

167

TOWARDS TRANSACTIONAL
INTEGRITY ISSUES IN POLICY
BASED NETWORK MANAGEMENT
SYSTEMS
ASPECTOS SOBRE INTEGRIDADE TRANSACCIONAL EM SISTEMAS DE
GESTÃO DE REDES COM BASE EM POLÍTICAS

Vitor Roque* (vitor.roque@ipg.pt)
Rui P. Lopes** (rlopes@ipb.pt) e
José Luís Oliveira*** (jlo@det.ua.pt)

ABSTRCT
As networks increase in size, heterogeneity, and complexity, their

effective management becomes more important and increasingly difficult. In
this context, Policy-Based Network Management (PBNM) has been gaining
popularity in recent years. New demands on internetworking, services
specification, Quality Service (QoS) and on network management functionality,
in general, have been driving users to consider this paradigm in their own
networks.

From the moment PBNM pearadigms began to be implemented,
another aspect became readily evident: that of transactional integrity.
Transactional control envisages achieving consistent state changes along the
network. In other words, state transition in network devices is only authorized if
all the related operations are successfully executed.

In this paper we propose a transactional control mechanism for PBNM
systems, specifically a transactional control assurance across different systems
and different network domains.
Keywords: Policy based network management, policies, network management, transactions.

RESUMO
Devido ao aumento em tamanho, heterogeneidade e complexidade

das redes, uma gestão eficaz das mesmas torna-se cada vez mais importante
e ao mesmo tempo mais difícil. Neste contexto, a Gestão de Redes com Base
em Políticas (Policy Based Network Management-PBNM), tem vindo a ganhar
popularidade e efectividade nos últimos anos. As novas exigências relativas a
internetworking, especificação de serviços, qualidade de serviço (Quality of
Service-QoS) e genericamente sobre a funcionalidade de gestão de redes
conduziu os administradores de redes a considerarem este paradigma nas
redes que gerem.

168

A partir do momento que se começou a explorar este paradigma,
imediatamente outro aspecto passou a ter relevância e a merecer a atenção
da comunidade cientifica: a integridade transaccional. O controlo
transaccional, neste contexto, tem como objectivo a obtenção mudanças de
estado consistentes ao longo de toda a rede. Por outras palavras, a transição
de estados nos dispositivos da rede é unicamente autorizada se todas as
operações relacionadas com os mesmos forem realizadas com sucesso.

Neste artigo, é proposto um mecanismo de controlo transaccional
para sistemas de Gestão de Redes com Base em Políticas, nomeadamente o
assegurar o controlo transaccional em diferentes sistemas e em diferentes
domínios de rede.
Palavras Chave: Gestão de Redes com Base em Políticas, políticas, gestão de redes,
transacções.

* Equiparado a Professor Adjunto na Escola Superior de Turismo e
Telecomunicações de Seia do Instituto Politécnico da Guarda,
coordenador do curso de Informática para o Turismo e Responsável pelo
Gabinete de Informática da ESTTS. Mestrado em 1999 com o título
“CORBA, DCOM e JavaRMI” pelo Departamento de Electrónica e
Telecomunicações da Universidade de Aveiro.Instituto Politécnico da
Guarda, ESTG, Guarda – Portugal

** Professor Auxiliar no Instituto Politécnico de Bragança, responsável pelo
curso de Engenharia Informática e Coordenador do Centro de Informática
(CRi). Actualmente é o Director da Escola Superior de Tecnologia e
Gestão de Mirandela. Doutoramento em 2003 com o título “Gestão
Distribuída em SNMP” pelo Departamento de Electrónica e
Telecomunicações da Universidade de Aveiro.

*** Professor Associado da Universidade de Aveiro no Departamento de
Electrónica, Telecomunicações e Informática (DETI), investigador sénior
do Instituto de Engenharia Electrónica e Telemática de Aveiro (IEETA) e
investigador colaborador no Instituto de Telecomunicações coordenador
do grupo de bioinformática da Universidade de Aveiro e Director da
unidade de Bioinformática no BIOCANT

169

1. INTRODUCTION

The telecommunications market has growth impressively in the
last years. The number of network devices, users and organizations that
are interconnected shows how the complexity of these networks has
increased. The number and diversity of applications requiring network
services (virtual private networks, QoS and so on) have also increased.
The bandwidth required by many of these applications, such as VoIP or
multimedia streaming, is considerably higher from what we had a couple
of years ago. Likewise, users’ expectations point to growing demands
and to higher service levels. In this context, organizations will need
expedited methodologies to configure and manage networks, systems
and resources. Policy-based network management (PBNM), one of
such methods, has been gaining importance as network dimension and
complexity has grown.

The goal behind PBNM is to approximate the business personal
from the network technicians, by allowing managing network from high
level policy rules. Each policy can represent an action that is applied to
thousands of network elements. However, to be effective, this operation
should be automated with appropriate software tools and protocols,
which allow the policy to be applied regardless of the equipment
vendor.

Another challenge in PBNM is how to achieve full transactional
integrity in a network domain. Today’s solutions, namely the COPS or
SNMP protocols, allow for transactional integrity at the device level, but
when we go to the network level, i.e., when we want to apply the same
configuration to all the devices at one network domain we will face some
difficulties.

This paper presents a transaction manager and pairs of
PDP/PEP which can deal with the properties of a network configuration
transaction.

2. BACKGROUND ON POLICY BASED MANAGEMENT

Policies are plans of an organization to achieve its objectives. A
policy is a persistent specification of an objective to be achieved or of a
set of actions to be performed in the future or as an on-going regular
activity.

170

Policy-based networking is the application of these organizational
policies in the context of networking (Chadha, Lapiotis and Wright,
2002). It is usually concerned with the implementation of organizational
objectives as automated operations, management and control systems.
In this context a policy is a relationship between network objects, such
as particular groups of network elements, network resources and
services, and user groups. For example, a bandwidth management
policy may apply to all routers within a particular region or of a particular
type. An authorization policy may specify that all members of a
department have access to a particular service (Yavatkar, Pendarakis
and Guerin, 2000).

Figure 1 – IETF PBNM architecture

Compared to conventional network management models, closer

to low level instrumentation procedures (Wong and Law, 2001), PBNM
simplifies interfaces by extracting commonality across devices;
moreover, it provides consistency across interfaces. Network behaviors
and management data will be standardized and abstracted. Network
actions or configurations will be derived from these “policy rules”, and
the policy rules can be differently applied from vendor to vendor. These
abstracted management data and fewer interfaces are the keys to
achieve better scalability and simplicity in large networks.

171

To support the high level dictated by PBNM, the IETF has
proposed a policy framework architecture (Yavatkar, Pendarakis and
Guerin, 2000) that we describe in the figure 1.

This architecture describes the key components: Policy
Management Tool (Policy Console), Policy Decision Point (PDP) or
Police Server, Policy Enforcement Points (PEP) and Policy Repository. A
network management protocol, like COPS (Durham et al., 2000), SNMP
(Case et al., 1999) or other, is used to transfer management information
among network management entities such as agents, managers,
decision, and enforcement points. These protocols guarantees transport
of information, although network level transactions are still an open issue
(MacFaden et al., 2003).

A PDP may have a different number of PEPs under its
responsibility (Figure 2).

Policy Console

PDP

PEP PEP PEP PEP

PDP

Figure 2 – PBNM architecture hierarchy

If a single PDP is used to configure a large number of PEPs, we

may have some scalability problems (centralized model). If we use more
PDPs, we tend to distribute the configuration operations among a more
meaningful number of PDPs. If each PDP is responsible for a single
PEP, we are under a strong distribution scenario (Martinez et al., 2002).

172

3. BACKGROUND ON TRANSACTIONS

The concept of transactions has been widely supported by a
variety of existing systems, including data-oriented systems, such as
databases, and process-oriented systems such as distributed systems.
This concept has the same purpose in all these systems and is meant
to “group” a set of operations, mainly read and write operations, into one
logical execution unit called a transaction. Transactions guarantee that
the data will be consistent at the end of its execution, regardless of
whether the transaction was successful (commits) or have failed
(aborts).

Transactions must follow the ACID properties (Gray and Reuter,
1994). These properties, identified by Atomicity, Consistency, Isolation,
and Durability ensure that a transaction is performed in a proper way
and that it leaves the system in a stable state.

The atomicity property ensures that all operations performed as a
part of a transaction are considered as atomic – i.e. all the transaction
operations are performed or none of them. If a transaction aborts, all the
operations are undone and the state will roll back to the previous stable
state.

Consistency ensures that state changes occur from one
consistent state to another. Consistency of a state is defined by a set of
constraints and variants which must be satisfied. The property of
consistency enables an application to perform a set of operations
guaranteed to create a new state satisfying these constraints.

The isolation property is used in situations where multiple
processing entities reference and change the same underlying
resources and data. An executing transaction cannot reveal its results to
other concurrent transactions before it commits.

Durability guarantees that the result of a transaction is durable
(persistent) and will not easily be lost (except in the case of
catastrophes, such as destruction of the disk and all its backups).
Durability is usually implemented by using a persistent storage
mechanism.

Taking these concepts to PBNM, the configuration of equipment
following a policy usually results in the update of several managed
objects and, to be successful, all of them must be configured or none at
all. Thus, PBNM must rely on a transaction service so that the network
travels between stable states.

173

4. DISTRIBUTION OF POLICIES

In modern communication networks, an efficient and effective
network management system must address support for management of
network domains. In this context, the term domain represents a set of
interconnected networking devices which may share a common goal or
goals – the network-wide policy.

Network wide policies imply that a single sentence of objectives
be translated into a set of network equipment rules which are then used
for equipment configuration purposes. Each rule should be installed in a
specific network component thus contributing to the desired global goal.

Looking from a different angle, each network-wide policy
represents a transaction, which means that several configuration
requests must be clustered so that they are performed with ACID
properties. In other words, the requests must be all successfully applied
– thus achieving a consistent state transition – or none at all, thus rolling
back to the previous consistent state.

In the following examples, and to illustrated the transactions
mechanism, we will use the work of several IETF working groups,
namely Policy (Policy Framework WG, 2004), Diffserv (Differentiated
Services WG, 2003), and SNMPconf (Configuration Management with
SNMP WG, 2003).

Network wide policies as transactions
Let us consider the example of a network composed of several

core routers, identified by NE C_* and two edge routers, NE E_1 and
NE E_2 (

Figure 3). Let us also consider that all the nodes support DiffServ
classification of traffic (Blake et al., 1998; Grossman, 2002).

Considering that it is necessary to establish a connection with a
given class of service (the network wide policy) we have to configure all
the routers along the path and we must guarantee that the
communication requirements are met. If, at any point, this is not
possible, we have to roll back to the previous configuration.

174

Network domain

NE E_1 NE E_2

NE C_1 NE C_N

Internet

. . .

Figure 3 – Network domain policies.

For simplicity, we consider that the DiffServ nodes are configured

through SNMP and/or COPS with the DiffServ MIB (Baker, Chan and
Smith, 2002) and/or DiffServ PIB (Chan et al., 2003).

The configuration activity taken when applying a policy must be
performed as a transaction, thus having the ACID properties.
Transactions must be isolated from each other. This property requires
some sort of concurrency control to prevent other policies, which might
collide with the one we are trying to enforce, from being applied (

Figure 4).

Figure 4 – Concurrency control.

a) Conflicting configuration in PEP C; b) Isolation of transactions.

From a technical perspective, we have to get a write lock to

each router under state change. It is well known, from the distributed
systems theory that a value can be read simultaneously by several
clients. However, modifying a value usually requires dedicated access
by each client (Emmerich, 2000). This fact alerts us to the possibility of
deadlocks as well as starvation.

175

The SNMP framework defines a mechanism to deal with multiple
managers. The standard textual convention document defines
TestAndIncr, a spinlock, which is used to avoid race conditions
(McCloghrie et al., 1999). Objects of this type must be set to their
current value otherwise the set operation will fail. If successful, its value
is incremented.

In a transaction scenario, the manager would have to retrieve the
spinlock value from all the PEPs and then try to set a new state with the
retrieved value. Should any operation fail, the transaction would have to
bring all the PEPs to the previous state. This scenario does not provide
an exclusive access lock to the PEP but it provides a method to detect if
a different manager tried to configure it.

A different perspective would be to use a transaction manager to
grant or deny access to the PDP but this would require that all the
requests be sent to it. Current management applications are not built to
perform in this way.

The durability property is ensured by the storage resources on
network elements. Usually, it relies on flash RAM or on hard drives. This
is usually defined through an object of the StorageType type
(McCloghrie et al., 1999).

A transaction can only end successfully if the state is consistent.
The PEPs must only accept data which drives them to a possible state.
In the DiffServ MIB (Hazewinkel and Partain, 2004), several conceptual
tables are used for configuration. A conceptual table provides a column,
of the RowStatus type, which reflects the status of the data stored in the
associated row. If the status is ‘notReady’ then there is missing or
incorrect information in it. Only if it is ‘active’ or ‘notInService’ the state is,
or can be, consistent.

The last property is atomicity. A transaction must be executed
completely or not at all. Since we can have policies being applied to
different PEPs and that each PEP has no knowledge about the others,
the atomicity must be ensured at a higher level – the PDP.

Transaction control is independent of the client and server
objects and the operations between them. The coordination role is
usually taken by a specific process – the transaction coordinator. The
transaction is transparent to the client: it just requests the beginning of a
transaction by sending a begin message to the coordinator followed by
the configuration messages to the server objects. Finally, the client
issues a commit message to the coordinator which will be responsible
for ending the transaction.

176

A well known protocol for achieving atomicity in transactions is
the Two-Phase Commit Protocol (2PC) (Özsu and Valduriez, 1999). The
2PC has two phases:

The voting phase: a coordinator process is started (usually at the
site where the transaction is initialized), writes a begin commit record in
its log, sends a vote message to the participants, and enters the wait
state. This message also contains a unique transaction id, which will be
used in further messages.

When a participant receives a vote message, it checks if it can
commit the transaction. If it can, the participant writes a ready record in
its log, sends a vote confirmation message to the coordinator, and
enters the ready state. Otherwise, the participants decide to unilaterally
abort the transaction by sending an abort message to the coordinator. It
enters the abort state and can forget about the transaction.

The commit phase: After the coordinator has received votes from
all participants it decides whether to commit or abort according to the
global commit rule, and writes this decision in the log. If the decision is
to commit, it sends a commit message to all participants. Otherwise, it
sends an abort message to all sites that voted to commit. Finally, it
writes an end of transaction record in its log.

We thus have an exchange of messages as shown in
Figure 5.

Figure 5 – Messages exchanged for the 2PC

177

To cope with eventual crashes or lost messages, the
participants will have to provide some recover procedures:

• If the client fails before committing, the coordinator will
eventually abort the transaction by sending abort messages to
the transaction servers.
• If a server fails before voting, the coordinator should interpret
the missing vote as a vote against and should explicitly abort the
transaction.
• If the coordinator fails during the voting phase, the servers will
not receive the commit message and eventually abort.
• If the server fails after voting and if it has voted in favour, after
restarting it will ask the coordinator for the decision taken and act
accordingly. If the decision is to commit, it must use the data
recovered from temporary storage.
• If the coordinator fails after the first commit message, it has to
retransmit the commit request when getting back online.
Next section will describe how the roles can be applied to policy-

based management.

5. AN ARCHITECTURE FOR POLICY TRANSACTIONS

This section describes our architecture for implementing
transactions in PBNM (Figure 6). Ignoring the Policy Console and the
Policy Repository, it closely resembles the IETF architecture, basing the
main operations on PDPs and PEPs.

We use The Java Transaction API (2004) (JTA) to provide
coordination between the PDP and PEPs. The role of the Transaction
Coordinator is to control and coordinate the transaction, as referred in
the previous section. The JTA provides a generic coordinator as part of
the API.

178

Figure 6 – Architecture for PBNM transactions

The PDP works as a transactions client and the PEPs as servers.

In JTA, this means that the PDP has to obtain a reference to a
UserTransaction object, which will be used to start and end the
transactions:

public void applyPolicy(Policy policy) {

 UserTransaction ut = context.getUserTransaction();

 try {
// Request the transaction coordinator to start a
transaction
 ut.begin();
 setPolicy(policy);
 // Request the transaction coordinator to commit the
transaction
 ut.commit();
 } catch (Exception ex) {
 try {
 ut.rollback();
 } catch (SystemException syex) {
 throw new EJBException("Rollback failed: " +
syex.getMessage());
 }
 throw new EJBException("Transaction failed: " +
ex.getMessage());
 }
}

 The PEP is the transaction server object. As such, it has to

implement the XAResource interface. This interface provides methods
corresponding to the 2PC protocol, namely the voting phase (prepare),
commit and others.

When the PDP sends a configuration message to the PEP, it has
to register on the Transaction Coordinator through the enlistResource
method of the Transaction interface. This is how the coordinator gets
the references to the participants in the transaction. The PEP may have

179

to store some information retrieved from the agent to cope with crashes
that may happen.

The implementation of the prepare method must also include
code to check if the agent is in a consistent state, by querying the
conceptual table RowStatus column, for example, and if the transaction
could be committed. Meanwhile, it also has to check the spinlock
object, to see if some other manager is configuring or has configured
the agent. In this case, the PEP will vote against committing and the
transaction has to be aborted.

After the PDP has issued the commit message, the transaction
coordinator will request the PEPs install the policy in the agent.

The PEP also plays an important role in the recovery process in
case some message is lost or some participant crashes:

• If the PDP fails before committing, the coordinator will
eventually abort the transaction by sending abort messages to
the PEPs.
• If a PEP fails before voting, the coordinator should interpret
the missing vote as a vote against and should explicitly abort the
transaction.
• If the agent fails before voting, the PEP will loose contact with
it and will vote against the commit.
• If the coordinator fails during the voting phase, the PEPs will
not receive the commit message and, after a timeout, will abort
the transaction.
• If the PEP fails after voting and if it has voted in favour, after
restarting it will ask the coordinator for the decision taken and act
accordingly. If the decision is to commit, it must use the data
recovered from temporary storage.
• If the agent fails after the PEP has voted and if the decision is
to commit, the PEP will wait for the agent to come back online
and restore the state previously retrieved from it. The PEP will
then complete the transaction by applying the transaction
decision.
• If the coordinator fails after the first commit message, it has to
retransmit the commit request when getting back online.

6. CONCLUSIONS

Policy-Based Network Management is a methodology wherein
configuration information is derived from rules and network-wide

180

objectives, and is distributed to many potential network elements with
the goal of achieving consistent network behaviour.

The configuration activity causes state changes in the network
elements and, to achieve consistent state changes in network domains,
it is necessary to guarantee support for transactional integrity.

Throughout this paper we have presented some considerations
about the importance of guaranteeing transactional integrity at the
network level in PBNM. The architecture presented, based on the JTA
package and on the 2PC protocol, validates our ideas.

REFERENCES

Baker, F.; Chan, K.; Smith, A. (2002); Management Information Base for the Differentiated
Services Architecture - RFC3289; The Internet Engineering Task Force (IETF).
Blake, S. et al. (1998); An Architecture for Differentiated Services - RFC2475; The Internet
Engineering Task Force (IETF).
Case, J. et al. (1999); Introduction to Version 3 of the Internet-standard Network
Management Framework - RFC 2570; The Internet Engineering Task Force (IETF).
Chadha, R.; Lapiotis, G.; Wright, S. (2002); ”Guest Editorial - Policy-Based Networking”; in
IEEE Network. 2002, IEEE.
Chan, K. et al. (2003); Differentiated Services Quality of Service Policy Information Base -
RFC3317; The Internet Engineering Task Force (IETF).
Configuration Management with SNMP WG; (2003); The Internet Engineering Task Force
(IETF).
Differentiated Services WG; (2003), The Internet Engineering Task Force (IETF).
Durham, D. et al. (2000); The COPS (Common Open Policy Service) Protocol - RFC2748;
The Internet Engineering Task Force (IETF).
Emmerich, W. (2000); Engineering Distributed Objects; Wiley.
Gray, J.; Reuter, A. (1994); Transaction Processing: Concepts and Techniques; Morgan
Kaufmann.
Grossman, D. (2002); New Terminology and Clarifications for Diffserv - RFC3260; The
Internet Engineering Task Force (IETF).
Hazewinkel, H.; Partain, D. (2004); The Differentiated Services Configuration MIB -
RFC3747; The Internet Engineering Task Force (IETF).
MacFaden, M. et al. (2003); Configuring Networks and Devices With SNMP - RFC3512;
The Internet Engineering Task Force (IETF).
Martinez, P. et al. (2002); ”Using the Script MIB for Policy-based Configuration
Management”; in IEEE/IFIP Network Operations and Management Symposium 2002;
Florence.
McCloghrie, K. et al. (1999); Textual Conventions for SMIv2 - RFC2579; The Internet
Engineering Task Force (IETF).
Özsu, M.; Valduriez, P. (1999); Principles of Distributed Database Systems; 2ªed; Prentice-
Hall.
Policy Framework WG; (2004); The Internet Engineering Task Force (IETF).
The Java Transaction API (2004); Sun Microsystems.

181

Wong, K.; Law, E. (2001); ”ABB: active bandwidth broker”; in SPIE ITCom 2001; Denver;
USA.
Yavatkar, R.; Pendarakis, D.; Guerin, R. (2000); A Framework for Policy-based Admission
Control - RFC2753; The Internet Engineering Task Force (IETF).

