
A Survey on Secure Software
Development Lifecycles

José Fonseca1, Marco Vieira2
1DEI/CISUC, University of Coimbra / Polytechnic Institute of Guarda, Portugal
2DEI/CISUC, University of Coimbra, Portugal

ABSTRACT
This chapter presents a survey on the most relevant software development practices that are used
nowadays to build software products for the web, with security built in. It starts by presenting three of the
most relevant Secure Software Development Lifecycles, which are complete solutions that can be adopted
by development companies: the CLASP, the Microsoft Secure Development Lifecycle and the Software
Security Touchpoints. However it is not always feasible to change ongoing projects or replace the
methodology in place. So, this chapter also discusses other relevant initiatives that can be integrated into
existing development practices, which can be used to build and maintain safer software products: the
OpenSAMM, the BSIMM, the SAFECode and the Securosis. The main features of these security
development proposals are also compared according to their highlights and the goals of the target
software product.

INTRODUCTION
The Software Development Lifecycle (SDL) is a conceptual model used by software houses in the
management of the process of analyzing, developing, controlling and maintaining software (Sommerville,
2010). Some of the most well-known models are the Waterfall (Royce, 1970), the Rapid Application
Development (Martin, 1991) and the Spiral (Boehm, 1986). At the time when these SDLSs were
developed, the software security awareness was not as relevant as it is today, so it was not a big concern
to take into account. In fact, the typical approach of dealing only with development best practices is not
sufficient for current applications that have to face the constant pressure of web attacks, although they can
improve the overall quality and help mitigate some common issues.

These traditional SDLs are still in widespread use nowadays, but they are not effective when building
secure systems that have to face the huge number of threats that can arise from anywhere, like those that
come from the web and are so pervasive (Howard & LeBlanc, 2003). Both logic and coding bugs must be
thoroughly addressed during all the phases of the development process, therefore reducing the cost of
deploying unsecure application. This is of utmost importance for web applications that will be exposed to
the growing number of hackers and organized crime that can strike at any time, from any place in the
Globe. This is what an integrated Secure Software Development Lifecycles (SSDL) does from the start to
the end of the life of an application. In fact, using a SSDL is one of the recommendations of the Verizon’s
2009 data breach report in order to prevent the application layer type of attacks, including SQL Injection
and XSS (Baker et al., 2009).

This chapter presents an overview of the most important SSDLs that are used nowadays to build software
products that have to face the many threats that come from the web: the Open Web Application Security
Project (OWASP) Comprehensive, Lightweight Application Security Process (CLASP), the Microsoft

 2	

Secure Development Lifecycle, and the Software Security Touchpoints. Although there is a general
consensus about the advantages of using a SSDL, this subject is still in its early adoption by the industry.
It takes time to implement and execute, it costs money and it implies a change in the way organization
works, which is usually difficult to achieve. The way a secure software should be developed is still
generating a growing number of discussions and there is a considerable number of proposals trying to
gain adopters and overcome the problems and technical difficulties of applying them in the real world
(Higgins, 2009). This chapter also introduces other relevant initiatives, which can be adapted to the
existing SDL, devoted to building and maintaining a safer software product: the Open Software
Assurance Maturity Model (OpenSAMM), the Building Security In Maturity Model (BSIMM), the
Software Assurance Forum for Excellence in Code (SAFECode) and the Securosis building a web
application security program.

This chapter also discusses the issue of selecting a software development lifecycle according to the reality
of the software product being developed. This involves identifying the security issues that should be
addressed from a development point-of-view and then map these issues with the features of existing
lifecycles to make the right choice and tune any relevant aspects.

SOFTWARE DEVELOPMENT AND SECURITY
One important metric of software quality is assurance: “a level of confidence that software is free from
vulnerabilities, either intentionally designed into the software or accidentally inserted at any time during
its lifecycle, and that the software functions in the intended manner” (CNSS Secretariat, 2006). To
achieve software assurance developers need to build assured software: “Software that has been designed,
developed, analyzed and tested using processes, tools, and techniques that establish a level of confidence
in its trustworthiness appropriate for its intended use” (CNSS Secretariat, 2006). To achieve this goal,
developers must rethink the software development process and address all the phases of the SDL: design,
code and documentation (Howard & LeBlanc, 2003). This is like applying the defense-in-depth strategy
to the various phases of the software development lifecycle making it more security aware.

To understand the security measures that vendors use for software assurance, Jeremy Epstein analyzed
eight software vendors with small to very large revenues (Epstein, 2009). The security measures analyzed
were software developer training, software design review, execution of penetration testing using humans
and tools during the SDL, and source code analysis. The study showed that almost every company is
conscious of the risks of insecure software and performs all these activities, to some extent. However,
although their clients do not ask explicitly for security, software vendors implement security assurance
mechanisms because they are aware that in case something goes wrong it will bring them negative
consequences. Other companies should follow this practice, given that the web application scenario is so
prone to vulnerabilities and it is so common for an application to be probed by possible hackers. In fact,
“If you do not perform security testing for your application, someone else not working for your company
will” (Howard & LeBlanc, 2003). Customers do not ask for security but, if security fails, they will move
to another solutions provider.

Software developers frequently see functionality as more important than quality or security. This is
natural since the functionality is what represents the need for a given product. Without it there is even no
need for security because there will be nothing to be secured. However, security should be seriously
considered. A Gartner report says that 75% of attacks take place through the application level and predicts
that, by 2009, around 80% of companies will have suffered a security incident due to application
vulnerabilities (Lanowitz, 2005). The report also adverts for the need to build secure applications and test
applications for security from the early start of the project during the application development lifecycle.

 3	

One major problem is that typical SDLs in use nowadays are not effective when building secure systems.
Security is not integrated in the SDL and it is seen just as an additional process activity (Marmor-Squires
& Rougeau, 1988). To obtain a secure product, the typical development approach needs to be extended.
For example, the OWASP’s Enterprise Security API Project (ESAPI) addresses this problem by
providing a set of APIs to interface all security controls needed to build a secure application including
input validation, output encoding, error logging and detection (Williams, 2008). These APIs include
toolkits for the major programming languages and can be used by software developers during the SDL to
increase security with minimum intrusion in their development process.

Some other researchers propose secure development guidelines (Auger, 2007), like the OWASP’s “A
Guide to Building Secure web Applications and web Services” (Wiesmann, Curphey, Stock, & Stirbei,
2005) and the “Complete web Application Security: Phase 1–Building web Application Security into
Your Development Process” (SPI Dynamics, Inc., 2002). SANS series of working papers in Application
Security describe a checklist of twelve methods to avoid two of the most important classes of mistakes
done by developers: poor input validation and output filtering (Kim & Skoudis, 2009). These bugs affect
the input and the output of web applications, protecting both the back-end mechanisms including the
storage of malicious data, and the user through what is presented and executed by the web browser. In
fact, solving these two problems would mitigate SQL Injection and XSS, as well as many other common
web application problems. They propose a set of 10 best coding practices, and they also highlight the
need to perform static analysis and penetration testing to secure the web application, which are common
procedures among SSDLs.

Contrary to some beliefs, using a SSDL becomes profitable in the long term: “it is much cheaper to
prevent than to repair” (McGraw, 2006). The use of a SSDL reduces the overall cost of development
because it allows finding and eliminating vulnerabilities early in the process (Howard & Lipner, 2006;
Microsoft Corporation, 2009a). A case study of client’s data presented by Fortify suggests that the cost of
fixing critical vulnerabilities later in the process, after releasing the software, is about 100 times more
onerous than fixing vulnerabilities earlier in the requirements phase (Meftah, 2008). This trend was also
observed in the data on software errors collected by Barry Boehm, although the benefit may be “only” 5
times higher (Boehm & Basili, 2001). Boehm’s data covers the more general case of fixing all software
errors, whereas the Fortify data is specific to critical vulnerabilities. Another report, this time prepared by
RTI for the National Institute of Standards and Technology states that the cost of eliminating
vulnerabilities increases all the way from design stage to post release (RTI, 2002). In the report, the cost
at post release is double than at beta test and 30 times more than at design stage. The DIMACS Workshop
on Software Security report refers to the following relative cost expenditures for lifecycle stages: design
is 15%, implementation is 60% and testing is 25%. The same report also quotes an IBM study stating that
the relative cost weightings are (Mead & McGraw, 2003): design = 1, implementation = 6.5, testing = 15
and maintenance = 100. According to a group of researchers from MIT, Stanford University and @Stake
quoted by (Berinato, 2002) it is possible to have a Return Of Investment (ROI) of 21% at the design
stage, 15% at the implementation stage and 12% at the testing stage. Although the values may vary, all
these studies support that it is far less expensive to fix errors and vulnerabilities early in the start of the
software development than after the software has become operational. It is, therefore, quite clear that the
most effective security investment is the one spent in earlier phases of the lifecycle, although it must also
be present through all the process till the end of the life of the software.

These requirements are present in development lifecycles with security built in. The following sections
present an overview of important SSDLs in use nowadays and four initiatives aimed at providing security
and control that can be integrated in existing SDLs with lesser effort.

 4	

OWASP COMPREHENSIVE, LIGHTWEIGHT APPLICATION SECURITY PROCESS
(CLASP)
CLASP has been, since 2006, an OWASP project led by Pravir Chandra (who also developed
OpenSAMM and BSIMM that will be discussed later). CLASP consists of a set of components with
formalized security best practices that covers the entire SDL (not just development), so that security
concerns can be adopted from the early stages of the SDL used by the organization (OWASP Foundation,
2006). This set of 24 security related activities that can be easily integrated into the SDL of the
application allows systematically addressing security vulnerabilities. Eleven CLASP resources provide
tools and other artifacts to help automate the process wherever possible. This SSDL heavily relies on the
organization of the project team in roles where each one has a perfectly defined set of activities and
responsibilities that they have to take care of. This is done in contrast with other SSDLs where these
activities are part of a development step of the SSDL.

The CLASP is organized into high-level perspectives of the CLASP Process called CLASP Views (Fig.
1):

1. Concepts View - Defines that the basic security services that must be satisfied for each
resource are: authorization, confidentiality, authentication (identity establishment and
integrity), availability, accountability, and non-repudiation. This is done following seven
application security best practices:

a. Institute awareness programs.
b. Perform application assessments.
c. Capture security requirements.
d. Implement secure development practices.
e. Build vulnerability remediation procedures.
f. Define and monitor metrics.
g. Publish operational security guidelines.

2. Role-Based View - Shows how a project team should execute security issues depending on
the specific responsibilities of every role (project managers, security auditors, developers,
architects, testers, and others). The designer, architect and project manager roles are the ones
that need to be trained specifically for security, mainly logical bugs. Developers only need to
code right, without bugs, following the policies, standards, and guidelines in place in the
organization.

3. Activity-Assessment View - Maps the various roles with the specific security related process
activities (there are 24 of them) they have to implement. These activities are: Institute security
awareness program, Monitor security metrics, Specify operational environment, Identify
global security policy, Identify resources and trust boundaries, Identify user roles and
resource capabilities, Document security-relevant requirements, Detail misuse cases, Identify
attack surface, Apply security principles to design, Research and assess security posture of
technology solutions, Annotate class designs with security properties, Specify database
security configuration, Perform security analysis of system requirements and design (threat
modeling), Integrate security analysis into source management process, Implement interface
contracts, Implement and elaborate resource policies and security technologies, Address
reported security issues, Perform source-level security review, Identify, implement and
perform security tests Verify security attributes of resources, Perform code signing, Build
operational security guide, Manage security issue disclosure process.

4. Activity-Implementation View - Details each one of the 24 role-based security related
process activities.

5. Vulnerability View - Detailing the consequences, problem types, exposure periods,
avoidance and mitigation techniques of security vulnerabilities. It considers 104 vulnerability

 5	

types, their categories, exposure periods, consequences, platforms affected, resources, risk
assessment, avoidance and mitigation periods.

24 role-based security related process activities

Concept View Role-Based View Activity-
Assessment View

Activity-
Implementation

View
Vulnerability View

Fig. 1. The CLASP organization. (Adapted from (OWASP Foundation, 2006)).

The set of 24 activities is detailed in the free to download book (OWASP Foundation, 2006). This book
contains which activities are bound to each role, among all the information needed to implement this
SSDL into an organization, like the taxonomy used, vulnerabilities, detailed actions, use cases, etc. It also
has a section on CLASP resources explaining the most important concepts, which can be used as a
starting point to improve security training and security awareness: basic principles, examples, core
security services, worksheets covering sample coding guidelines and system assessment, sample
roadmaps, etc. To help move from the current SLD to CLASP, the roadmap section provides a set of steps
for organizations that want a minimum impact on their ongoing projects (containing only 12 activities)
and for organizations that want to apply it holistically (containing 20 activities).

MICROSOFT SECURE DEVELOPMENT LIFECYCLE
The Microsoft SSDL is a mandatory methodology in use by Microsoft since 2004, used to deliver more
reliable software with security and privacy built in (Howard & LeBlanc, 2003; Howard & Lipner, 2006;
Microsoft Corporation, 2009a). Over 50% of Microsoft flaws were design flaws (Mead & McGraw,
2003), so it is not a surprise that their SDL is heavily based on threat modeling (also known as threat
analysis or risk analysis) done in the early stages of development. Threat modeling is an application
security auditing procedure consisting in formally identifying and mapping all the possible attack vectors
of the application. It helps reduce the number and severity of vulnerabilities in the application code,
including design ones, according to results provided by Microsoft (Microsoft Corporation, 2009a).

The Microsoft SSDL is based on the following guiding principles (Microsoft Corporation, 2008):

1. Secure by Design - Secure architecture, design and structure; Threat modeling and
mitigation; Elimination of vulnerabilities; Improvements in security.

2. Secure by Default - Least privilege; Defense in depth; Conservative default settings;
Avoidance of risky default changes; Less commonly used services off by default.

3. Secure in Deployment - Deployment guides; Analysis and management tools; Patch
deployment tools.

4. Communications - Security response; Community engagement.

The Microsoft SSDL is based on a set of activities for each phase and it can be applied incrementally into
an existing ongoing development process (Fig. 2).

 6	

Training Requirements Design Implementation Verification Release Response

- Core training - Define quality
gates/bug bar
- Analyze security
and privacy risk

- Attack surface
analysis
- Threat modeling

- Specify tools
- Enforce banned
functions
- Static analysis

- Dynamic/Fuzz
testing
- Verify threat
models/attack
surface

- Response plan
- Final security
review
- Release archive

- Response
execution

Fig. 2. The Microsoft Security Development Lifecycle. (Adapted from (Microsoft Corporation, 2009a)).

One of the core aspects of this SSDL is the use of the threat modeling theory. Threat modeling focuses on
a high level of the development, in the design and architecture of the product, and helps uncover design
issues and point out which components are at risk, before implementation (Howard, 2009). Threat
modeling describes the attack surface, the threats of the system and the assets that may be compromised
from the point of view of the attacker. The potential attack vectors (threats) are added to the model and
this enables the fix of design flaws, therefore preventing such attacks. OWASP also uses this threat
modeling process because it is easy to learn and adopt (Wiesmann et al., 2005). Other SSDLs also use
threat modeling, although the actual implementation may differ from the Microsoft one.

The risk of each threat can be estimated using the DREAD (Damage potential, Reproducibility,
Exploitability, Affected users, Discoverability) method, rating numbers from 1 to 10 for each DREAD
item. The DREAD is rather subjective to apply, and needs a high degree of expertise. This is the main
reason it was replaced by a heuristic model derived from Microsoft Security Response Center bulletin
ratings. It contains four rankings: Critical, Important, Moderate and Low. These rankings are much easier
to apply and are also more effective, since they are based on many years of experience. To help in the
process of applying the Microsoft threat analysis and modeling and estimate the risk Microsoft provides a
set of tools.

According to Rauscher and colleagues, threat modeling has limitations on the real ability to obtain the
necessary data and the mitigation is based on previous known attacks, so a creative attacker may still be
able to be successful (Rauscher, Krock, & Runyon, 2006). To cope with this, the authors propose a
vulnerability analysis using the eight tenants already used by the communication industry: human, policy,
hardware, software, networks, payload and power. This methodology allows the address of a finite
number of general classes of vulnerabilities, instead of an infinite number of specific threats that can
exercise those vulnerabilities. So, working together threat analysis and vulnerability analysis can produce
better results.

To uncover design flaws the system is decomposed in components and each component is analyzed
according to each one of the STRIDE approach where the effect of the bug is classified using the threat
groups that have their related opposite security property (Table 1). When a threat is found, the bug
enabling it is corrected in the code.

Threat Security Property
Spoofing Authentication
Tampering Integrity
Repudiation Non-repudiation
Information disclosure Confidentiality
Denial of service Availability
Elevation of privilege Authorization

Table 1. STRIDE threat model.

 7	

To make this SSDL easier to apply and to help check the phases of the process, it is integrated into the
Microsoft’s development tool VisualStudio.NET (Microsoft Corporation, 2009b).

SOFTWARE SECURITY TOUCHPOINTS
The Cigital’s Software Security Touchpoints is a manageable set of seven best practices, proposed in
2004, that can be applied to the SDL being used by the organization (waterfall, spiral, etc.). In the book
“Software Security” (McGraw, 2004), the author presents the best practices procedures (touchpoints)
showing how they can easily be applied during the existing SDL in use in the organization (Fig. 3).

For the touchpoints, two levels of software bugs are considered: source code level and architectural level
(McGraw, 2004, 2006). The two most important touchpoints are source code analysis and architectural
risk analysis, because they focus on bugs found in the code and in the design, respectively. The
touchpoints, in order of effectiveness are the following:

1. Code review - Using static analysis tools.
2. Risk analysis - Based on attack patterns and threat models.
3. Penetration testing - Using the black-box approach that should also consider the architecture

of the system.
4. Risk-based security tests - With traceability back to requirements.
5. Abuse cases - Describing the system behavior under attack.
6. Security requirements – Security must be present in the requirements, as well.
7. Security operations - Monitoring for security breaks during the use of the system.

Requirements and

use cases
Architecture and

Design Test plans Code Tests and test
results

Feedback from the
field

5 - Abuse cases
6 - Security
requirements
2 - Risk analysis

2 - Risk analysis 4 - Risk-based
security tests

1 - Code review
(tools)

2 - Risk analysis
3 - Penetration
testing

3 - Penetration
testing
7 - Security
operations

8 – External review

Fig. 3. The software security touchpoints. (Adapted from (McGraw, 2004)).

Although External Review (the last, in the effectiveness order) is considered outside the design team, it is
also necessary. Security training of each best practice is also a concern of this model.

An extensive set of articles themed Software Security Best Practices Building Security In for IEEE
Security & Privacy were written by Gary McGraw, detailing the several best practices of the model
((Arkin, Stender, & McGraw, 2005; Barnum & McGraw, 2005; B. Chess & McGraw, 2004; Hope,
McGraw, & Anton, 2004; McGraw, 2004; Potter & McGraw, 2004; Taylor & McGraw, 2005; Verdon &
McGraw, 2004)).

INITIATIVES ON BUILDING AND MAINTAINING A SECURE SOFTWARE PRODUCT
For an organization, it is difficult and costly (at least in the short term) to change their development
methodology from the ground up, even if the objective is to deliver a higher quality product concerning
security. To help with this migration process, several initiatives arouse aiming to integrate security in the
SDL currently being used in the organization. Some of the most important initiatives are the

 8	

OpenSAMM, the BSIMM, the SAFECode and the Securosis. One interesting concern among all of them
is the lesson learned from the industry, so they are based on empirical data collected over the years from
relevant software development houses. Some of these initiatives present not only an improvement in
security, but also the means to measure or benchmark the current state of the evolution of the software
development process inside the organization, concerning security. This helps verify and compare the
current state of the development process and to specify goals for the future that can be measured.

Open Software Assurance Maturity Model (OpenSAMM)
The OpenSAMM was developed by software security consultant Pravir Chandra and it is intended to be
easy to follow even by non-security experts. It includes a simple, well-defined and measurable maturity
model for the organization (Pravir Chandra, 2009). It was originally founded by Fortify but it is now part
of the OWASP. It was proposed in 2009, it is not tied to vendors but has a lot of industry participation, it
is open and driven by the community.

The OpenSAMM model is based on four core Business Functions involved in the software development,
each one with a set of three Security Practices (Fig. 4). The Security Practices are activities related to
security that build assurance for the related Business Function. Each Security Practice has three Maturity
Levels (or objectives) with well-defined specific Objectives, Activities, Results, and increasingly
stringent Success Metrics, Costs, Personnel and Related Levels.

Governance Construction Verification Deployment

- Strategy and
metrics
- Policy and
compliance
- Education and
guidance

- Threat
assessment
- Security
requirements
- Secure
architecture

- Design review
- Code review
- Security testing

- Vulnerability
management
- Environment
hardening
- Operational
enablement

Fig. 4. The Software Assurance Maturity Model (SAMM). (Adapted from (Pravir Chandra, 2009)).

The OpenSAMM model can be used as a benchmark to assess a security assurance program and create a
scorecard showing its evolution. This ability to precisely score the security level of an organization and its
evolution over time is a major advantage of the model. The assessment can simply be done for each
Practice by scoring the answers, but a more detailed assessment can be done with additional auditory
work. As an example, the interview template that helps determine the organization’s current maturity
level can be easily obtained from the web (Coblentz, 2009). This model is also prepared to ease the
implementation of a software assurance program, by providing a roadmap that can be tailored for each
organization need.

Building Security In Maturity Model (BSIMM)
The Building Security In Maturity Model (BSIMM) is a model developed in 2009 and derived from a
beta version of the OpenSAMM (McGraw, Chess, & Migues, 2009). It is a practical approach based on
empirical evidence and data observation of nine software security initiatives from financial services,
independent software vendors, and technology firms (Adobe, EMC, QUALCOMM, Google, Wells Fargo,
Microsoft, DTCC and two other undisclosed companies). Unlike other SSDL methodologies, the BSIMM
does not contain a theoretical compilation of best practices. It is a real-world collection of actual practices

 9	

performed in the field. The nine underlying organizations follow different SSDLs and the best practices
are derived from their experiences. So, regardless of methodology, most of the theoretical best practices
proposed by other SSDLs are actually present in the BSIMM, and they all share a common ground. In
fact, Cigital (that proposed the Software Security Touchpoints already discussed) is one of the partners of
the BSIMM, along with Fortify (founder of the OpenSAMM). BSIMM is also considered the standard for
financial firms by the Financial Services Technology Consortium and used by the U.S. Department of
Homeland Security.

The BSIMM framework is called Software Security Framework (SSF) and consists of twelve normalized
Practices each one with several activities associated to them (with objectives and activities) and grouped
in four Domains (Fig. 5).

Governance Intelligence SSDL touchpoints Deployment

- Strategy and
metrics
- Compliance and
policy
- Training

- Attack models
- Security features
and design
- Standards and
requirements

- Architecture and
analysis
- Code review
- Security testing

- Penetration
testing
- Software
environment
- Configuration
management and
vulnerability
management

Fig. 5. BSIMM’s Software Security Framework. (Adapted from (McGraw et al., 2009)).

Like the OpenSAMM, the BSIMM considers three levels of maturity with increasing security demanding
and each one contains a set of activities within each practice, from an overall of 110 activities. This model
can also be used to benchmark different organizations and prioritize changes according to their score in
the maturity level of each one of the twelve practices. Like the OpenSAMM, this ability to allow
bechmarking the maturity of the security practices and its evolution is one of the advantages of this
model. However, BSIMM is the result of the underlying field study showing the practices that are really
used by some good referenced activities common to all of the leading software security initiatives in order
to obtain a secure process of development.

Organizations can use the BSIMM skeleton to obtain a glance of the maturity model level during an
assessment. It consists of the twelve Practices organized into the three maturity levels with their
Objectives and Activities. This model is simpler to apply than the OpenSAMM but it necessarily lacks
some information, like the guidance on how to measure and rank the Activities in order to obtain a
comparable benchmark that can be used across the organizations.

Software Assurance Forum for Excellence in Code (SAFECode)
Like the BSIMM, the Software Assurance Forum for Excellence in Code (SAFECode) is an industry-led
consortium formed in 2007, including the following members: EMC, Juniper Networks, Microsoft,
Nokia, SAP, and Symantec. It is dedicated to increase trust in information and communication technology
products and services. This consortium produced some publications focusing on secure development
methods and practices (SAFECode, 2008a), an overview of industry best practices like the BSIMM
model (SAFECode, 2008b) and principles of secure software development during training (SAFECode,
2009).

 10	

The SAFECode guide contains a list of SSDL best practices, actually being executed by the industry,
which are proven to help deliver secure products (Fig. 6). In the best practices for secure software
programming, the SSDL focuses on the following aspects (SAFECode, 2008a):

1. Requirements - Including training in secure development and testing.
2. Design - With threat analysis before code commit.
3. Programming - Including static and dynamic code analysis tools and manual code review,

input and output validation.
4. Testing - Consisting of fuzzing, penetration testing and external assessment.
5. Code Integrity and Handling - Focusing on access principles like the least privilege access,

separation of duties and persistent protection.
6. Documentation - Defining software security best practices and how to configure the software

for security.

Requirements Design Programming Testing Code integrity and
handling Documentation

- Risk assessment
- Identify security
requirements
- Define the
security
development plan

- Threat analysis - Minimize unsafe
function use
- Use the latest
compiler toolset
- Use static and
dynamic analysis
tools
- Manual code
review
- Validate input
and output
- Use anti-cross
site scripting
libraries
- Use canonical
data formats
- Avoid string
concatenation for
dynamic SQL
- Eliminate weak
cryptography
- Use logging and
tracing

- Fuzz testing
- Penetration
testing and third-
party assessment
- Use of
automated testing
tools

- Least Privilege
Access
- Separation of
Duties
- Chain of Custody
and Supply Chain
Integrity
- Persistent
Protection
- Compliance
Management

- Security settings

Fig. 6. SAFECode’s Best Practices. (Adapted from (SAFECode, 2008a)).

The SAFECode also highlights the need for leaders to promote the use of these best practices to create a
security aware conscience among everyone involved in the software process development.

Securosis building a web application security program
Securosis released in 2009 a whitepaper sponsored by Core Security, Imperva and Qualys, about building
a security program targeted specifically for web application development (Securosis, 2009). The paper
proposes a SSDL with focus on the underfunding problem of web application security. The proposed
SSDL is practical, inexpensive and presents the type of tools that should be used in the three stages of the
proposed development cycle (Fig. 7).

 11	

1. Secure Development - It focuses on initial procedures needed to develop the application like
gathering the requirements, design, implementation and quality assurance. Static analysis and
dynamic analysis tools are covered to partially help automate this stage.

2. Secure Deployment - It is at this stage where code complies with specifications and it is
ready for vulnerability assessment (find security bugs) and penetration tests (classify and
exploit security bugs).

3. Secure Operation - When the application is deployed, preventive tools must be used in order
to monitor the operation. For this matter, web application firewalls, web application and
database activity monitoring tools are used.

Secure
development

Secure
deployment Secure operations

- Secure SLDC
- Static analysis
- Dynamic
analysis

- Vulnerability
scanning
- Penetration
testing

- WAF
- Monitoring

Fig. 7. Securosis model. (Adapted from (Securosis, 2009)).

COMPARING THE SECURITY DEVELOPEMENT PROPOSALS
Brook’s Law on project management says (Brooks, 1995): “Adding manpower to a late software project
makes it later”. The same idea also applies to security: just adding security manpower to a late software
project makes it later. And it still becomes unsecure, because patches do not always work very well
(Arbaugh, Fithen, & McHugh, 2000).

A common expression among SSDL enthusiasts to highlight the differences between their thinking and
current building methods is that software security is not the same as secure software (Gollmann, 1999). In
fact, having security functions in a piece of software, like password authentication for example, does not
make by itself the application secure. It is also not sufficient to follow a single security procedure,
because all of them have their benefits, but also their weaknesses. Developers need to coordinate together
several tasks to be able to achieve a secure application (Barnett, 2008). It is this type of integration that a
SSDL is supposed to provide.

Security concern must be present during all the phases of the software development lifecycle and security
cannot be seen just as a minor issue. In fact, it must be a design goal (Jayaram & Aditya, 2005) and this is
represented well in OWASP’s (OWASP Foundation, 2006), Microsoft's (Howard & LeBlanc, 2003) and
McGraw's (McGraw, 2006) software development lifecycles.

Security vulnerabilities must be mitigated during the development lifecycle, before the software is
released. Code Inspection and Penetration Testing represent two key quality assurance procedures that
must be used to detect security vulnerabilities. Code inspection is a white-box approach that consists in
the formal review of the application code by an external team. Penetration testing is a black-box approach
consisting in a set of tests made from the point of view of the users, where the external team tries to find
all the possible vulnerable entry points of the application. Penetration testing can be performed manually
or it can be done using automated tools, although even top commercial products have a high rate of false
positive (non vulnerabilities that are tagged as vulnerabilities) and false negative (vulnerabilities that are

 12	

not identified) values (Ananta Security, 2009; Fonseca, Vieira, & Madeira, 2007; WhiteHat Security Inc.,
2008).

Because of the novelty of the development approach using a SSDL it is still hard to find results derived
from real data that can compare the improvement of the quality of the final product. However, as one of
the first solid establishments in the area, Microsoft has published the results of the number of critical bugs
found in some of the products they developed (Fig. 8). Windows 2003 post-SDL had a decrease of over
60% of critical bugs compared to Windows 2000 pre-SDL, SQL Server 2000 had a decrease of over 80%
compared to the releases pre-SDL and post-SDL and Exchange Server 2000 had a decrease of 75%
compared to the releases pre-SDL and post-SDL. Taking into account the overall results, there is a 66%
decrease of the number of critical bugs after applying the SSDL in their development.

Fig. 8. Windows 2000, SQL Server 2000, Exchange Server 2000 pre- and post-SDL critical and important

security bulletins. (Adapted from (Lipner & Howard, 2005)).

The research area of SSDL process is still in its early stages with lots of new ideas flowing from one
proposal to another. There is a mixture of organizations involved in more than a single SSDL project like
Microsoft, Cigital, Fortify, OWASP, etc.; and some SSDLs share the same guru, like Gary McGraw,
Pravir Chandra, and Michael Howard. Some SSDL methodologies derive from a fork of the early stages
of other SSDL methodologies and share some of the others core ideas, like the Touchpoints, OpenSAMM
and BSIMM.

This interest in better secure code practices and tools is shown by big investments in the security area and
large acquisitions. In fact, according to Brian Chess, 2007 was a turning point because “It was the first
year there was a bigger market for products that help you get code right than there was for products that
help you demonstrate a problem exists” (Brian Chess, 2008). This is a good direction to follow: prevent
the problem instead of chasing it in order to fix it after the damage.

Table 2 presents an overview of the SSDLs described earlier in the chapter. The data shows that the focus
on SSDLs is a new concern largely sparked after the 2002 Bill Gates trustworthy computing memo and
the start of Microsoft security push. As time goes by, this subject is getting more interest from the
industry: close to half of these major security development methodologies analyzed emerged in 2009.

62	

16	 8	

24	

3	

2	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Windows	 2000	 SQL	 Server	 2000	 	 Exchange	 Server	 2000	 	

post-‐SDL	

pre-‐SDL	

 13	

 Name Year Highlights

SS
D

L

CLASP 2006 24 formalized security best practices that cover the entire SDL.

Microsoft SDL 2004
Complete integrated SDL heavily based on risk analysis and based on a set of
activities for each phase. Integrated in the Microsoft development suite.
Suited for Operating System developers and large software houses.

Touchpoints 2004 7 best practices that can be applied to the existing SDL.

Se
cu

ri
ty

In

iti
at

iv
e

OpenSAMM 2009 Measurable maturity model with 3 maturity levels and 12 security practices.
Can be used as a benchmark.

BSIMM 2009

12 actual best practices used by the industry with 3 maturity levels. Can be
used as a benchmark.

SAFECode 2008 Overview of industry best practices with an emphasis on leadership.
Securosis 2009 SSDL targeted specifically for web applications and focusing on automation

by using tools.

Table 2. SDL security proposals comparison.

Although there is still not enough data to make a detailed comparison among the various SSDLs
presented, some remarks can be made. We can see that one of the constraints in applying a SSDL has to
do with the cost that includes the need of changing processes, training and delaying the deliverable of the
final product. Some SSDLs could be used in larger projects, whereas others are more suitable to smaller
companies that cannot afford to make profound changes in the way the software is built.

The Microsoft SSDL can be applied to very large projects, like Operating Systems (OS) and big
applications. They provide a set of tools to help in the process, integrated in their Visual Studio
environment, but they must be run in the Windows OS. CLASP is lighter and can be adopted for smaller
projects involving a fewer set of resources. It can be used as an SSDL or it can be easily integrated into an
existing SDL with a reduced set of steps. The Touchpoints can be perfectly integrated into an existing
SDL within the organization, helping to provide security to its software projects. The Touchpoints present
activities that should be applied to the various artifacts created during the development of software. They
are independent of the target of the company, so they can be applied in all software development
situations.

The other software initiatives focus on providing a set of best practices that are really being used by big
references in the software development industry, which are proven to provide a good balance between the
cost and the benefit they provide. OpenSAMM and BSIMM also provide means to benchmark the actual
software development maturity concerning the adoption of the proposed practices. While SAFECode
advises the need to have a leadership tailored for security and that this will drive the mentality change of
the rest of the team in building a safer software product, Securosis focuses on existing tools that can help
automate most of the processes required by implementing security in the SDL.

CONCLUSION
Every contribution towards building and maintaining a safer software product is welcomed, given the
current state of insecurity, namely in web applications. All of the proposals analyzed in this chapter are
worth mentioning and they all provide a step up in the level of security of the final product. Although
they have different views on how to achieve their goals, in essence they have more in common than they
have differences. This common ground constitutes the basic principles and best practices they all share,
which can be seen as the core needed to increase security during software development:

 14	

1. Training for security.
2. Architectural review.
3. Source code review.
4. Penetration testing.
5. Documentation and security policies.

Applications, especially on the web, are a constant target for hackers and are never safe given that new
vulnerabilities and exploitation techniques are being discovered constantly in the technologies and
components they use. This evolving environment quickly turns thought to be secure applications into
undoubtedly unsecure applications. Even for applications developed with a SSDL, they may become
vulnerable shortly after delivery. This is one of the reasons why the development process does not end
with delivery and continues though the maintenance. Maintenance after deployment and during the entire
working life of the application should be a mandatory requirement.

To build secure software, security must be present from the early stages of the software development
taking into account both secure mechanisms and design for security. The use of a software development
lifecycle considering security is of utmost importance if the objective is not only the prevention of
security bugs, but also higher-level problems, like architectural, component interaction and broken access
control over tiers. The security work should be applied since the early stages of development, during the
definition of the requirements, architecture, design, coding, testing, validation, measurement, and
maintenance of the software. This way of developing secure applications is not only cheaper in the long
term, but also has already proven results from the industry.

REFERENCES

Ananta Security. (2009). Web Vulnerability Scanners Comparison. Retrieved from

http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html
Arbaugh, W. A., Fithen, W. L., & McHugh, J. (2000). Windows of vulnerability: a case study analysis.

Computer, 33(12), 52–59. doi:10.1109/2.889093
Arkin, B., Stender, S., & McGraw, G. (2005). Software penetration testing. IEEE Security & Privacy,

3(1), 84–87. doi:10.1109/MSP.2005.23
Auger, R. (2007). Writing Software Security Test Cases. Retrieved February 18, 2009, from

http://www.qasec.com/cycle/securitytestcases.shtml
Baker, W. H., Hutton, A., Hylender, C. D., Novak, C., Porter, C., Sartin, B., Tippett, P., et al. (2009). The

2009 Data Breach Investigations Report. Verizon Business RISK Team.
Barnett, R. (2008). ModSecurity Blog: Is Your Website Secure? Prove It. Retrieved May 16, 2009, from

http://www.modsecurity.org/blog/archives/2008/01/is_your_website.html
Barnum, S., & McGraw, G. (2005). Knowledge for software security. IEEE Security & Privacy, 3(2), 74–

78. doi:10.1109/MSP.2005.45
Berinato, S. (2002). CIO - Return on Security Spending, pp. 43–52.
Boehm, B. (1986). A spiral model of software development and enhancement. SIGSOFT Softw. Eng.

Notes, 11(4), 14–24. doi:10.1145/12944.12948
Boehm, B., & Basili, V. R. (2001). Software Defect Reduction Top 10 List. Computer, 34(1), 135–137.
Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition

(2nd ed.). Addison-Wesley Professional.
Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE Security & Privacy, 2(6), 76–79.

doi:10.1109/MSP.2004.111
Chess, Brian. (2008). Space Race. My Security Planet  » Fortify blog. Retrieved May 12, 2009, from

http://rgaucher.info/planet/Fortify_blog/2008/08/13/

 15	

CNSS Secretariat. (2006). National Information Assurance (IA) Glossary. Committee on National
Security Systems.

Coblentz, N. (2009). SAMM Assessment Interview Template. SAMM Assessment Interview Template.
Retrieved September 18, 2009, from
http://spreadsheets.google.com/pub?key=rYpVqQR3026Zu4DNg8LBIwg&gid=3

Epstein, J. (2009). What Measures Do Vendors Use for Software Assurance? Build Security In. Carnegie
Mellon University. Retrieved from https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/business/1093-BSI.html

Fonseca, J., Vieira, M., & Madeira, H. (2007). Testing and Comparing Web Vulnerability Scanning Tools
for SQL Injection and XSS Attacks. 13th Pacific Rim International Symposium on Dependable
Computing, 2007. PRDC 2007 (pp. 365–372).

Gollmann, D. (1999). Computer Security (1st ed.). John Wiley & Sons. Retrieved from
http://www.wiley.com/legacy/compbooks/catalog/97844-2.htm

Higgins, K. J. (2009). The Rocky Road To More Secure Code. DarkReading. Retrieved September 18,
2009, from http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=216403548&pgno=1&queryText=&isPrev=

Hope, P., McGraw, G., & Anton, A. I. (2004). Misuse and abuse cases: getting past the positive. IEEE
Security & Privacy, 2(3), 90–92. doi:10.1109/MSP.2004.17

Howard, M. (2009). A Conversation About Threat Modeling. Retrieved May 16, 2009, from
http://msdn.microsoft.com/en-us/magazine/dd727503.aspx

Howard, M., & LeBlanc, D. (2003). Writing Secure Code. Microsoft Press.
Howard, M., & Lipner, S. (2006). The Security Development Lifecycle. Microsoft Press.
Jayaram, K. R., & Aditya, P. M. (2005). Software Engineering for Secure Software - State of the Art: A

Survey (CERIAS TR 2005-67). Purdue University. Retrieved from
https://www.cerias.purdue.edu/apps/reports_and_papers/view/2884

Kim, F., & Skoudis, E. (2009). Protecting Your Web Apps: Two Big Mistakes and 12 Practical Tips to
Avoid Them. SANS Institute.

Lanowitz, T. (2005). Now Is the Time for Security at the Application Level. Gartner Group. Retrieved
from http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf

Lipner, S., & Howard, M. (2005). The Trustworthy Computing Security Development Lifecycle.
Microsoft Developer Network. Retrieved September 24, 2009, from
http://msdn.microsoft.com/en-us/library/ms995349.aspx

Marmor-Squires, A. B., & Rougeau, P. A. (1988). Issues in Process Models and Integrated Environments
for Trusted Systems Development. Proceedings of the 11th National Computer Security
Conference (pp. pp. 109–113). Presented at the Proceedings of the 11th National Computer
Security Conference, United States Government Printing Office.

Martin, J. (1991). Rapid application development. Indianapolis, IN, USA: Macmillan Publishing Co., Inc.
McGraw, G. (2004). Software security. IEEE Security & Privacy, 2(2), 80–83.

doi:10.1109/MSECP.2004.1281254
McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley Professional.
McGraw, G., Chess, B., & Migues, S. (2009). Building Security In Maturity Model. Fortify & Cigital.

Retrieved from http://bsi-mm.com/
Mead, N. R., & McGraw, G. (2003). The DIMACS Workshop on Software Security. DIMACS Center.
Meftah, B. (2008). Business Software Assurance: Identifying and Reducing Software Risk in the

Enterprise. Presented at the 9th Semi-Annual Software Assurance Forum. Retrieved from
https://buildsecurityin.us-cert.gov/swa/downloads/Meftah.pdf

Microsoft Corporation. (2008). MICROSOFT SECURITY DEVELOPMENT LIFECYCLE (SDL) Version
3.2. Microsoft Corporation.

Microsoft Corporation. (2009a). The Microsoft Security Development Lifecycle (SDL). Retrieved March
23, 2009, from http://msdn.microsoft.com/en-us/security/cc448177.aspx

 16	

Microsoft Corporation. (2009b). SDL Process Template. MSDN. Retrieved May 22, 2009, from
http://msdn.microsoft.com/en-us/security/dd670265.aspx

OWASP Foundation. (2006). OWASP - CLASP (1.2 ed.). OWASP Foundation. Retrieved from
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project

Potter, B., & McGraw, G. (2004). Software security testing. IEEE Security & Privacy, 2(5), 81–85.
doi:10.1109/MSP.2004.84

Pravir Chandra. (2009). Software Assurance Maturity Model: A guide to building security into software
development (1.0 ed.). OpenSAMM Project. Retrieved from http://www.opensamm.org/

Rauscher, K. F., Krock, R. E., & Runyon, J. P. (2006). Eight ingredients of communications
infrastructure: A systematic and comprehensive framework for enhancing network reliability and
security. Bell Labs Technical Journal, 11(3), 73–81.

Royce, W. (1970). Managing the Development of Large Software Systems. Proc. IEEE Wescon (pp. 1–
9).

RTI. (2002). Planning Report 02-3 The Economic Impacts of Inadequate Infrastructure for Software
Testing. NIST. Retrieved from http://www.nist.gov/director/prog-ofc/report02-3.pdf

SAFECode. (2008a). Fundamental Practices for Secure Software Development. SAFECode. Retrieved
from http://www.safecode.org/publications.php

SAFECode. (2008b). Software Assurance: An Overview of Current Industry Best Practices. SAFECode.
Retrieved from http://www.safecode.org/publications.php

SAFECode. (2009). Security Engineering Training. SAFECode. Retrieved from
http://www.safecode.org/publications.php

Securosis. (2009). Building a Web Application Security Program. Securosis. Retrieved from
http://securosis.com/research/publication/building-a-web-application-security-program/

Sommerville, I. (2010). Software Engineering (9th ed.). Addison Wesley.
SPI Dynamics, Inc. (2002). Complete Web Application Security: Phase 1–Building Web Application

Security into Your Development Process. SPI Dynamics, Inc. Retrieved from
http://cnscenter.future.co.kr/resource/rsc-center/vendor-
wp/Spidynamics/Webapp_Dev_Process.pdf

Taylor, D., & McGraw, G. (2005). Adopting a software security improvement program. IEEE Security &
Privacy, 3(3), 88–91. doi:10.1109/MSP.2005.60

Verdon, D., & McGraw, G. (2004). Risk analysis in software design. IEEE Security & Privacy, 2(4), 79–
84. doi:10.1109/MSP.2004.84

WhiteHat Security Inc. (2008). WhiteHat Website Security Statistic Reports (No. 6th Edition). WhiteHat
Security Inc. Retrieved from http://www.whitehatsec.com/home/resource/stats.html

Wiesmann, A., Curphey, M., Stock, A. van der, & Stirbei, R. (2005). A Guide to Building Secure Web
Applications and Web Services, V2.0.1. OWASP Foundation. Retrieved from
http://www.owasp.org/index.php/Developer_Guide

Williams, J. (2008). Establishing a Security API for Your Enterprise (ALPHA version). OWASP
Foundation.

KEY TERMS AND DEFINITIONS

Attack: Malicious and intentional interaction with the system exploiting a vulnerability in order to take
advantage from it.

Best practices: Set of methodologies that should be followed during the software lifecycle in order to
provide a better product.

 17	

Bug (in the software): Error in the software code that makes the software provide a service that deviates
from the correct service, as stated in the specification.

Hacker: In this context, an attacker, a person that exploits the vulnerabilities of the system or tries to use it
in other ways that were not intended by the developer.

Security: Set of properties of the software (Confidentiality, Integrity and Availability) that should be
preserved, even when the system is under attack.

SSDL: Secure Software Development Lifecycle is a model to develop software with security embedded
from the start to the end of the life of the software.

Vulnerability: Weakness in the system that may be exploited by an attacker to jeopardize one or more
security properties of the system.

