range of swim velocities verified in these swimmers, 
internal mechanical work is rather low and can be neglected. So, propulsive effi-
ciency is very similar to Froude efficiency.

Critical velocity (CV) was computed based on the swimmers curriculum (10). 
The CV was assessed based on the 200 m and 800 m freestyle short course events. 
The mean (± SD) time gap between the swimmers personal records (the difference 
between the oldest and the most recent personal best) was 2.3 ± 1.2 months. The 
CV was computed using the slope of the simple linear regression model, plotting 
the swimming performances over the time and determined by (39):

  Equation 5

Where d is the distance of the swim event, a is the slope of the fit line, t is the time 
spent to cover the distance and b the y- interception in the origin of the xx axis.

Performance Data Collection

Swimming performance was assessed by time lists of the 200 m freestyle event of 
official short course competitions of local, regional or national level. The time gap 
between biomechanical plus energetics assessments and swimming performance 
was made in less than two weeks.

Statistical Procedures

The normality and homocedasticity assumptions were checked respectively with 
the Shapiro-Wilk and the Levene tests. Descriptive statistics (minimum, maximum, 
mean and one standard deviation) from all variables were calculated. Pearson 
correlation coefficients were computed between swimming performance and all 
remains variables. The statistical significance was set at p ≤ .05.

Structural equation modeling is a mathematical approach for testing and esti-
mating causal relationships using a combination of statistical data and qualitative 
causal assumptions previously defined by the researcher that will be (or would not 
be) confirmed. Path analysis is one special case of structural equation modeling. 
This kind of modeling aims at confirming the existence of relationships between 
variables and not to identify them. Moreover, this approach, rather than to identify 
variables, also suggests the kind of interplay (direct, indirect and spurious effects) 
which exists.

Path-flow analysis was performed with the estimation of linear regression 
standardized coefficients between the exogenous and endogenous variables. All 
assumptions to perform the path-flow analysis were taken into account. When 
appropriate, according to the theoretical model, simple or multiple linear regression 
models were computed. Standardized regression coefficients (β) were considered. 
Significance of each β was assessed with the Student’s t test (p ≤ .05). The effect 
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size of the disturbance term, reflecting unmeasured variables, for a given endog-
enous variable, was 1-R2.

To measure the quality of the model fit, the standardized root mean square 
residuals (SRMR) was computed:

  

Equation 6

Where r is the Pearson correlation coefficients and p the correlation predicted by the 
model (based on total effect, i.e., the addiction of the direct and indirect effects plus 
spurious effects). SRMR measures the standardized difference between the observed 
covariance and predicted covariance. It is considered qualitatively if: (i) SRMR < 
0.1 that the model adjust to the theory; (ii) SRMR < 0.05 that the model adjusts very 
well to the theory and; (iii) SRMR ~0 that the model is perfect (adapted from 21).

Results
Table 1 presents descriptive statistics from all variables studied. Data dispersion, 
expressed as 1SD, was moderate-high for almost every variable. This same idea 
can be supported analyzing the range values. This was especially clear for the swim 
performance (130.27 ≤ 200 m Freestyle ≤ 206.27 s), one biomechanical variable 
(1.25 ≤ SL ≤ 2.14 m) and one energetics variable (17.25 ≤ ηp ≤ 34.93%).

Table 2 presents the correlation between swim performance and remaining 
variables analyzed. All variables presented significant association with swim per-
formance, except for SL. For the significant ones, correlation coefficients ranged 
between moderate (e.g., r 

performance,SF
 = -0.35) and high (e.g., r

performance,CV
 = -0.76) 

associations.
Figure 2 presents the confirmatory path-flows for young swimmer’s per-

formance. Almost every partial relationship confirmed the hypothesis. The only 
exception was the relationship between SI and performance (β = -0.003, p > .05). 

Table 1 Descriptive Statistics of Biomechanics, Energetics and 
Swim Performance Variables

Mean
Standard 
deviation Minimum Maximum

SL (m) 1.64 0.20 1.25 2.14

SF (Hz) 0.89 0.08 0.69 1.03

v (m.s-1) 1.46 0.13 1.15 1.69

SI (m2.c-1.s-1) 2.42 0.44 1.55 3.21

hp (%) 23.31 4.53 17.25 34.93

CV (m.s-1) 1.07 0.10 0.87 1.26

200 m freestyle (s) 156.80 17.30 130.27 206.27
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The confirmatory model explained 79% of swimming performance for both path-
flows including (Figure 2A) and deleting (Figure 2B) SI-performance path with 
subsequent recomputation of the remaining data. So, it can be stated from a quali-
tative viewpoint that a high prediction of swim performance was verified. SRMR, 
quantifying the fit of the model purposed, was 0.10 for the first confirmatory model, 
including the nonsignificant path (Figure 2A) and 0.06 without that path (Figure 
2B). In this sense, the confirmatory path-flow model can be considered suitable of 
the theory presented.

Discussion
The aim of this research was to develop a path-flow analysis model for young swim-
mers’ performance based on biomechanical and energetics parameters. The main 
results were that the confirmatory models explained 79% of swimming performance 
including (SRMR = 0.10) or deleting (SRMR = 0.06) the stroke index-performance 
path, which was nonsignificant.

It was considered that swimming performance is strongly related to the energet-
ics profile and, in turn, this one to technical level (5). So, the path model designed 
adopted the same flow sequence: biomechanics-energetic-performance. The analysis 
of the relationships between the three domains is often made with adult/elite swim-
mers. However, in young swimmers these interplays seem not to be fully explored. 
Moreover, “typical” variables to assess biomechanical and energetics profile in 
young swimmers are not the same as for adult/elite swimmers. With the younger 
swimmers, apparatus and procedures have to be less expensive, invasive, complex 
and time consuming. Field practitioners do: (i) biomechanical assessments based 
on the stroke mechanics (SF, SL and v); (ii) energetics assessments estimating the 
swim efficiency (SI and ηp) and the aerobic capacity (CV) and; (iii) swimming 
performance assessment according to final time in real competition context. All 
the variables are easy to collect and have ecological meaning to design, control 
and evaluate the training process. Swimming performance was evaluated based 
on the 200 m freestyle event. Most of the races in the competitive swimming have 
distances up to 200 m. Indeed the 200 m event is one of the most challenging ones 
for young swimmers not only because the technical level (i.e., biomechanical 
behavior) is relevant but also because of the energetics profile.

Table 2 Correlation Matrix Between Swim Performance and 
Remains Variables

R P value

SL (m) -0.23 NS

SF (Hz) -0.35 < 0.05

v (m.s-1) -0.52 < 0.01

SI (m2.c-1.s-1) -0.37 < 0.05

hp (%) 0.48 < 0.01

CV (m.s-1) -0.76 < 0.001
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Mean data values are somewhat within the range of values reported in the 
literature for swimmers with similar gender, chronological and biological ages 
(e.g., 18,31,32). In this sense, it can be speculated that our data are in accordance 
to main literature. Thus, it is possible to give a step further in the “state of the art” 
about competitive swimming, exploring the links established between performance, 
energetic and biomechanical variables in young swimmers. Data dispersion was 
moderate-high for almost every variable. Moderate-high data dispersion will allow 
analyzing and confirming significant determinants of swim performance for the 
pooled data of several swimmers with different competitive levels.

All variables assessed presented significant association with swim performance, 
except for SL. Higher performances were associated with higher SF, v, SI and CV. 
Several papers reported similar associations for young (e.g., 20,22) and adult swim-
mers (e.g., 8). However, performance was also positive and significantly associated 

Figure 2 — Confirmatory path-flow models including nonsignificant paths (2A). SL—stroke 
length; SF—stroke frequency; CV—critical velocity; SI—stroke index; ηp—propulsive 
efficiency; x

i
→y

i
—variable y

i
 depends from variable(s) x

i
; x

i
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Figure 2 — (continued) and deleting nonsignificant paths with subsequent recomputation 
of remain data (2B). SL—stroke length; SF—stroke frequency; CV—critical velocity; 
SI—stroke index; ηp—propulsive efficiency; x

i
→y

i
—variable y

i
 depends from variable(s) 

x
i
; x

i
↔y

i
 variable x

i
 is associated to variable y

i

with ηp. It can be hypothesized that efficiency is related to better performances. 
As described in equation 4, ηp is directly related to v and inversely to SF. Prob-
ably young swimmers achieve higher v increasing SL and SF although with more 
emphasis on the last one. As a consequence, for a reduced range of swim paces, v 
increases especially due to SF, and therefore hp decreases.

Another redundant explanation is that propulsive efficiency can also be 
described as:

  
Equation 7

Where Pd is the mechanical power needed to overcome drag force and Pkin the 
mechanical power of the kinetic energy transferred to the water from the swimmer. 
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Pd is computed as:

  Equation 8

Where w
d
 is the mechanical work per stroke when submitted to the drag force. So,

  Equation 9

On the other hand, Pkin is computed as:

  
Equation 10

Where mi is the mass of water displaced by the swimmer trying to propeller himself 
and vi is the velocity of the added mass of water. So, taking into account equations 
7, 9 and 10, the increase of the SF will lead to a decrease of the ηp.

One of the main aims of swimming research is to identify determinant param-
eters related to competitive level and to understand how they interplay to enhance 
performance. This kind of research can be developed (5): (i) comparing different 
competitive level swimmers; (ii) employing neural network; (iii) computing clus-
ter analysis or; (iv) developing statistical models to predict performance from the 
swimmer’s profile. In this last case of statistical modeling, several mathematical 
procedures can be employed, such as computing: (i) associations between perfor-
mance and other variables (i.e., correlation coefficients); (ii) prediction equations 
for performance based on independent variables (i.e., simple or multiple regression 
models) or; (iii) prediction of performance based on several independent variables 
and how they interplay between themselves (i.e., structural equation modeling). 
Indeed, path analysis has been used in several knowledge areas, such as economy, 
genetics or epidemiology. However, its use in sport sciences, mainly in the research 
related to sports performance is almost nonexistent, despite its relevance. Some 
of the few exceptions are the works by Fogarty et al. (17) and Feltz et al. (15). In 
this manuscript path analysis was employed mostly to confirm the type of effects 
suggested on regular basis in the literature for the relationship between swim per-
formance, biomechanics and energetic. In the present state of the art of competitive 
swimming, understanding such relationships is more interesting rather than trying 
to predict and model swimming performance. The performance modeling can be 
as much challenging as frustrating if based on today’s knowledge.

Almost every path previously hypothesized was confirmed. The only nonsig-
nificant path was the SI-performance one (β = -0.003, p > .05), meaning that the 
direct effect of the energetic variable in the performance is reduced. However, SI 
has an indirect effect in the swim performance mediated by the hp (r = .492, p < 
.01). This means that the ηp has a higher capability to predict performance than SI, 
resulting in the exclusion of this one from the model. However, from an ecologi-
cal point of view, field practitioners can continue using SI as evaluation criteria on 
regular basis as it has a relationship with swimming performance.

As a measure of the models fit the SRMR was used. Numerically the model is 
as fit as SRMR is closer to zero. Qualitatively it is possible to define a cutoff value 
when SRMR is equal or lower than 0.10, meaning that the model adjusts to the theory. 
Deleting the nonsignificant path SI-performance and recomputing all data, SRMR 
was 0.06. In this sense, the theoretical model after a smooth change was adjusted. 
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Only variables that are easy to be assessed by field practitioners were selected to 
be included in the theoretical model. As a result, it seems that such variables and 
the interplay reported in Figure 2 can be useful for age-group coaches’ performing 
training control and evaluation.

The determination coefficient of swim performance was 0.79. It can be stated 
that qualitatively a high prediction of swim performance was verified. Even so, 
21% of swim performance cannot be explained by the variables analyzed. A 
higher performance predictability and even a decrease of SRMR might be achieved 
including other biomechanical variables such as speed fluctuation (2), segmental 
kinematics (4); or energetics ones, e.g., V

.  
O

2
max and minimum velocity to achieve 

V
.   
O

2
max (16,22), energy cost of swimming (3), blood lactate (25) and anaerobic 

parameters (19,35,38) according to the literature. However, the inclusion of such 
variables could increase the gap between the theoretical model proposed and 
practice since the procedures and apparatus to assess these variables are not easily 
at the disposal of young swimmers’ coaches. Moreover, swimming performance 
is a multifactorial phenomenon. Predictability could also increase if other scien-
tific domains reported in the literature as having strong relationships with swim 
performance were included in the model, e.g., motor control (33), anthropometry 
(34,37), hydrodynamics (13,24), genetics (11,28) or psychology (36).

As a matter of fact, some limitations in the study can explain at least part of the 
prediction model. It might be supposed to increase the model quality if: (i) other 
biomechanical variables are included in it, such as speed fluctuation or segmental 
kinematics; (ii) other energetic variables are also included in it, such as oxygen 
up-take, energy cost, time limit, minimum velocity to achieve V

.  
O

2
max, oxygen 

deficit or blood lactate; (iii) instead of estimating propulsive efficiency, assess it 
using another evaluation method; (iv) include in the model parameters from other 
knowledge areas, e.g., genetics, motor control, anthropometry, hydrodynamics, 
psychology, etc. Moreover, it should be stressed that the model is only suitable 
for young male swimmers performing the 200-m freestyle event in short course.

As a conclusion, the model based on biomechanical and energetic variables, 
according to the relationships suggested, is appropriate to explain performance in 
young swimmers. Nevertheless, the model should be expanded, including other 
variables to increase the prediction level and show a deeper understanding of the 
swimming performance.
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