
A Survey on Secure Software 
Development Lifecycles 

 
José Fonseca1, Marco Vieira2 
1DEI/CISUC, University of Coimbra / Polytechnic Institute of Guarda, Portugal 
2DEI/CISUC, University of Coimbra, Portugal 
 
 
ABSTRACT 
This chapter presents a survey on the most relevant software development practices that are used 
nowadays to build software products for the web, with security built in. It starts by presenting three of the 
most relevant Secure Software Development Lifecycles, which are complete solutions that can be adopted 
by development companies: the CLASP, the Microsoft Secure Development Lifecycle and the Software 
Security Touchpoints. However it is not always feasible to change ongoing projects or replace the 
methodology in place. So, this chapter also discusses other relevant initiatives that can be integrated into 
existing development practices, which can be used to build and maintain safer software products: the 
OpenSAMM, the BSIMM, the SAFECode and the Securosis. The main features of these security 
development proposals are also compared according to their highlights and the goals of the target 
software product. 
 
INTRODUCTION 
The Software Development Lifecycle (SDL) is a conceptual model used by software houses in the 
management of the process of analyzing, developing, controlling and maintaining software (Sommerville, 
2010). Some of the most well-known models are the Waterfall (Royce, 1970), the  Rapid Application 
Development (Martin, 1991) and the Spiral (Boehm, 1986). At the time when these SDLSs were 
developed, the software security awareness was not as relevant as it is today, so it was not a big concern 
to take into account. In fact, the typical approach of dealing only with development best practices is not 
sufficient for current applications that have to face the constant pressure of web attacks, although they can 
improve the overall quality and help mitigate some common issues. 
 
These traditional SDLs are still in widespread use nowadays, but they are not effective when building 
secure systems that have to face the huge number of threats that can arise from anywhere, like those that 
come from the web and are so pervasive (Howard & LeBlanc, 2003). Both logic and coding bugs must be 
thoroughly addressed during all the phases of the development process, therefore reducing the cost of 
deploying unsecure application. This is of utmost importance for web applications that will be exposed to 
the growing number of hackers and organized crime that can strike at any time, from any place in the 
Globe. This is what an integrated Secure Software Development Lifecycles (SSDL) does from the start to 
the end of the life of an application. In fact, using a SSDL is one of the recommendations of the Verizon’s 
2009 data breach report in order to prevent the application layer type of attacks, including SQL Injection 
and XSS (Baker et al., 2009). 
 
This chapter presents an overview of the most important SSDLs that are used nowadays to build software 
products that have to face the many threats that come from the web: the Open Web Application Security 
Project (OWASP) Comprehensive, Lightweight Application Security Process (CLASP), the Microsoft 
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Secure Development Lifecycle, and the Software Security Touchpoints. Although there is a general 
consensus about the advantages of using a SSDL, this subject is still in its early adoption by the industry. 
It takes time to implement and execute, it costs money and it implies a change in the way organization 
works, which is usually difficult to achieve. The way a secure software should be developed is still 
generating a growing number of discussions and there is a considerable number of proposals trying to 
gain adopters and overcome the problems and technical difficulties of applying them in the real world 
(Higgins, 2009). This chapter also introduces other relevant initiatives, which can be adapted to the 
existing SDL, devoted to building and maintaining a safer software product: the Open Software 
Assurance Maturity Model (OpenSAMM), the Building Security In Maturity Model (BSIMM), the 
Software Assurance Forum for Excellence in Code (SAFECode) and the Securosis building a web 
application security program. 
 
This chapter also discusses the issue of selecting a software development lifecycle according to the reality 
of the software product being developed. This involves identifying the security issues that should be 
addressed from a development point-of-view and then map these issues with the features of existing 
lifecycles to make the right choice and tune any relevant aspects.  
 
 
SOFTWARE DEVELOPMENT AND SECURITY 
One important metric of software quality is assurance: “a level of confidence that software is free from 
vulnerabilities, either intentionally designed into the software or accidentally inserted at any time during 
its lifecycle, and that the software functions in the intended manner” (CNSS Secretariat, 2006). To 
achieve software assurance developers need to build assured software: “Software that has been designed, 
developed, analyzed and tested using processes, tools, and techniques that establish a level of confidence 
in its trustworthiness appropriate for its intended use” (CNSS Secretariat, 2006). To achieve this goal, 
developers must rethink the software development process and address all the phases of the SDL: design, 
code and documentation (Howard & LeBlanc, 2003). This is like applying the defense-in-depth strategy 
to the various phases of the software development lifecycle making it more security aware. 
 
To understand the security measures that vendors use for software assurance, Jeremy Epstein analyzed 
eight software vendors with small to very large revenues (Epstein, 2009). The security measures analyzed 
were software developer training, software design review, execution of penetration testing using humans 
and tools during the SDL, and source code analysis. The study showed that almost every company is 
conscious of the risks of insecure software and performs all these activities, to some extent. However, 
although their clients do not ask explicitly for security, software vendors implement security assurance 
mechanisms because they are aware that in case something goes wrong it will bring them negative 
consequences. Other companies should follow this practice, given that the web application scenario is so 
prone to vulnerabilities and it is so common for an application to be probed by possible hackers. In fact, 
“If you do not perform security testing for your application, someone else not working for your company 
will” (Howard & LeBlanc, 2003). Customers do not ask for security but, if security fails, they will move 
to another solutions provider. 
 
Software developers frequently see functionality as more important than quality or security. This is 
natural since the functionality is what represents the need for a given product. Without it there is even no 
need for security because there will be nothing to be secured. However, security should be seriously 
considered. A Gartner report says that 75% of attacks take place through the application level and predicts 
that, by 2009, around 80% of companies will have suffered a security incident due to application 
vulnerabilities (Lanowitz, 2005). The report also adverts for the need to build secure applications and test 
applications for security from the early start of the project during the application development lifecycle. 
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One major problem is that typical SDLs in use nowadays are not effective when building secure systems. 
Security is not integrated in the SDL and it is seen just as an additional process activity (Marmor-Squires 
& Rougeau, 1988). To obtain a secure product, the typical development approach needs to be extended. 
For example, the OWASP’s Enterprise Security API Project (ESAPI) addresses this problem by 
providing a set of APIs to interface all security controls needed to build a secure application including 
input validation, output encoding, error logging and detection (Williams, 2008). These APIs include 
toolkits for the major programming languages and can be used by software developers during the SDL to 
increase security with minimum intrusion in their development process. 
 
Some other researchers propose secure development guidelines (Auger, 2007), like the OWASP’s “A 
Guide to Building Secure web Applications and web Services” (Wiesmann, Curphey, Stock, & Stirbei, 
2005) and the “Complete web Application Security: Phase 1–Building web Application Security into 
Your Development Process” (SPI Dynamics, Inc., 2002). SANS series of working papers in Application 
Security describe a checklist of twelve methods to avoid two of the most important classes of mistakes 
done by developers: poor input validation and output filtering (Kim & Skoudis, 2009). These bugs affect 
the input and the output of web applications, protecting both the back-end mechanisms including the 
storage of malicious data, and the user through what is presented and executed by the web browser. In 
fact, solving these two problems would mitigate SQL Injection and XSS, as well as many other common 
web application problems. They propose a set of 10 best coding practices, and they also highlight the 
need to perform static analysis and penetration testing to secure the web application, which are common 
procedures among SSDLs. 
 
Contrary to some beliefs, using a SSDL becomes profitable in the long term: “it is much cheaper to 
prevent than to repair” (McGraw, 2006). The use of a SSDL reduces the overall cost of development 
because it allows finding and eliminating vulnerabilities early in the process (Howard & Lipner, 2006; 
Microsoft Corporation, 2009a). A case study of client’s data presented by Fortify suggests that the cost of 
fixing critical vulnerabilities later in the process, after releasing the software, is about 100 times more 
onerous than fixing vulnerabilities earlier in the requirements phase (Meftah, 2008). This trend was also 
observed in the data on software errors collected by Barry Boehm, although the benefit may be “only” 5 
times higher (Boehm & Basili, 2001). Boehm’s data covers the more general case of fixing all software 
errors, whereas the Fortify data is specific to critical vulnerabilities. Another report, this time prepared by 
RTI for the National Institute of Standards and Technology states that the cost of eliminating 
vulnerabilities increases all the way from design stage to post release (RTI, 2002). In the report, the cost 
at post release is double than at beta test and 30 times more than at design stage. The DIMACS Workshop 
on Software Security report refers to the following relative cost expenditures for lifecycle stages: design 
is 15%, implementation is 60% and testing is 25%. The same report also quotes an IBM study stating that 
the relative cost weightings are (Mead & McGraw, 2003): design = 1, implementation = 6.5, testing = 15 
and maintenance = 100. According to a group of researchers from MIT, Stanford University and @Stake 
quoted by (Berinato, 2002) it is possible to have a Return Of Investment (ROI) of 21% at the design 
stage, 15% at the implementation stage and 12% at the testing stage. Although the values may vary, all 
these studies support that it is far less expensive to fix errors and vulnerabilities early in the start of the 
software development than after the software has become operational. It is, therefore, quite clear that the 
most effective security investment is the one spent in earlier phases of the lifecycle, although it must also 
be present through all the process till the end of the life of the software. 
 
These requirements are present in development lifecycles with security built in. The following sections 
present an overview of important SSDLs in use nowadays and four initiatives aimed at providing security 
and control that can be integrated in existing SDLs with lesser effort. 
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OWASP COMPREHENSIVE, LIGHTWEIGHT APPLICATION SECURITY PROCESS 
(CLASP) 
CLASP has been, since 2006, an OWASP project led by Pravir Chandra (who also developed 
OpenSAMM and BSIMM that will be discussed later). CLASP consists of a set of components with 
formalized security best practices that covers the entire SDL (not just development), so that security 
concerns can be adopted from the early stages of the SDL used by the organization (OWASP Foundation, 
2006). This set of 24 security related activities that can be easily integrated into the SDL of the 
application allows systematically addressing security vulnerabilities. Eleven CLASP resources provide 
tools and other artifacts to help automate the process wherever possible. This SSDL heavily relies on the 
organization of the project team in roles where each one has a perfectly defined set of activities and 
responsibilities that they have to take care of. This is done in contrast with other SSDLs where these 
activities are part of a development step of the SSDL. 
 
The CLASP is organized into high-level perspectives of the CLASP Process called CLASP Views (Fig. 
1): 

1. Concepts View - Defines that the basic security services that must be satisfied for each 
resource are: authorization, confidentiality, authentication (identity establishment and 
integrity), availability, accountability, and non-repudiation. This is done following seven 
application security best practices: 

a. Institute awareness programs. 
b. Perform application assessments. 
c. Capture security requirements. 
d. Implement secure development practices. 
e. Build vulnerability remediation procedures. 
f. Define and monitor metrics. 
g. Publish operational security guidelines. 

2. Role-Based View - Shows how a project team should execute security issues depending on 
the specific responsibilities of every role (project managers, security auditors, developers, 
architects, testers, and others). The designer, architect and project manager roles are the ones 
that need to be trained specifically for security, mainly logical bugs. Developers only need to 
code right, without bugs, following the policies, standards, and guidelines in place in the 
organization. 

3. Activity-Assessment View - Maps the various roles with the specific security related process 
activities (there are 24 of them) they have to implement. These activities are: Institute security 
awareness program, Monitor security metrics, Specify operational environment, Identify 
global security policy, Identify resources and trust boundaries, Identify user roles and 
resource capabilities, Document security-relevant requirements, Detail misuse cases, Identify 
attack surface, Apply security principles to design, Research and assess security posture of 
technology solutions, Annotate class designs with security properties, Specify database 
security configuration, Perform security analysis of system requirements and design (threat 
modeling), Integrate security analysis into source management process, Implement interface 
contracts, Implement and elaborate resource policies and security technologies, Address 
reported security issues, Perform source-level security review, Identify, implement and 
perform security tests Verify security attributes of resources, Perform code signing, Build 
operational security guide, Manage security issue disclosure process. 

4. Activity-Implementation View - Details each one of the 24 role-based security related 
process activities. 

5. Vulnerability View - Detailing the consequences, problem types, exposure periods, 
avoidance and mitigation techniques of security vulnerabilities. It considers 104 vulnerability 
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types, their categories, exposure periods, consequences, platforms affected, resources, risk 
assessment, avoidance and mitigation periods. 

  

24 role-based security related process activities

Concept View Role-Based View Activity-
Assessment View

Activity-
Implementation 

View
Vulnerability View

 
 

Fig. 1. The CLASP organization. (Adapted from (OWASP Foundation, 2006)).  
 
The set of 24 activities is detailed in the free to download book (OWASP Foundation, 2006). This book 
contains which activities are bound to each role, among all the information needed to implement this 
SSDL into an organization, like the taxonomy used, vulnerabilities, detailed actions, use cases, etc. It also 
has a section on CLASP resources explaining the most important concepts, which can be used as a 
starting point to improve security training and security awareness: basic principles, examples, core 
security services, worksheets covering sample coding guidelines and system assessment, sample 
roadmaps, etc. To help move from the current SLD to CLASP, the roadmap section provides a set of steps 
for organizations that want a minimum impact on their ongoing projects (containing only 12 activities) 
and for organizations that want to apply it holistically (containing 20 activities). 
 
MICROSOFT SECURE DEVELOPMENT LIFECYCLE 
The Microsoft SSDL is a mandatory methodology in use by Microsoft since 2004, used to deliver more 
reliable software with security and privacy built in (Howard & LeBlanc, 2003; Howard & Lipner, 2006; 
Microsoft Corporation, 2009a). Over 50% of Microsoft flaws were design flaws (Mead & McGraw, 
2003), so it is not a surprise that their SDL is heavily based on threat modeling (also known as threat 
analysis or risk analysis) done in the early stages of development. Threat modeling is an application 
security auditing procedure consisting in formally identifying and mapping all the possible attack vectors 
of the application. It helps reduce the number and severity of vulnerabilities in the application code, 
including design ones, according to results provided by Microsoft (Microsoft Corporation, 2009a).  
 
The Microsoft SSDL is based on the following guiding principles (Microsoft Corporation, 2008): 
 

1. Secure by Design - Secure architecture, design and structure; Threat modeling and 
mitigation; Elimination of vulnerabilities; Improvements in security. 

2. Secure by Default - Least privilege; Defense in depth; Conservative default settings; 
Avoidance of risky default changes; Less commonly used services off by default. 

3. Secure in Deployment - Deployment guides; Analysis and management tools; Patch 
deployment tools. 

4. Communications - Security response; Community engagement. 
 
The Microsoft SSDL is based on a set of activities for each phase and it can be applied incrementally into 
an existing ongoing development process (Fig. 2). 
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Training Requirements Design Implementation Verification Release Response

- Core training - Define quality 
gates/bug bar
- Analyze security 
and privacy risk

- Attack surface 
analysis
- Threat modeling

- Specify tools
- Enforce banned 
functions
- Static analysis

- Dynamic/Fuzz 
testing
- Verify threat 
models/attack 
surface

- Response plan
- Final security 
review
- Release archive

- Response 
execution

 
 

Fig. 2. The Microsoft Security Development Lifecycle. (Adapted from (Microsoft Corporation, 2009a)). 
 
One of the core aspects of this SSDL is the use of the threat modeling theory. Threat modeling focuses on 
a high level of the development, in the design and architecture of the product, and helps uncover design 
issues and point out which components are at risk, before implementation (Howard, 2009). Threat 
modeling describes the attack surface, the threats of the system and the assets that may be compromised 
from the point of view of the attacker. The potential attack vectors (threats) are added to the model and 
this enables the fix of design flaws, therefore preventing such attacks. OWASP also uses this threat 
modeling process because it is easy to learn and adopt (Wiesmann et al., 2005). Other SSDLs also use 
threat modeling, although the actual implementation may differ from the Microsoft one. 
 
The risk of each threat can be estimated using the DREAD (Damage potential, Reproducibility, 
Exploitability, Affected users, Discoverability) method, rating numbers from 1 to 10 for each DREAD 
item. The DREAD is rather subjective to apply, and needs a high degree of expertise. This is the main 
reason it was replaced by a heuristic model derived from Microsoft Security Response Center bulletin 
ratings. It contains four rankings: Critical, Important, Moderate and Low. These rankings are much easier 
to apply and are also more effective, since they are based on many years of experience. To help in the 
process of applying the Microsoft threat analysis and modeling and estimate the risk Microsoft provides a 
set of tools. 
 
According to Rauscher and colleagues, threat modeling has limitations on the real ability to obtain the 
necessary data and the mitigation is based on previous known attacks, so a creative attacker may still be 
able to be successful (Rauscher, Krock, & Runyon, 2006). To cope with this, the authors propose a 
vulnerability analysis using the eight tenants already used by the communication industry: human, policy, 
hardware, software, networks, payload and power. This methodology allows the address of a finite 
number of general classes of vulnerabilities, instead of an infinite number of specific threats that can 
exercise those vulnerabilities. So, working together threat analysis and vulnerability analysis can produce 
better results. 
 
To uncover design flaws the system is decomposed in components and each component is analyzed 
according to each one of the STRIDE approach where the effect of the bug is classified using the threat 
groups that have their related opposite security property (Table 1). When a threat is found, the bug 
enabling it is corrected in the code. 
 

Threat   Security Property 
Spoofing  Authentication 
Tampering  Integrity 
Repudiation  Non-repudiation 
Information disclosure  Confidentiality 
Denial of service  Availability 
Elevation of privilege  Authorization 

 
Table 1. STRIDE threat model. 
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To make this SSDL easier to apply and to help check the phases of the process, it is integrated into the 
Microsoft’s development tool VisualStudio.NET (Microsoft Corporation, 2009b). 
 
 
SOFTWARE SECURITY TOUCHPOINTS 
The Cigital’s Software Security Touchpoints is a manageable set of seven best practices, proposed in 
2004, that can be applied to the SDL being used by the organization (waterfall, spiral, etc.). In the book 
“Software Security” (McGraw, 2004), the author presents the best practices procedures (touchpoints) 
showing how they can easily be applied during the existing SDL in use in the organization (Fig. 3). 
 
For the touchpoints, two levels of software bugs are considered: source code level and architectural level 
(McGraw, 2004, 2006). The two most important touchpoints are source code analysis and architectural 
risk analysis, because they focus on bugs found in the code and in the design, respectively. The 
touchpoints, in order of effectiveness are the following: 
 

1. Code review - Using static analysis tools. 
2. Risk analysis - Based on attack patterns and threat models. 
3. Penetration testing - Using the black-box approach that should also consider the architecture 

of the system. 
4. Risk-based security tests - With traceability back to requirements. 
5. Abuse cases - Describing the system behavior under attack. 
6. Security requirements – Security must be present in the requirements, as well. 
7. Security operations - Monitoring for security breaks during the use of the system. 

 
Requirements and 

use cases
Architecture and 

Design Test plans Code Tests and test 
results

Feedback from the 
field

5 - Abuse cases
6 - Security 
requirements
2 - Risk analysis

2 - Risk analysis 4 - Risk-based 
security tests

1 - Code review 
(tools)

2 - Risk analysis
3 - Penetration 
testing

3 - Penetration 
testing
7 - Security 
operations

8 – External review  
 

Fig. 3. The software security touchpoints. (Adapted from (McGraw, 2004)).  
 
Although External Review (the last, in the effectiveness order) is considered outside the design team, it is 
also necessary. Security training of each best practice is also a concern of this model. 
 
An extensive set of articles themed Software Security Best Practices Building Security In for IEEE 
Security & Privacy were written by Gary McGraw, detailing the several best practices of the model 
((Arkin, Stender, & McGraw, 2005; Barnum & McGraw, 2005; B. Chess & McGraw, 2004; Hope, 
McGraw, & Anton, 2004; McGraw, 2004; Potter & McGraw, 2004; Taylor & McGraw, 2005; Verdon & 
McGraw, 2004)). 
 
 
INITIATIVES ON BUILDING AND MAINTAINING A SECURE SOFTWARE PRODUCT 
For an organization, it is difficult and costly (at least in the short term) to change their development 
methodology from the ground up, even if the objective is to deliver a higher quality product concerning 
security. To help with this migration process, several initiatives arouse aiming to integrate security in the 
SDL currently being used in the organization. Some of the most important initiatives are the 
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OpenSAMM, the BSIMM, the SAFECode and the Securosis. One interesting concern among all of them 
is the lesson learned from the industry, so they are based on empirical data collected over the years from 
relevant software development houses. Some of these initiatives present not only an improvement in 
security, but also the means to measure or benchmark the current state of the evolution of the software 
development process inside the organization, concerning security. This helps verify and compare the 
current state of the development process and to specify goals for the future that can be measured. 
 
Open Software Assurance Maturity Model (OpenSAMM) 
The OpenSAMM was developed by software security consultant Pravir Chandra and it is intended to be 
easy to follow even by non-security experts. It includes a simple, well-defined and measurable maturity 
model for the organization (Pravir Chandra, 2009). It was originally founded by Fortify but it is now part 
of the OWASP. It was proposed in 2009, it is not tied to vendors but has a lot of industry participation, it 
is open and driven by the community. 
 
The OpenSAMM model is based on four core Business Functions involved in the software development, 
each one with a set of three Security Practices (Fig. 4). The Security Practices are activities related to 
security that build assurance for the related Business Function. Each Security Practice has three Maturity 
Levels (or objectives) with well-defined specific Objectives, Activities, Results, and increasingly 
stringent Success Metrics, Costs, Personnel and Related Levels. 
 

Governance Construction Verification Deployment

- Strategy and 
metrics
- Policy and 
compliance
- Education and 
guidance

- Threat 
assessment
- Security 
requirements
- Secure 
architecture

- Design review
- Code review
- Security testing

- Vulnerability 
management
- Environment 
hardening
- Operational 
enablement

 
 

Fig. 4. The Software Assurance Maturity Model (SAMM). (Adapted from (Pravir Chandra, 2009)). 
 
The OpenSAMM model can be used as a benchmark to assess a security assurance program and create a 
scorecard showing its evolution. This ability to precisely score the security level of an organization and its 
evolution over time is a major advantage of the model. The assessment can simply be done for each 
Practice by scoring the answers, but a more detailed assessment can be done with additional auditory 
work. As an example, the interview template that helps determine the organization’s current maturity 
level can be easily obtained from the web (Coblentz, 2009). This model is also prepared to ease the 
implementation of a software assurance program, by providing a roadmap that can be tailored for each 
organization need. 
 
 
Building Security In Maturity Model (BSIMM) 
The Building Security In Maturity Model (BSIMM) is a model developed in 2009 and derived from a 
beta version of the OpenSAMM (McGraw, Chess, & Migues, 2009). It is a practical approach based on 
empirical evidence and data observation of nine software security initiatives from financial services, 
independent software vendors, and technology firms (Adobe, EMC, QUALCOMM, Google, Wells Fargo, 
Microsoft, DTCC and two other undisclosed companies). Unlike other SSDL methodologies, the BSIMM 
does not contain a theoretical compilation of best practices. It is a real-world collection of actual practices 
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performed in the field. The nine underlying organizations follow different SSDLs and the best practices 
are derived from their experiences. So, regardless of methodology, most of the theoretical best practices 
proposed by other SSDLs are actually present in the BSIMM, and they all share a common ground. In 
fact, Cigital (that proposed the Software Security Touchpoints already discussed) is one of the partners of 
the BSIMM, along with Fortify (founder of the OpenSAMM). BSIMM is also considered the standard for 
financial firms by the Financial Services Technology Consortium and used by the U.S. Department of 
Homeland Security. 
 
The BSIMM framework is called Software Security Framework (SSF) and consists of twelve normalized 
Practices each one with several activities associated to them (with objectives and activities) and grouped 
in four Domains (Fig. 5). 
 

Governance Intelligence SSDL touchpoints Deployment

- Strategy and 
metrics
- Compliance and 
policy
- Training

- Attack models
- Security features 
and design
- Standards and 
requirements

- Architecture and 
analysis
- Code review
- Security testing

- Penetration 
testing
- Software 
environment
- Configuration 
management and 
vulnerability 
management  

 
Fig. 5. BSIMM’s Software Security Framework. (Adapted from (McGraw et al., 2009)). 

 
Like the OpenSAMM, the BSIMM considers three levels of maturity with increasing security demanding 
and each one contains a set of activities within each practice, from an overall of 110 activities. This model 
can also be used to benchmark different organizations and prioritize changes according to their score in 
the maturity level of each one of the twelve practices. Like the OpenSAMM, this ability to allow 
bechmarking the maturity of the security practices and its evolution is one of the advantages of this 
model. However, BSIMM is the result of the underlying field study showing the practices that are really 
used by some good referenced activities common to all of the leading software security initiatives in order 
to obtain a secure process of development. 
 
Organizations can use the BSIMM skeleton to obtain a glance of the maturity model level during an 
assessment. It consists of the twelve Practices organized into the three maturity levels with their 
Objectives and Activities. This model is simpler to apply than the OpenSAMM but it necessarily lacks 
some information, like the guidance on how to measure and rank the Activities in order to obtain a 
comparable benchmark that can be used across the organizations. 
 
Software Assurance Forum for Excellence in Code (SAFECode) 
Like the BSIMM, the Software Assurance Forum for Excellence in Code (SAFECode) is an industry-led 
consortium formed in 2007, including the following members: EMC, Juniper Networks, Microsoft, 
Nokia, SAP, and Symantec. It is dedicated to increase trust in information and communication technology 
products and services. This consortium produced some publications focusing on secure development 
methods and practices (SAFECode, 2008a), an overview of industry best practices like the BSIMM 
model (SAFECode, 2008b) and principles of secure software development during training (SAFECode, 
2009). 
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The SAFECode guide contains a list of SSDL best practices, actually being executed by the industry, 
which are proven to help deliver secure products (Fig. 6). In the best practices for secure software 
programming, the SSDL focuses on the following aspects (SAFECode, 2008a): 
 

1. Requirements - Including training in secure development and testing. 
2. Design - With threat analysis before code commit. 
3. Programming - Including static and dynamic code analysis tools and manual code review, 

input and output validation. 
4. Testing - Consisting of fuzzing, penetration testing and external assessment. 
5. Code Integrity and Handling - Focusing on access principles like the least privilege access, 

separation of duties and persistent protection. 
6. Documentation - Defining software security best practices and how to configure the software 

for security. 
 

Requirements Design Programming Testing Code integrity and 
handling Documentation

- Risk assessment
- Identify security 
requirements
- Define the 
security 
development plan

- Threat analysis - Minimize unsafe 
function use
- Use the latest 
compiler toolset
- Use static and 
dynamic analysis 
tools
- Manual code 
review
- Validate input 
and output
- Use anti-cross 
site scripting 
libraries
- Use canonical 
data formats
- Avoid string 
concatenation for 
dynamic SQL
- Eliminate weak 
cryptography
- Use logging and 
tracing

- Fuzz testing
- Penetration 
testing and third-
party assessment
- Use of 
automated testing 
tools

- Least Privilege 
Access
- Separation of 
Duties
- Chain of Custody 
and Supply Chain 
Integrity
- Persistent 
Protection
- Compliance 
Management

- Security settings

 
 

Fig. 6. SAFECode’s Best Practices. (Adapted from (SAFECode, 2008a)). 
 
 
The SAFECode also highlights the need for leaders to promote the use of these best practices to create a 
security aware conscience among everyone involved in the software process development. 
 
Securosis building a web application security program 
Securosis released in 2009 a whitepaper sponsored by Core Security, Imperva and Qualys, about building 
a security program targeted specifically for web application development (Securosis, 2009). The paper 
proposes a SSDL with focus on the underfunding problem of web application security. The proposed 
SSDL is practical, inexpensive and presents the type of tools that should be used in the three stages of the 
proposed development cycle (Fig. 7). 
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1. Secure Development - It focuses on initial procedures needed to develop the application like 
gathering the requirements, design, implementation and quality assurance. Static analysis and 
dynamic analysis tools are covered to partially help automate this stage. 

2. Secure Deployment - It is at this stage where code complies with specifications and it is 
ready for vulnerability assessment (find security bugs) and penetration tests (classify and 
exploit security bugs). 

3. Secure Operation - When the application is deployed, preventive tools must be used in order 
to monitor the operation. For this matter, web application firewalls, web application and 
database activity monitoring tools are used. 

 

Secure 
development

Secure 
deployment Secure operations

- Secure SLDC
- Static analysis
- Dynamic 
analysis

- Vulnerability 
scanning
- Penetration 
testing

- WAF
- Monitoring

 
 

Fig. 7. Securosis model. (Adapted from (Securosis, 2009)). 
  

 
COMPARING THE SECURITY DEVELOPEMENT PROPOSALS 
Brook’s Law on project management says (Brooks, 1995): “Adding manpower to a late software project 
makes it later”. The same idea also applies to security: just adding security manpower to a late software 
project makes it later. And it still becomes unsecure, because patches do not always work very well 
(Arbaugh, Fithen, & McHugh, 2000). 
 
A common expression among SSDL enthusiasts to highlight the differences between their thinking and 
current building methods is that software security is not the same as secure software (Gollmann, 1999). In 
fact, having security functions in a piece of software, like password authentication for example, does not 
make by itself the application secure. It is also not sufficient to follow a single security procedure, 
because all of them have their benefits, but also their weaknesses. Developers need to coordinate together 
several tasks to be able to achieve a secure application (Barnett, 2008). It is this type of integration that a 
SSDL is supposed to provide. 
 
Security concern must be present during all the phases of the software development lifecycle and security 
cannot be seen just as a minor issue. In fact, it must be a design goal (Jayaram & Aditya, 2005) and this is 
represented well in OWASP’s (OWASP Foundation, 2006), Microsoft's (Howard & LeBlanc, 2003) and 
McGraw's (McGraw, 2006) software development lifecycles. 
 
Security vulnerabilities must be mitigated during the development lifecycle, before the software is 
released. Code Inspection and Penetration Testing represent two key quality assurance procedures that 
must be used to detect security vulnerabilities. Code inspection is a white-box approach that consists in 
the formal review of the application code by an external team. Penetration testing is a black-box approach 
consisting in a set of tests made from the point of view of the users, where the external team tries to find 
all the possible vulnerable entry points of the application. Penetration testing can be performed manually 
or it can be done using automated tools, although even top commercial products have a high rate of false 
positive (non vulnerabilities that are tagged as vulnerabilities) and false negative (vulnerabilities that are 
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not identified) values (Ananta Security, 2009; Fonseca, Vieira, & Madeira, 2007; WhiteHat Security Inc., 
2008). 
 
Because of the novelty of the development approach using a SSDL it is still hard to find results derived 
from real data that can compare the improvement of the quality of the final product. However, as one of 
the first solid establishments in the area, Microsoft has published the results of the number of critical bugs 
found in some of the products they developed (Fig. 8). Windows 2003 post-SDL had a decrease of over 
60% of critical bugs compared to Windows 2000 pre-SDL, SQL Server 2000 had a decrease of over 80% 
compared to the releases pre-SDL and post-SDL and Exchange Server 2000 had a decrease of 75% 
compared to the releases pre-SDL and post-SDL. Taking into account the overall results, there is a 66% 
decrease of the number of critical bugs after applying the SSDL in their development. 
 

 
  
Fig. 8. Windows 2000, SQL Server 2000, Exchange Server 2000 pre- and post-SDL critical and important 

security bulletins. (Adapted from (Lipner & Howard, 2005)). 
 
The research area of SSDL process is still in its early stages with lots of new ideas flowing from one 
proposal to another. There is a mixture of organizations involved in more than a single SSDL project like 
Microsoft, Cigital, Fortify, OWASP, etc.; and some SSDLs share the same guru, like Gary McGraw, 
Pravir Chandra, and Michael Howard. Some SSDL methodologies derive from a fork of the early stages 
of other SSDL methodologies and share some of the others core ideas, like the Touchpoints, OpenSAMM 
and BSIMM.  
 
This interest in better secure code practices and tools is shown by big investments in the security area and 
large acquisitions. In fact, according to Brian Chess, 2007 was a turning point because “It was the first 
year there was a bigger market for products that help you get code right than there was for products that 
help you demonstrate a problem exists” (Brian Chess, 2008). This is a good direction to follow: prevent 
the problem instead of chasing it in order to fix it after the damage. 
 
Table 2 presents an overview of the SSDLs described earlier in the chapter. The data shows that the focus 
on SSDLs is a new concern largely sparked after the 2002 Bill Gates trustworthy computing memo and 
the start of Microsoft security push. As time goes by, this subject is getting more interest from the 
industry: close to half of these major security development methodologies analyzed emerged in 2009.  
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 Name Year Highlights 

SS
D

L
 

CLASP 2006 24 formalized security best practices that cover the entire SDL. 

Microsoft SDL 2004 
Complete integrated SDL heavily based on risk analysis and based on a set of 
activities for each phase. Integrated in the Microsoft development suite. 
Suited for Operating System developers and large software houses. 

Touchpoints 2004 7 best practices that can be applied to the existing SDL. 

Se
cu

ri
ty

 
In

iti
at

iv
e 

OpenSAMM 2009 Measurable maturity model with 3 maturity levels and 12 security practices. 
Can be used as a benchmark. 

BSIMM 2009 
 

12 actual best practices used by the industry with 3 maturity levels. Can be 
used as a benchmark. 

SAFECode 2008 Overview of industry best practices with an emphasis on leadership. 
Securosis 2009 SSDL targeted specifically for web applications and focusing on automation 

by using tools. 
 

Table 2. SDL security proposals comparison. 
 
Although there is still not enough data to make a detailed comparison among the various SSDLs 
presented, some remarks can be made. We can see that one of the constraints in applying a SSDL has to 
do with the cost that includes the need of changing processes, training and delaying the deliverable of the 
final product. Some SSDLs could be used in larger projects, whereas others are more suitable to smaller 
companies that cannot afford to make profound changes in the way the software is built. 
 
The Microsoft SSDL can be applied to very large projects, like Operating Systems (OS) and big 
applications. They provide a set of tools to help in the process, integrated in their Visual Studio 
environment, but they must be run in the Windows OS. CLASP is lighter and can be adopted for smaller 
projects involving a fewer set of resources. It can be used as an SSDL or it can be easily integrated into an 
existing SDL with a reduced set of steps. The Touchpoints can be perfectly integrated into an existing 
SDL within the organization, helping to provide security to its software projects. The Touchpoints present 
activities that should be applied to the various artifacts created during the development of software. They 
are independent of the target of the company, so they can be applied in all software development 
situations. 
 
The other software initiatives focus on providing a set of best practices that are really being used by big 
references in the software development industry, which are proven to provide a good balance between the 
cost and the benefit they provide. OpenSAMM and BSIMM also provide means to benchmark the actual 
software development maturity concerning the adoption of the proposed practices. While SAFECode 
advises the need to have a leadership tailored for security and that this will drive the mentality change of 
the rest of the team in building a safer software product, Securosis focuses on existing tools that can help 
automate most of the processes required by implementing security in the SDL. 
 
 
CONCLUSION 
Every contribution towards building and maintaining a safer software product is welcomed, given the 
current state of insecurity, namely in web applications. All of the proposals analyzed in this chapter are 
worth mentioning and they all provide a step up in the level of security of the final product. Although 
they have different views on how to achieve their goals, in essence they have more in common than they 
have differences. This common ground constitutes the basic principles and best practices they all share, 
which can be seen as the core needed to increase security during software development: 
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1. Training for security. 
2. Architectural review. 
3. Source code review. 
4. Penetration testing. 
5. Documentation and security policies. 

 
Applications, especially on the web, are a constant target for hackers and are never safe given that new 
vulnerabilities and exploitation techniques are being discovered constantly in the technologies and 
components they use. This evolving environment quickly turns thought to be secure applications into 
undoubtedly unsecure applications. Even for applications developed with a SSDL, they may become 
vulnerable shortly after delivery. This is one of the reasons why the development process does not end 
with delivery and continues though the maintenance. Maintenance after deployment and during the entire 
working life of the application should be a mandatory requirement. 
 
To build secure software, security must be present from the early stages of the software development 
taking into account both secure mechanisms and design for security. The use of a software development 
lifecycle considering security is of utmost importance if the objective is not only the prevention of 
security bugs, but also higher-level problems, like architectural, component interaction and broken access 
control over tiers. The security work should be applied since the early stages of development, during the 
definition of the requirements, architecture, design, coding, testing, validation, measurement, and 
maintenance of the software. This way of developing secure applications is not only cheaper in the long 
term, but also has already proven results from the industry. 
 
 
REFERENCES 
 
Ananta Security. (2009). Web Vulnerability Scanners Comparison. Retrieved from 

http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html 
Arbaugh, W. A., Fithen, W. L., & McHugh, J. (2000). Windows of vulnerability: a case study analysis. 

Computer, 33(12), 52–59. doi:10.1109/2.889093 
Arkin, B., Stender, S., & McGraw, G. (2005). Software penetration testing. IEEE Security & Privacy, 

3(1), 84–87. doi:10.1109/MSP.2005.23 
Auger, R. (2007). Writing Software Security Test Cases. Retrieved February 18, 2009, from 

http://www.qasec.com/cycle/securitytestcases.shtml 
Baker, W. H., Hutton, A., Hylender, C. D., Novak, C., Porter, C., Sartin, B., Tippett, P., et al. (2009). The 

2009 Data Breach Investigations Report. Verizon Business RISK Team. 
Barnett, R. (2008). ModSecurity Blog: Is Your Website Secure? Prove It. Retrieved May 16, 2009, from 

http://www.modsecurity.org/blog/archives/2008/01/is_your_website.html 
Barnum, S., & McGraw, G. (2005). Knowledge for software security. IEEE Security & Privacy, 3(2), 74–

78. doi:10.1109/MSP.2005.45 
Berinato, S. (2002). CIO - Return on Security Spending, pp. 43–52. 
Boehm, B. (1986). A spiral model of software development and enhancement. SIGSOFT Softw. Eng. 

Notes, 11(4), 14–24. doi:10.1145/12944.12948 
Boehm, B., & Basili, V. R. (2001). Software Defect Reduction Top 10 List. Computer, 34(1), 135–137. 
Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition 

(2nd ed.). Addison-Wesley Professional. 
Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE Security & Privacy, 2(6), 76–79. 

doi:10.1109/MSP.2004.111 
Chess, Brian. (2008). Space Race. My Security Planet  » Fortify blog. Retrieved May 12, 2009, from 

http://rgaucher.info/planet/Fortify_blog/2008/08/13/ 



 15	  

CNSS Secretariat. (2006). National Information Assurance (IA) Glossary. Committee on National 
Security Systems. 

Coblentz, N. (2009). SAMM Assessment Interview Template. SAMM Assessment Interview Template. 
Retrieved September 18, 2009, from 
http://spreadsheets.google.com/pub?key=rYpVqQR3026Zu4DNg8LBIwg&gid=3 

Epstein, J. (2009). What Measures Do Vendors Use for Software Assurance? Build Security In. Carnegie 
Mellon University. Retrieved from https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/business/1093-BSI.html 

Fonseca, J., Vieira, M., & Madeira, H. (2007). Testing and Comparing Web Vulnerability Scanning Tools 
for SQL Injection and XSS Attacks. 13th Pacific Rim International Symposium on Dependable 
Computing, 2007. PRDC 2007 (pp. 365–372). 

Gollmann, D. (1999). Computer Security (1st ed.). John Wiley & Sons. Retrieved from 
http://www.wiley.com/legacy/compbooks/catalog/97844-2.htm 

Higgins, K. J. (2009). The Rocky Road To More Secure Code. DarkReading. Retrieved September 18, 
2009, from http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=216403548&pgno=1&queryText=&isPrev= 

Hope, P., McGraw, G., & Anton, A. I. (2004). Misuse and abuse cases: getting past the positive. IEEE 
Security & Privacy, 2(3), 90–92. doi:10.1109/MSP.2004.17 

Howard, M. (2009). A Conversation About Threat Modeling. Retrieved May 16, 2009, from 
http://msdn.microsoft.com/en-us/magazine/dd727503.aspx 

Howard, M., & LeBlanc, D. (2003). Writing Secure Code. Microsoft Press. 
Howard, M., & Lipner, S. (2006). The Security Development Lifecycle. Microsoft Press. 
Jayaram, K. R., & Aditya, P. M. (2005). Software Engineering for Secure Software - State of the Art: A 

Survey (CERIAS TR 2005-67). Purdue University. Retrieved from 
https://www.cerias.purdue.edu/apps/reports_and_papers/view/2884 

Kim, F., & Skoudis, E. (2009). Protecting Your Web Apps: Two Big Mistakes and 12 Practical Tips to 
Avoid Them. SANS Institute. 

Lanowitz, T. (2005). Now Is the Time for Security at the Application Level. Gartner Group. Retrieved 
from http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf 

Lipner, S., & Howard, M. (2005). The Trustworthy Computing Security Development Lifecycle. 
Microsoft Developer Network. Retrieved September 24, 2009, from 
http://msdn.microsoft.com/en-us/library/ms995349.aspx 

Marmor-Squires, A. B., & Rougeau, P. A. (1988). Issues in Process Models and Integrated Environments 
for Trusted Systems Development. Proceedings of the 11th National Computer Security 
Conference (pp. pp. 109–113). Presented at the Proceedings of the 11th National Computer 
Security Conference, United States Government Printing Office. 

Martin, J. (1991). Rapid application development. Indianapolis, IN, USA: Macmillan Publishing Co., Inc. 
McGraw, G. (2004). Software security. IEEE Security & Privacy, 2(2), 80–83. 

doi:10.1109/MSECP.2004.1281254 
McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley Professional. 
McGraw, G., Chess, B., & Migues, S. (2009). Building Security In Maturity Model. Fortify & Cigital. 

Retrieved from http://bsi-mm.com/ 
Mead, N. R., & McGraw, G. (2003). The DIMACS Workshop on Software Security. DIMACS Center. 
Meftah, B. (2008). Business Software Assurance: Identifying and Reducing Software Risk in the 

Enterprise. Presented at the 9th Semi-Annual Software Assurance Forum. Retrieved from 
https://buildsecurityin.us-cert.gov/swa/downloads/Meftah.pdf 

Microsoft Corporation. (2008). MICROSOFT SECURITY DEVELOPMENT LIFECYCLE (SDL) Version 
3.2. Microsoft Corporation. 

Microsoft Corporation. (2009a). The Microsoft Security Development Lifecycle (SDL). Retrieved March 
23, 2009, from http://msdn.microsoft.com/en-us/security/cc448177.aspx 



 16	  

Microsoft Corporation. (2009b). SDL Process Template. MSDN. Retrieved May 22, 2009, from 
http://msdn.microsoft.com/en-us/security/dd670265.aspx 

OWASP Foundation. (2006). OWASP - CLASP (1.2 ed.). OWASP Foundation. Retrieved from 
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project 

Potter, B., & McGraw, G. (2004). Software security testing. IEEE Security & Privacy, 2(5), 81–85. 
doi:10.1109/MSP.2004.84 

Pravir Chandra. (2009). Software Assurance Maturity Model: A guide to building security into software 
development (1.0 ed.). OpenSAMM Project. Retrieved from http://www.opensamm.org/ 

Rauscher, K. F., Krock, R. E., & Runyon, J. P. (2006). Eight ingredients of communications 
infrastructure: A systematic and comprehensive framework for enhancing network reliability and 
security. Bell Labs Technical Journal, 11(3), 73–81. 

Royce, W. (1970). Managing the Development of Large Software Systems. Proc. IEEE Wescon (pp. 1–
9). 

RTI. (2002). Planning Report 02-3 The Economic Impacts of Inadequate Infrastructure for Software 
Testing. NIST. Retrieved from http://www.nist.gov/director/prog-ofc/report02-3.pdf 

SAFECode. (2008a). Fundamental Practices for Secure Software Development. SAFECode. Retrieved 
from http://www.safecode.org/publications.php 

SAFECode. (2008b). Software Assurance: An Overview of Current Industry Best Practices. SAFECode. 
Retrieved from http://www.safecode.org/publications.php 

SAFECode. (2009). Security Engineering Training. SAFECode. Retrieved from 
http://www.safecode.org/publications.php 

Securosis. (2009). Building a Web Application Security Program. Securosis. Retrieved from 
http://securosis.com/research/publication/building-a-web-application-security-program/ 

Sommerville, I. (2010). Software Engineering (9th ed.). Addison Wesley. 
SPI Dynamics, Inc. (2002). Complete Web Application Security: Phase 1–Building Web Application 

Security into Your Development Process. SPI Dynamics, Inc. Retrieved from 
http://cnscenter.future.co.kr/resource/rsc-center/vendor-
wp/Spidynamics/Webapp_Dev_Process.pdf 

Taylor, D., & McGraw, G. (2005). Adopting a software security improvement program. IEEE Security & 
Privacy, 3(3), 88–91. doi:10.1109/MSP.2005.60 

Verdon, D., & McGraw, G. (2004). Risk analysis in software design. IEEE Security & Privacy, 2(4), 79–
84. doi:10.1109/MSP.2004.84 

WhiteHat Security Inc. (2008). WhiteHat Website Security Statistic Reports ( No. 6th Edition). WhiteHat 
Security Inc. Retrieved from http://www.whitehatsec.com/home/resource/stats.html 

Wiesmann, A., Curphey, M., Stock, A. van der, & Stirbei, R. (2005). A Guide to Building Secure Web 
Applications and Web Services, V2.0.1. OWASP Foundation. Retrieved from 
http://www.owasp.org/index.php/Developer_Guide 

Williams, J. (2008). Establishing a Security API for Your Enterprise (ALPHA version). OWASP 
Foundation. 

  
 
KEY TERMS AND DEFINITIONS  
 
Attack: Malicious and intentional interaction with the system exploiting a vulnerability in order to take 
advantage from it. 
 
Best practices: Set of methodologies that should be followed during the software lifecycle in order to 
provide a better product. 
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Bug (in the software): Error in the software code that makes the software provide a service that deviates 
from the correct service, as stated in the specification. 
 
Hacker: In this context, an attacker, a person that exploits the vulnerabilities of the system or tries to use it 
in other ways that were not intended by the developer. 
 
Security: Set of properties of the software (Confidentiality, Integrity and Availability) that should be 
preserved, even when the system is under attack. 
 
SSDL:  Secure Software Development Lifecycle is a model to develop software with security embedded 
from the start to the end of the life of the software. 
 
Vulnerability: Weakness in the system that may be exploited by an attacker to jeopardize one or more 
security properties of the system. 


