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ABSTRCT 
As networks increase in size, heterogeneity, and complexity, their 

effective management becomes more important and increasingly difficult. In 
this context, Policy-Based Network Management (PBNM) has been gaining 
popularity in recent years. New demands on internetworking, services 
specification, Quality Service (QoS) and on network management functionality, 
in general, have been driving users to consider this paradigm in their own 
networks. 

From the moment PBNM pearadigms began to be implemented, 
another aspect became readily evident: that of transactional integrity. 
Transactional control envisages achieving consistent state changes along the 
network. In other words, state transition in network devices is only authorized if 
all the related operations are successfully executed.   

In this paper we propose a transactional control mechanism for PBNM 
systems, specifically a transactional control assurance across different systems 
and different network domains. 
Keywords: Policy based network management, policies, network management, transactions. 
 
 
 

RESUMO 
Devido ao aumento em tamanho, heterogeneidade e complexidade 

das redes, uma gestão eficaz das mesmas torna-se cada vez mais importante 
e ao mesmo tempo mais difícil. Neste contexto, a Gestão de Redes com Base 
em Políticas (Policy Based Network Management-PBNM), tem vindo a ganhar 
popularidade e efectividade nos últimos anos. As novas exigências relativas a 
internetworking, especificação de serviços, qualidade de serviço (Quality of 
Service-QoS) e genericamente sobre a funcionalidade de gestão de redes 
conduziu os administradores de redes a considerarem este paradigma nas 
redes que gerem. 
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A partir do momento que se começou a explorar este paradigma, 
imediatamente outro aspecto passou a ter relevância e a merecer a atenção 
da comunidade cientifica: a integridade transaccional. O controlo 
transaccional, neste contexto, tem como objectivo a obtenção mudanças de 
estado consistentes ao longo de toda a rede. Por outras palavras, a transição 
de estados nos dispositivos da rede é unicamente autorizada se todas as 
operações relacionadas com os mesmos forem realizadas com sucesso. 

Neste artigo, é proposto um mecanismo de controlo transaccional 
para sistemas de Gestão de Redes com Base em Políticas, nomeadamente o 
assegurar o controlo transaccional em diferentes sistemas e em diferentes 
domínios de rede. 
Palavras Chave: Gestão de Redes com Base em Políticas, políticas, gestão de redes, 
transacções. 
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1. INTRODUCTION 

The telecommunications market has growth impressively in the 
last years. The number of network devices, users and organizations that 
are interconnected shows how the complexity of these networks has 
increased. The number and diversity of applications requiring network 
services (virtual private networks, QoS and so on) have also increased. 
The bandwidth required by many of these applications, such as VoIP or 
multimedia streaming, is considerably higher from what we had a couple 
of years ago. Likewise, users’ expectations point to growing demands 
and to higher service levels. In this context, organizations will need 
expedited methodologies to configure and manage networks, systems 
and resources. Policy-based network management (PBNM), one of 
such methods, has been gaining importance as network dimension and 
complexity has grown. 

The goal behind PBNM is to approximate the business personal 
from the network technicians, by allowing managing network from high 
level policy rules. Each policy can represent an action that is applied to 
thousands of network elements. However, to be effective, this operation 
should be automated with appropriate software tools and protocols, 
which allow the policy to be applied regardless of the equipment 
vendor. 

Another challenge in PBNM is how to achieve full transactional 
integrity in a network domain. Today’s solutions, namely the COPS or 
SNMP protocols, allow for transactional integrity at the device level, but 
when we go to the network level, i.e., when we want to apply the same 
configuration to all the devices at one network domain we will face some 
difficulties. 

This paper presents a transaction manager and pairs of 
PDP/PEP which can deal with the properties of a network configuration 
transaction.  

 
 

2. BACKGROUND ON POLICY BASED MANAGEMENT 

Policies are plans of an organization to achieve its objectives. A 
policy is a persistent specification of an objective to be achieved or of a 
set of actions to be performed in the future or as an on-going regular 
activity. 
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Policy-based networking is the application of these organizational 
policies in the context of networking (Chadha, Lapiotis and Wright, 
2002). It is usually concerned with the implementation of organizational 
objectives as automated operations, management and control systems. 
In this context a policy is a relationship between network objects, such 
as particular groups of network elements, network resources and 
services, and user groups. For example, a bandwidth management 
policy may apply to all routers within a particular region or of a particular 
type. An authorization policy may specify that all members of a 
department have access to a particular service (Yavatkar, Pendarakis 
and Guerin, 2000).  

 

 
Figure 1 – IETF PBNM architecture 

 
Compared to conventional network management models, closer 

to low level instrumentation procedures (Wong and Law, 2001), PBNM 
simplifies interfaces by extracting commonality across devices; 
moreover, it provides consistency across interfaces. Network behaviors 
and management data will be standardized and abstracted. Network 
actions or configurations will be derived from these “policy rules”, and 
the policy rules can be differently applied from vendor to vendor. These 
abstracted management data and fewer interfaces are the keys to 
achieve better scalability and simplicity in large networks. 
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To support the high level dictated by PBNM, the IETF has 
proposed a policy framework architecture (Yavatkar, Pendarakis and 
Guerin, 2000) that we describe in the figure 1. 

This architecture describes the key components: Policy 
Management Tool (Policy Console), Policy Decision Point (PDP) or 
Police Server, Policy Enforcement Points (PEP) and Policy Repository. A 
network management protocol, like COPS (Durham et al., 2000), SNMP 
(Case et al., 1999) or other, is used to transfer management information 
among network management entities such as agents, managers, 
decision, and enforcement points. These protocols guarantees transport 
of information, although network level transactions are still an open issue 
(MacFaden et al., 2003). 

A PDP may have a different number of PEPs under its 
responsibility (Figure 2). 

 

Policy Console

PDP

PEP PEP PEP PEP

PDP

 

Figure 2 – PBNM architecture hierarchy 
 
If a single PDP is used to configure a large number of PEPs, we 

may have some scalability problems (centralized model). If we use more 
PDPs, we tend to distribute the configuration operations among a more 
meaningful number of PDPs. If each PDP is responsible for a single 
PEP, we are under a strong distribution scenario (Martinez et al., 2002). 
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3. BACKGROUND ON TRANSACTIONS 

The concept of transactions has been widely supported by a 
variety of existing systems, including data-oriented systems, such as 
databases, and process-oriented systems such as distributed systems. 
This concept has the same purpose in all these systems and is meant 
to “group” a set of operations, mainly read and write operations, into one 
logical execution unit called a transaction. Transactions guarantee that 
the data will be consistent at the end of its execution, regardless of 
whether the transaction was successful (commits) or have failed 
(aborts). 

Transactions must follow the ACID properties (Gray and Reuter, 
1994). These properties, identified by Atomicity, Consistency, Isolation, 
and Durability ensure that a transaction is performed in a proper way 
and that it leaves the system in a stable state.  

The atomicity property ensures that all operations performed as a 
part of a transaction are considered as atomic – i.e. all the transaction 
operations are performed or none of them. If a transaction aborts, all the 
operations are undone and the state will roll back to the previous stable 
state. 

Consistency ensures that state changes occur from one 
consistent state to another. Consistency of a state is defined by a set of 
constraints and variants which must be satisfied. The property of 
consistency enables an application to perform a set of operations 
guaranteed to create a new state satisfying these constraints.  

The isolation property is used in situations where multiple 
processing entities reference and change the same underlying 
resources and data. An executing transaction cannot reveal its results to 
other concurrent transactions before it commits. 

Durability guarantees that the result of a transaction is durable 
(persistent) and will not easily be lost (except in the case of 
catastrophes, such as destruction of the disk and all its backups). 
Durability is usually implemented by using a persistent storage 
mechanism. 

Taking these concepts to PBNM, the configuration of equipment 
following a policy usually results in the update of several managed 
objects and, to be successful, all of them must be configured or none at 
all. Thus, PBNM must rely on a transaction service so that the network 
travels between stable states. 
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4. DISTRIBUTION OF POLICIES 

In modern communication networks, an efficient and effective 
network management system must address support for management of 
network domains. In this context, the term domain represents a set of 
interconnected networking devices which may share a common goal or 
goals – the network-wide policy. 

Network wide policies imply that a single sentence of objectives 
be translated into a set of network equipment rules which are then used 
for equipment configuration purposes. Each rule should be installed in a 
specific network component thus contributing to the desired global goal. 

Looking from a different angle, each network-wide policy 
represents a transaction, which means that several configuration 
requests must be clustered so that they are performed with ACID 
properties. In other words, the requests must be all successfully applied 
– thus achieving a consistent state transition – or none at all, thus rolling 
back to the previous consistent state. 

In the following examples, and to illustrated the transactions 
mechanism, we will use the work of several IETF working groups, 
namely Policy (Policy Framework WG, 2004), Diffserv (Differentiated 
Services WG, 2003), and SNMPconf (Configuration Management with 
SNMP WG, 2003). 

Network wide policies as transactions 
Let us consider the example of a network composed of several 

core routers, identified by NE C_* and two edge routers, NE E_1 and 
NE E_2 ( 

Figure 3). Let us also consider that all the nodes support DiffServ 
classification of traffic (Blake et al., 1998; Grossman, 2002). 

Considering that it is necessary to establish a connection with a 
given class of service (the network wide policy) we have to configure all 
the routers along the path and we must guarantee that the 
communication requirements are met. If, at any point, this is not 
possible, we have to roll back to the previous configuration. 
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Network domain

NE E_1 NE E_2

NE C_1 NE C_N

Internet

. . .

 
Figure 3 – Network domain policies.     

 
For simplicity, we consider that the DiffServ nodes are configured 

through SNMP and/or COPS with the DiffServ MIB (Baker, Chan and 
Smith, 2002) and/or DiffServ PIB (Chan et al., 2003).  

The configuration activity taken when applying a policy must be 
performed as a transaction, thus having the ACID properties. 
Transactions must be isolated from each other. This property requires 
some sort of concurrency control to prevent other policies, which might 
collide with the one we are trying to enforce, from being applied ( 

Figure 4). 
 

 
Figure 4 – Concurrency control. 

a) Conflicting configuration in PEP C; b) Isolation of transactions. 
 
From a technical perspective, we have to get a write lock to 

each router under state change. It is well known, from the distributed 
systems theory that a value can be read simultaneously by several 
clients. However, modifying a value usually requires dedicated access 
by each client (Emmerich, 2000). This fact alerts us to the possibility of 
deadlocks as well as starvation. 
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The SNMP framework defines a mechanism to deal with multiple 
managers. The standard textual convention document defines 
TestAndIncr, a spinlock, which is used to avoid race conditions 
(McCloghrie et al., 1999). Objects of this type must be set to their 
current value otherwise the set operation will fail. If successful, its value 
is incremented. 

In a transaction scenario, the manager would have to retrieve the 
spinlock value from all the PEPs and then try to set a new state with the 
retrieved value. Should any operation fail, the transaction would have to 
bring all the PEPs to the previous state. This scenario does not provide 
an exclusive access lock to the PEP but it provides a method to detect if 
a different manager tried to configure it.  

A different perspective would be to use a transaction manager to 
grant or deny access to the PDP but this would require that all the 
requests be sent to it. Current management applications are not built to 
perform in this way. 

The durability property is ensured by the storage resources on 
network elements. Usually, it relies on flash RAM or on hard drives. This 
is usually defined through an object of the StorageType type 
(McCloghrie et al., 1999). 

A transaction can only end successfully if the state is consistent. 
The PEPs must only accept data which drives them to a possible state. 
In the DiffServ MIB (Hazewinkel and Partain, 2004), several conceptual 
tables are used for configuration. A conceptual table provides a column, 
of the RowStatus type, which reflects the status of the data stored in the 
associated row. If the status is ‘notReady’ then there is missing or 
incorrect information in it. Only if it is ‘active’ or ‘notInService’ the state is, 
or can be, consistent. 

The last property is atomicity. A transaction must be executed 
completely or not at all. Since we can have policies being applied to 
different PEPs and that each PEP has no knowledge about the others, 
the atomicity must be ensured at a higher level – the PDP.  

Transaction control is independent of the client and server 
objects and the operations between them. The coordination role is 
usually taken by a specific process – the transaction coordinator. The 
transaction is transparent to the client: it just requests the beginning of a 
transaction by sending a begin message to the coordinator followed by 
the configuration messages to the server objects. Finally, the client 
issues a commit message to the coordinator which will be responsible 
for ending the transaction. 
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A well known protocol for achieving atomicity in transactions is 
the Two-Phase Commit Protocol (2PC) (Özsu and Valduriez, 1999). The 
2PC has two phases: 

The voting phase: a coordinator process is started (usually at the 
site where the transaction is initialized), writes a begin commit record in 
its log, sends a vote message to the participants, and enters the wait 
state. This message also contains a unique transaction id, which will be 
used in further messages.  

When a participant receives a vote message, it checks if it can 
commit the transaction. If it can, the participant writes a ready record in 
its log, sends a vote confirmation message to the coordinator, and 
enters the ready state. Otherwise, the participants decide to unilaterally 
abort the transaction by sending an abort message to the coordinator. It 
enters the abort state and can forget about the transaction. 

The commit phase: After the coordinator has received votes from 
all participants it decides whether to commit or abort according to the 
global commit rule, and writes this decision in the log. If the decision is 
to commit, it sends a commit message to all participants. Otherwise, it 
sends an abort message to all sites that voted to commit. Finally, it 
writes an end of transaction record in its log. 

We thus have an exchange of messages as shown in  
Figure 5. 
 

 
Figure 5 – Messages exchanged for the 2PC 
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To cope with eventual crashes or lost messages, the 
participants will have to provide some recover procedures: 

• If the client fails before committing, the coordinator will 
eventually abort the transaction by sending abort messages to 
the transaction servers. 
• If a server fails before voting, the coordinator should interpret 
the missing vote as a vote against and should explicitly abort the 
transaction. 
• If the coordinator fails during the voting phase, the servers will 
not receive the commit message and eventually abort. 
• If the server fails after voting and if it has voted in favour, after 
restarting it will ask the coordinator for the decision taken and act 
accordingly. If the decision is to commit, it must use the data 
recovered from temporary storage. 
• If the coordinator fails after the first commit message, it has to 
retransmit the commit request when getting back online. 
Next section will describe how the roles can be applied to policy-

based management. 
 
 

5. AN ARCHITECTURE FOR POLICY TRANSACTIONS 

This section describes our architecture for implementing 
transactions in PBNM (Figure 6). Ignoring the Policy Console and the 
Policy Repository, it closely resembles the IETF architecture, basing the 
main operations on PDPs and PEPs. 

We use The Java Transaction API (2004) (JTA) to provide 
coordination between the PDP and PEPs. The role of the Transaction 
Coordinator is to control and coordinate the transaction, as referred in 
the previous section. The JTA provides a generic coordinator as part of 
the API. 
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Figure 6 – Architecture for PBNM transactions 

 
The PDP works as a transactions client and the PEPs as servers. 

In JTA, this means that the PDP has to obtain a reference to a 
UserTransaction object, which will be used to start and end the 
transactions: 

 
public void applyPolicy(Policy policy) { 
 
  UserTransaction ut = context.getUserTransaction(); 
 
  try { 
// Request the transaction coordinator to start a 
transaction 
    ut.begin();  
    setPolicy(policy); 
    // Request the transaction coordinator to commit the 
transaction 
    ut.commit(); 
  } catch (Exception ex) { 
    try { 
      ut.rollback(); 
    } catch (SystemException syex) { 
      throw new EJBException("Rollback failed: " + 
syex.getMessage()); 
    } 
    throw new EJBException("Transaction failed: " + 
ex.getMessage()); 
  } 
} 

 
 The PEP is the transaction server object. As such, it has to 

implement the XAResource interface. This interface provides methods 
corresponding to the 2PC protocol, namely the voting phase (prepare), 
commit and others. 

When the PDP sends a configuration message to the PEP, it has 
to register on the Transaction Coordinator through the enlistResource 
method of the Transaction interface. This is how the coordinator gets 
the references to the participants in the transaction. The PEP may have 
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to store some information retrieved from the agent to cope with crashes 
that may happen. 

The implementation of the prepare method must also include 
code to check if the agent is in a consistent state, by querying the 
conceptual table RowStatus column, for example, and if the transaction 
could be committed. Meanwhile, it also has to check the spinlock 
object, to see if some other manager is configuring or has configured 
the agent. In this case, the PEP will vote against committing and the 
transaction has to be aborted. 

After the PDP has issued the commit message, the transaction 
coordinator will request the PEPs install the policy in the agent. 

The PEP also plays an important role in the recovery process in 
case some message is lost or some participant crashes: 

• If the PDP fails before committing, the coordinator will 
eventually abort the transaction by sending abort messages to 
the PEPs. 
• If a PEP fails before voting, the coordinator should interpret 
the missing vote as a vote against and should explicitly abort the 
transaction. 
• If the agent fails before voting, the PEP will loose contact with 
it and will vote against the commit. 
• If the coordinator fails during the voting phase, the PEPs will 
not receive the commit message and, after a timeout, will abort 
the transaction. 
• If the PEP fails after voting and if it has voted in favour, after 
restarting it will ask the coordinator for the decision taken and act 
accordingly. If the decision is to commit, it must use the data 
recovered from temporary storage. 
• If the agent fails after the PEP has voted and if the decision is 
to commit, the PEP will wait for the agent to come back online 
and restore the state previously retrieved from it. The PEP will 
then complete the transaction by applying the transaction 
decision. 
• If the coordinator fails after the first commit message, it has to 
retransmit the commit request when getting back online. 

 
 

6. CONCLUSIONS 

Policy-Based Network Management is a methodology wherein 
configuration information is derived from rules and network-wide 
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objectives, and is distributed to many potential network elements with 
the goal of achieving consistent network behaviour. 

The configuration activity causes state changes in the network 
elements and, to achieve consistent state changes in network domains, 
it is necessary to guarantee support for transactional integrity.  

Throughout this paper we have presented some considerations 
about the importance of guaranteeing transactional integrity at the 
network level in PBNM. The architecture presented, based on the JTA 
package and on the 2PC protocol, validates our ideas. 
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