
Evaluation of Web Security Mechanisms
Using Vulnerability & Attack Injection

Jos�e Fonseca, Marco Vieira, and Henrique Madeira

Abstract—In this paper we propose a methodology and a prototype tool to evaluate web application security mechanisms. The

methodology is based on the idea that injecting realistic vulnerabilities in a web application and attacking them automatically can be

used to support the assessment of existing security mechanisms and tools in custom setup scenarios. To provide true to life results, the

proposed vulnerability and attack injection methodology relies on the study of a large number of vulnerabilities in real web applications.

In addition to the generic methodology, the paper describes the implementation of the Vulnerability & Attack Injector Tool (VAIT) that

allows the automation of the entire process. We used this tool to run a set of experiments that demonstrate the feasibility and the

effectiveness of the proposed methodology. The experiments include the evaluation of coverage and false positives of an intrusion

detection system for SQL Injection attacks and the assessment of the effectiveness of two top commercial web application vulnerability

scanners. Results show that the injection of vulnerabilities and attacks is indeed an effective way to evaluate security mechanisms and

to point out not only their weaknesses but also ways for their improvement.

Index Terms—Security, fault injection, internet applications, review and evaluation

Ç

1 INTRODUCTION

NOWADAYS there is an increasing dependency on web
applications, ranging from individuals to large

organizations. Almost everything is stored, available or
traded on the web. Web applications can be personal
websites, blogs, news, social networks, web mails, bank
agencies, forums, e-commerce applications, etc. The
omnipresence of web applications in our way of life and
in our economy is so important that it makes them a
natural target for malicious minds that want to exploit
this new streak.

The security motivation of web application developers
and administrators should reflect the magnitude and rele-
vance of the assets they are supposed to protect.
Although there is an increasing concern about security
(often being subject to regulations from governments [1]
and corporations [2]), there are significant factors that
make securing web applications a difficult task to achieve:

1. The web application market is growing fast, result-
ing in a huge proliferation of web applications, based
on different languages, frameworks, and protocols,
largely fueled by the (apparent) simplicity one can
develop and maintain such applications.

2. Web applications are highly exposed to attacks
from anywhere in the world, which can be con-
ducted by using widely available and simple tools
like a web browser.

3. It is common to find web application developers,
administrators and power users without the required
knowledge or experience in the area of security.

4. Web applications provide the means to access valu-
able enterprise assets. Many times they are the
main interface to the information stored in back-
end databases, other times they are the path to the
inside of the enterprise network and computers.

Not surprisingly, the overall situation of web application
security is quite favorable to attacks [3], [4], [5]. In fact, esti-
mations point to a very large number of web applications
with security vulnerabilities [6], [7] and, consequently, there
are numerous reports of successful security breaches and
exploitations [8], [9]. Organized crime is naturally flourish-
ing in this promising market, if we consider the millions of
dollars earned by such organizations in the underground
economy of the web [10], [11].

To fight this scenario we need means to evaluate the
security of web applications and of attack counter measure
tools. To handle web application security, new tools need to
be developed, and procedures and regulations must be
improved, redesigned or invented. Moreover, everyone
involved in the development process should be trained
properly. All web applications should be thoroughly evalu-
ated, verified and validated before going into production.

However, these best practices are unfeasible to apply to
the hundreds of millions of existing legacy web applications,
so they should be constantly audited and protected by
security tools during their lifetime. This is particularly rele-
vant due to the extreme dynamicity of the security scenario,
with new vulnerabilities and ways of exploitation being dis-
covered every day. Clearly, security technology is not good
enough to stop web application attacks and practitioners
should be concerned with the evaluation and the assurance
of their success [12]. In practice, there is a need for new
ways to effectively test existing web application security
mechanisms in order to evaluate and improve them.

� J. Fonseca is with the Research Unit for Inland Development, Institute
Polytechnic of Guarda and the Centre for Informatics and Systems, Uni-
versity of Coimbra. E-mail: josefonseca@ipg.pt.

� M. Vieira and H. Madeira are with the Centre of Informatics and Systems,
University of Coimbra. E-mail: {mvieira, henrique}@dei.uc.pt.

Manuscript received 17 June 2013; revised 29 Sept. 2013; accepted 3 Oct.
2013. Date of publication 10 Oct. 2013; date of current version 17 Sept. 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2013.45

440 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014

1545-5971� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This paper proposes a methodology and a tool to inject
vulnerabilities and attacks in web applications. The pro-
posed methodology is based on the idea that we can
assess different attributes of existing web application
security mechanisms by injecting realistic vulnerabilities
in a web application and attacking them automatically.
This follows a procedure inspired on the fault injection
technique that has been used for decades in the depend-
ability area [13]. In our case, the set of “vulnerability” þ
“attack” represents the space of the “faults” injected in a
web application, and the “intrusion” is the result of the
successful “attack” of a “vulnerability” causing the appli-
cation to enter in an “error” state [14]. In practice, a secu-
rity “vulnerability” is a weakness (an internal “fault”) that
may be exploited to cause harm, but its presence does not
cause harm by itself [15].

Conceptually, the attack injection consists of the intro-
duction of realistic vulnerabilities that are afterwards
automatically exploited (attacked). Vulnerabilities are
considered realistic because they are derived from the
extensive field study on real web application vulnerabil-
ities presented in [16], and are injected according to a set
of representative restrictions and rules defined in [17].

The attack injection methodology is based on the
dynamic analysis of information obtained from the run-
time monitoring of the web application behavior and of
the interaction with external resources, such as the back-
end database. This information, complemented with the
static analysis of the source code of the application,
allows the effective injection of vulnerabilities that are
similar to those found in the real world. In practice, the
use of both static and dynamic analysis is a key feature
of the methodology that allows increasing the overall per-
formance and effectiveness, as it provides the means to
inject more vulnerabilities that can be successfully
attacked and discarded those that cannot.

Although this methodology can be applied to various
types of vulnerabilities, we focus on two of the most
widely exploited and serious web application vulnerabil-
ities that are SQL Injection (SQLi) and Cross Site Scripting
(XSS) [3], [6]. Attacks to these vulnerabilities basically
take advantage of improper coded applications due to
unchecked input fields at user interface. This allows the
attacker to change the SQL commands that are sent to the
database (SQLi) or through the input of HTML and
scripting languages (XSS).

The proposed methodology provides a practical envi-
ronment that can be used to test countermeasure mecha-
nisms (such as intrusion detection systems (IDSs), web
application vulnerability scanners, web application fire-
walls, static code analyzers, etc.), train and evaluate secu-
rity teams, help estimate security measures (like the
number of vulnerabilities present in the code), among
others. This assessment of security tools can be done
online by executing the attack injector while the security
tool is also running; or offline by injecting a representa-
tive set of vulnerabilities that can be used as a testbed for
evaluating a security tool.

The methodology proposed was implemented in a con-
crete Vulnerability & Attack Injector Tool (VAIT) for web
applications. The tool was tested on top of widely used

applications in two scenarios. The first to evaluate the
effectiveness of the VAIT in generating a large number of
realistic vulnerabilities for the offline assessment of secu-
rity tools, in particular web application vulnerability
scanners. The second to show how it can exploit injected
vulnerabilities to launch attacks, allowing the online eval-
uation of the effectiveness of the counter measure mecha-
nisms installed in the target system, in particular an
intrusion detection system. These experiments illustrate
how the proposed methodology can be used in practice,
not only to uncover existing weaknesses of the tools ana-
lyzed, but also to help improve them.

The structure of the paper is as follows. The next sec-
tion presents related research. Section 3 describes the
proposed attack injection methodology, detailing its four
stages. Section 4 presents the architecture of the VAIT
prototype. Section 5 discusses several scenarios where
the proposed methodology can be used and Section 6
describes the experiments and discusses the results.
Finally, Section 7 concludes the paper.

2 RELATED WORK

Fault injection techniques have been largely used to evalu-
ate fault tolerant systems [18], [19]. The artificial injection
of faults in a system (or in a component of the system)
speeds up the occurrence of errors and failures, allowing
researchers and engineers to evaluate the impact of faults
on the system and/or the effects of potential error propa-
gation to other systems. Fault injection also helps in esti-
mating fault tolerant system measures, such as the fault
coverage and error latency [18].

Fault injection techniques have traditionally been used to
inject physical (i.e., hardware) faults [18], [19]. In fact, initial
fault injection techniques used hardware-based approaches
such as pin-level injection or heavy-ion radiation. The
increasing complexity of systems has lead to the replace-
ment of hardware-based techniques by software imple-
mented fault injection (SWIFI), in which hardware faults are
emulated by software. Xception [20] and NFTAPE [21] are
examples of SWIFI tools.

The injection of realistic software faults (i.e., software
bugs) has been absent from fault injection effort for a
long time. First proposals were based on ad-hoc code
mutations [22], [23], but more recent works focus on the
injection of representative software faults based on com-
prehensive field studies on the most common types of
software bugs [24].

The use of fault injection techniques to assess security
is actually a particular case of software fault injection,
focused on software faults that represent security vul-
nerabilities or may cause the system to fail in avoiding
a security attack. Neves et al. proposed an Attack Injec-
tor Tool (AJECT) to support the discovery of vulnerabil-
ities in network servers, specifically IMAP servers [25].
To attack the target system they used predefined test
classes of attacks and some sort of fuzzing. Our
approach automatically discovers places in the web
application code that can be used to inject vulnerabil-
ities using fault injection techniques and smart fuzzing
to seamlessly attack them.

FONSECA ET AL.: EVALUATION OF WEB SECURITY MECHANISMS USING VULNERABILITY & ATTACK INJECTION 441

The industry uses fuzzing and mutation testing to
automate penetration testing of web applications. They
rely on web application vulnerability scanner tools that
also generate reports compliant with security regulations
(Sarbanes-Oxley, PCI-DSS, etc.). Some of the best known
of such tools are HP WebInspect, IBM Watchfire AppScan,
Acunetix web application security scanner and Web-
Sphinx. In spite of their continuous development, these
tools still have many problems related to the high number
of undetected vulnerabilities and high percentage of false
positives, as shown by several studies [26], [27]. To
address these problems, it was proposed a method to
benchmark these scanners [26]. The method starts by iden-
tifying all the points where each type of bug can be
injected, then injecting the bug. Many of these bugs
injected are vulnerabilities that can be used to test and
compare the performance of the scanners.

The use of model checkers for security analysis was also
proposed [28]. In this case, the vulnerability is injected by
mutating the formal model of the web application. The
model is also used to generate test cases that are used to
attack the web application in a semi-automatic way.

The list of possible types of vulnerabilities affecting web
applications is enormous, but XSS and SQLi are at the top of
that list, accounting for 32 percent of the vulnerabilities
observed [3], [6]. This is why we focus on those two impor-
tant vulnerabilities, SQLi and XSS.

An SQLi attack consists of tweaking the input fields of
the webpage (which can be visible or hidden) in order to
alter the query sent to the back-end database. This allows
the attacker to retrieve sensible data or even alter database
records. An SQLi attack can be dormant for a while and
only be triggered by a specific event, such as the periodic
execution of some procedures in the database (e.g., the
scheduled database record cleaning function).

A XSS attack consists of injecting HTML and/or other
scripting code (usually Javascript) in a vulnerable web-
page. It exploits the common utilization of the user input
(without sanitizing it first) as a building part of a webpage.
When this occurs, by tweaking the input, the attacker is
able to change some of its functions, allowing him to take
advantage of users visiting that webpage. This attack
exploits the confidence a user (victim) has on the website,
allowing the attacker to impersonate these users and even
execute other types of attacks such as cross site request
forgery (CSRF) [29]. The injection of XSS can also be persis-
tent if the malicious string is stored in the back-end data-
base of the web application, therefore potentiating its
malicious effects in a much broader way.

A contribution to better understand the most common
vulnerabilities in web applications was presented in a field
study that classified 655 XSS and SQLi security patches of
six widely used Linux, Apache, MySQL and PHP (LAMP)
web applications [16]. LAMP is considered to be the most
common stack of technologies used to build web applica-
tions and these types of applications are also prone to many
vulnerabilities, namely XSS and SQLi. Both XSS and SQLi
vulnerabilities result from poorly coded applications that
do not properly check their inputs. One major conclusion of
that study is that the most common type of vulnerabilities
in web application code is by far, the “Missing Function

Call- extended” (MFCE), with about 3=4 of all vulnerabilities
found. Due to its relevance it was expanded into three sub-
types, explained in Table 1 (see [16] for more details, other
types and sub-types). This MFCE fault type represents vul-
nerabilities caused by an input variable that should have
been properly sanitized by a specific function, which the
programmer “forgot” to include in the code. Table 1 shows
that sub-type A, originated by unchecked numeric fields, is
the most relevant. This result is also corroborated by
another work, this time referring only to SQLi vulnerabil-
ities found in BugTraq SecurityFocus and presented by the
open web application security project (OWASP) [30]. This
study concludes that about half of SQLi vulnerabilities
come from the exploitation of numeric fields.

The methodology proposed in the present paper relies on
the results of the field study presented in [16] to define the
types of vulnerabilities to be injected (fault models), which
match the most common types of vulnerabilities found in
web applications in the field. These vulnerabilities are
injected according to a set of representative restrictions and
rules previously proposed in [17] and then attacked.

3 VULNERABILITY & ATTACK INJECTION

METHODOLOGY

In this section we present the methodology for testing
security mechanisms in the context of web applications.
The methodology is based on the injection of realistic vul-
nerabilities and the subsequent controlled exploit of those
vulnerabilities in order to attack the system. This pro-
vides a practical environment that can be used to test
counter measure mechanisms (such as IDS, web applica-
tion vulnerability scanners, firewalls, etc.), train and eval-
uate security teams, estimate security measures (like the
number of vulnerabilities present in the code, in a similar
way to defect seeding [31]), among others.

To provide a realistic environment we must consider true
to life vulnerabilities. As mentioned before, we rely on the
results from a field study presented in [16] that classified
655 XSS and SQLi security patches of six widely used
LAMP web applications. This data allows us to define
where a real vulnerability is usually located in the source
code and what is the piece of code that is responsible for the
presence of such vulnerability.

3.1 Overview of the Methodology

Our Vulnerability & Attack Injection methodology for
SQLi and XSS can be applied to a variety of setups and
technologies, but the following description uses as refer-
ence a typical web application, with a web front-end and

TABLE 1
Missing Function Call—Extended (MFCS) Sub-Types

�The values refer to all the SQLi vulnerabilities analyzed in the field study
detailed in [16].

442 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014

an access to a back-end database to store the dynamic
content and business data (Fig. 1).

The vulnerabilities are injected in the web application fol-
lowing a realistic pattern derived from [16]. The information
about what was injected is fed to the injection mechanism in
order to improve the attack success rate.

As shown in Fig. 1, the attack injection uses two external
probes: one for the HTTP communication and other for the
database communication. These probes monitor the HTTP
and SQL data exchanged, and send a copy to be analyzed
by the attack injection mechanism. This is a key aspect of
the methodology to obtain the user interaction and the
results produced by such interaction for analysis, so they
can be used to prepare the attack. Therefore, the attack injec-
tion mechanism is aware of important inner workings of the
application while it is running. For example, this provides
insights on what piece of information supplied to a HTML
FORM is really used to build the correlated SQL query and
in which part of the query it is going to be inserted.

The entire process is performed automatically, without
human intervention. For example, let’s consider the evalua-
tion of an IDS: during the attack stage, when the IDS
inspects the SQL query sent to the database, the VAIT also
monitors the output of the IDS to identify if the attack has
been detected by the IDS or not. We just have to collect the
final results of the attack injection, which also contains, in
this case, the IDS detection output.

The automated attack of a web application is a multi-
stage procedure that includes: preparation stage, vulnerabil-
ity injection stage, attackload generation stage, and attack
stage. These stages are described in the next sections.

3.2 Preparation Stage

In the preparation stage, the web application is interacted
(crawled) executing all the functionalities that need to be
tested (Fig. 2). Meanwhile, both HTTP and SQL communi-
cations are captured by the two probes and processed for
later use. The interaction with the web application is always
done from the client’s point of view (the web browser).

The outcome of this stage is the correlation of the input
values, the HTTP variables that carry them and their
respective source code files, and its use in the structure of
the database queries sent to the back-end database (for
SQLi) or displayed back to the web browser (for XSS).
Later on, in the attack stage, the malicious activity applied

is based on tweaking the values of the variables, which
correspond to the text fields, combo boxes, etc., discov-
ered in this preparation stage.

3.3 Vulnerability Injection Stage

It is in this vulnerability injection stage that vulnerabilities
are injected into the web application. For this purpose, it
needs information about which input variables carry rele-
vant information that can be used to execute attacks to
the web application. This stage starts by analyzing the
source code of the web application files searching for loca-
tions where vulnerabilities can be injected (Fig. 2). The
injection of vulnerabilities is done by removing the pro-
tection of the target variables, like the call to a sanitizing
function. This process follows the realistic patterns result-
ing from the field study presented in [16]. Once it finds a
possible location, it performs a specific code mutation in
order to inject one vulnerability in that particular location.
The change in the code follows the rules derived from
[16], which are described and implemented as a set of
Vulnerability Operators presented in [17].

The Vulnerability Operators are built upon a pair of
attributes: the Location Pattern and the Vulnerability Code
Change. The Location Pattern defines the conditions that
a specific vulnerability type must comply with and the
Vulnerability Code Change specifies the actions that
must be performed to inject this vulnerability, depending
on the environment where the vulnerability is going to
be injected.

In order to clarify the concept of the Vulnerability
Operators, let us analyze the following example. One of
the Location Pattern restrictions for the missing function
call extended subtype A (MFCE - A), is the search for the
“intval”1 PHP function when the argument is related
to an input value (a value coming from the outside) and
the result is going to be used in a SQL query string.

Fig. 1. VAIT in a typical setup.

Fig. 2. VAIT internal components.

1. The “intval” PHP function returns the integer value of the argu-
ment. It returns -1 when the argument cannot be converted to an
integer.

FONSECA ET AL.: EVALUATION OF WEB SECURITY MECHANISMS USING VULNERABILITY & ATTACK INJECTION 443

Consider, for example, this sample piece of code: “$id ¼
intval($_GET[‘id’]);”. If the variable “$id” is going
to be used in a query, then the Vulnerability Code
Change consists of removing the “intval” function from
the source code in order to inject a vulnerability. As can
be seen, by removing the function the resulting code
becomes “$id ¼ $_GET[‘id’];”, which can be vulnera-
ble to a SQLi attack. For example, by assigning the value
“15 or 1 ¼ 1” to the “$id” variable, the SQL query is
executed without considering other constraints in the
“where” condition. Recall that “[anything] or 1 ¼ 1”
is always true, therefore affecting every row of the query,
which was not the intended behavior as coded by the
developer of the application.

The vulnerability and attack injection uses both
dynamic analysis and static analysis to gather the data
needed to apply the vulnerability operators. This analy-
sis obtains not only the input variables (IV) that will be
part of an output variable (OV), but also the chain of var-
iables in between. If the web application is secured, one
of the variables in the chain is sanitized or filtered
(Fig. 3). We call this variable our target variable (TV),
because it is the one that the vulnerability injection stage
will try to make vulnerable by removing or changing the
protection scheme, according to the Vulnerability Opera-
tors. To inject a vulnerability using the Vulnerability
Operators we need the information about the target vari-
able and the code location (CL) where it is sanitized or
filtered {TV, CL}.

In the preparation stage (based on the dynamic interac-
tion executed by the crawler) we obtain the pairs
fIVðdynamic analysisÞ; OVðdynamic analysisÞg, which are the set of
input variables ðIVðdynamic analysisÞ) whose values come from
the HTTP interaction or the SQL communication and their
mapping with output variables ðOVðdynamic analysisÞ). On

the other side, the vulnerability injector tool performs a
static analysis on the source code and finds the input varia-
bles ðIVðstatic analysisÞ) that are expected to be seen in the
output ðOVðstatic analysisÞ) as part of the HTML response,
SQL queries, etc. It also provides the target variable
ðTVðstatic analysisÞ) and the code location ðCLðstatic analysisÞ)
of the place in the file where the target variable is sanitized
or filtered. Overall, the static analysis provides the follow-
ing set of attributes: fIVðstatic analysisÞ; OVðstatic analysisÞ;
TVðstatic analysisÞ; CLðstatic analysisÞ}.

This process of using dynamic and static results provides
the best of both worlds to obtain the variables and the loca-
tion where they are sanitized or filtered and the set of con-
straints given by the code location required by the
Vulnerability Operators.

The correlation of variables resulting from both static
and dynamic analysis originates a more precise set of loca-
tions where the Vulnerability Operators may be used. The
outcome of this correlation is an improved collection of
vulnerabilities that has a higher rate of exploitability by
the attack injection mechanism. The data must be provided
by the set of attributes that come from the static analysis
{IVðstatic analysisÞ; OVðstatic analysisÞ; TVðstatic analysisÞ;
CLðstatic analysisÞ}, but improved by the pair of attributes
that come from the preparation stage {IVðdynamic analysisÞ,
OVðdynamic analysisÞ} (Fig. 4). It considers the data from
the set of attributes {IVðstatic analysisÞ; OVð static analysisÞ;
TVðstatic analysisÞ; CLðstatic analysisÞ} but only whose pairs
{IVðstatic analysisÞ, OVðstatic analysisÞ} are equivalent to any of
the {IVðdynamic analysisÞ, OVðdynamic analysisÞ}. The procedure to
process the data from dynamic and static analysis to obtain
the match outcome consisting of the pair of target variable
and code location {TV, CL} needed to apply the vulnera-
bility operators is exemplified in Fig. 5.

As a result of this vulnerability injection process, we
obtain a copy of the original web application file with a
single vulnerability injected. This procedure can be auto-
matically repeated until all the locations where realistic
vulnerabilities can be injected are identified and all the
corresponding vulnerabilities are injected, resulting in a
set of files, each one with one possible vulnerability
added (Fig. 6).

3.4 AttackLoad Generation Stage

After having the set of copies of the web application
source code files with vulnerabilities injected we need to
generate the collection of malicious interactions (attack-
loads) that will be used to attack each vulnerability. This
is done in the attackload generation stage. The attackload
is the malicious activity data needed to attack a given vul-
nerability. This data is built around the interaction

Fig. 3. Chain of variables from input to output of the web application.

Fig. 4. Using data from dynamic and static analysis to apply the vulnera-
bility operators and inject a vulnerability.

Fig. 5. Example of the use of data from dynamic and static analysis to
obtain the match of target variable and code location for the vulnerability
operators.

444 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014

patterns derived from the preparation stage, by tweaking
the input values of the vulnerable variables.

The value that is assigned to the vulnerable variable, in
order to attack it, results from a fuzzing process. In this
process, the malicious value is obtained through the
manipulation of the data provided by the good values of
the vulnerable variable, the prefix (>,),’,”, . . .) and the suf-
fix (<,–,#,’,”, . . .), the use of attackload strings and pre-
defined functions (Fig. 7).

The fuzzing process consists of combining the avail-
able collection of prefixes, attackload strings and suf-
fixes. For example, let us suppose that the variable may
convey the value John and that its protection scheme
has been removed by the vulnerability injection stage.
In this case, one of the attackloads for SQLi assigns
to the variable something like: “John’ +and+ ’A’ ¼
‘A”. In this attack string, the John is the known good
value of the vulnerable variable, the ‘ is the prefix, the
+and+ ’A’ ¼ ‘A is the attackload string and there is
no suffix (for this specific example). The þ signs (they
could as well be %20) are the URL encoded values of
the space character, so the string can be used to build
the malicious HTTP packet that will be sent to the web
application by the attack injection mechanism.

This stage also generates the payload footprints that
have a one to one relationship with the attack payloads.
The payload footprints are the expected result of the
attack. They can be the malicious SQL queries text sent to
the database, for the case of an SQLi attack; or the HTML
of the web application response, for the case of a XSS
attack. These payload footprints are fundamental, since
they are used to assess the success of the attack.

3.5 Attack Stage

In the attack stage, the web application is, once again, inter-
acted. However, this time it is a “malicious” interaction
since it consists of a collection of attack payloads in order to
exploit the vulnerabilities injected. The attack intends to
alter the SQL query sent to the database server of the web
application (for the case of SQLi attacks) or the HTML data
sent back to the user (for the case of XSS attacks).

The vulnerable source code files (from the vulnerabil-
ity injection stage) are applied to the web application,
one at a time. Once again the two probes for capturing
the HTTP and SQL communications are deployed and
the collection of attackloads is submitted to exploit the

vulnerabilities injected (Fig. 2). The interaction with the
web application is always done from the web client’s
point of view (the web browser) and the attackload is
applied to the input variables (the text fields, combo
boxes, etc., present in the webpage interface). At the end
of the attack, we assess if the attack was successful. The
detection of the success of the attack is done by searching
for the presence of the payload footprint in the interaction
data (HTTP or SQL communications) captured by the two
probes. The process is repeated until all the injected vul-
nerabilities have been attacked.

4 VULNERABILITY & ATTACK INJECTOR TOOL

To demonstrate the feasibility of the proposed attack injec-
tion methodology we developed a prototype tool: the Vul-
nerability & Attack Injector Tool (VAIT, available online at
https://github.com/JoseCarlosFonseca/Vulnerability-and-
Attack-Injector). For our research purposes the prototype
currently focuses on SQLi, as it is one of the most important
vulnerabilities of web applications today [3], [6]. Further-
more, SQLi is also responsible for some of the more severe
attacks in web applications [8], [32], [33] as, nowadays, the
most valuable asset of such applications is their back-end
database. For this reason, we have chosen to implement first
the SQLi type in our tool, although the XSS is quite similar
in the key aspects.

The VAIT prototype targets Linux, Apache, MySQL
and PHP web applications, which is currently one of the
most commonly used solution stack to develop web appli-
cations. Future improvements of the prototype may
include other attacks types (e.g., XSS) and application
technologies (e.g., Java).

The VAIT is an all-in-one application: it injects vulner-
abilities into the web application code and attacks them
in a seamlessly manner. As explained in the methodology
description, the process of attacking the web application
consists of (Fig. 8): the preparation stage, the vulnerability
injection stage, the attackload generation stage and the attack
stage. All this vulnerability and attack injection process is
done with minimum human intervention. The VAIT is
configured with the web application folder location. Then
the preparation stage is executed while the web applica-
tion is being interacted. At the end, the vulnerability
injection stage automatically generates the vulnerabilities,
followed by the attackload generation stage that gener-
ates the attack payloads. At this point, the attack stage
can be executed to attack the vulnerabilities, collect the
results and calculate the attack success.

During the preparation stage, the web application is
executed. This interaction can be made either manually,
by someone executing every web application procedure
that should be tested, or automatically using an external
tool, such as a web application crawler. During this interac-
tion, the VAIT monitors the HTTP communication
between the web browser and the web server and all

Fig. 6. The vulnerability injection stage.

Fig. 7. Fuzzer generated malicious variable value.

FONSECA ET AL.: EVALUATION OF WEB SECURITY MECHANISMS USING VULNERABILITY & ATTACK INJECTION 445

the SQL communications going to and from the database
server.

Monitoring is implemented using built-in proxies specifi-
cally developed for the HTTP and for the SQL communica-
tions. These proxies send a copy of the entire packet data
traversing them through the configured socket ports to the
HTTP Communication Analyzer and MySQL Communication
Analyzer components. Proxies run as independent processes
and threads, so they are relatively autonomous. To guaran-
tee synchronization with other components of the VAIT, a
Sync mechanism was also built-in (Fig. 8). The synchronism
is obtained by executing each web application interaction in
sequence without overlapping (i.e., without the common
use of simultaneous threads to speedup the process) and
gathering the precise time stamps of both the HTTP com-
munication and respective SQL query. As shown in Fig. 9,
the interaction starts with the client actor (the browser of
the user of the web application) sending one HTTP request
that may lead SQL query requests to be sent to the database
server. Next, the database server responds to the SQL query
requests and sends the response back to the web application
server. Finally, the application server sends the HTTP
response back to the client actor. When the HTTP and SQL
proxies capture these serialized operations they also register
their time stamps, which allows the Sync mechanism to
group this distributed set of actions into meaningful cause-
effect sequences (used to build the knowledge needed by
the operation of the VAIT).

The information gathered by both proxies contains the
structure of each webpage, the associated input varia-
bles, typical values and the associated SQL queries
where these variables are used. During this interaction,
the list of the web application files that are being run is
also sent to the integrated Vulnerability Injector as input
files. The vulnerability injector component is executed

for each one, delivering the respective group of files with
injected vulnerabilities.

Fig. 8 also shows the main components of the imple-
mentation of the vulnerability injection stage. It com-
prises components to search for included files, analyze
variables and finally inject vulnerabilities. The first com-
ponent is the Dependency Builder. It searches recursively
for the files that are included in the input file, which is the
target PHP file where we want to inject the vulnerabilities.
As in many other languages, in PHP programming, it is
common to include a generic file inside another file, for
reutilization purposes (this is done using one of the follow-
ing statements: include, include_once, require,

require_once [34]). During execution, the PHP inter-
preter processes the original file and its included files as a
single block of code. When searching for locations where
vulnerabilities may be injected, one should analyze the code
in the same way the PHP interpreter does, thus including
this dependency builder component.

The next component is the Variable Analyzer. Because
SQLi vulnerabilities rely on vulnerable variables that can
be exploited, we have to analyze all the variables that are
used to build SQL queries. This component gathers all the
PHP variables from the source code and builds a mesh of
dependencies related to each other. Then, it searches for
PHP variables present in SQL query strings. Using the
mesh created, the component is able to determine all the
variables that are indirectly responsible for the SQL query.
Both variables that are directly and indirectly responsible
for SQLi are considered as a valid target to inject a vulner-
ability. This is important as one variable may be used only
as input (POST or GET HTTP parameters) and the result
is passed to another variable that is the one that is in the
SQL query string. All the other variables are discarded.

The last component is the Vulnerability Injector. During
execution, every location where the selected variables are
found is tested with the conditions and restrictions of the
vulnerability operators defined in [17], filtering those that
are not applicable. The Vulnerability Operators, consisting
of a set of Location Pattern and Vulnerability Code Change
attributes, as explained in Section 3.3, are derived from the
detailed analysis of data presented in [16], which is partially
summarized in Table 1.

The vulnerability injector component uses the Vulnera-
bility Operator data and the result is the information
about the mutation that has to be made in the source code
in order to inject a particular vulnerability. Both the origi-
nal source code and the mutated code (vulnerability injec-
tion code) are stored in the internal database of the VAIT
for future consumption (e.g., during the execution of the
Attack Stage).

Each of the vulnerable variables must be attacked and
for that purpose, the Attackload Generator creates a

Fig. 8. VAIT architecture.

Fig. 9. Serialized sequence of actions processed by the Sync
mechanism.

446 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014

collection of malicious interactions, according to the char-
acteristics of the target variables. This attackload intends
to inject unwanted features in the queries sent to the data-
base, therefore performing SQLi. The collection of prede-
fined attackload strings are based on the basic attacks
presented in Table 2, but they can be extended covering
other cases, like those presented by [35] or derived from
field study data about real attacks [36]. Also, different
database management systems have their own peculiari-
ties on how they can be interacted and even different
implementations of the SQL language have specific charac-
teristics that can be exploited during a SQLi attack [37].

Every attack string is assigned to the vulnerable variable
trying to create some sort of text that can penetrate the
breach produced by the vulnerability injected (as shown
previously in Fig. 7). Some tweaks are done to the attack-
load strings, such as encode some parts using the URL
encoding function. The Attackload Footprint Generator com-
ponent builds the collection of attackload footprints so that
they have the data that is expected to be seen in the query, if
the attack is successful.

The Attack Stage receives the files with vulnerabilities and
the attackloads from the previous stage. All vulnerabilities
are then executed from the web user perspective, one by
one. To prevent bias from previous attacks, the web applica-
tion files are copied from a safe location before injecting a
vulnerability and the web application database is restored
from a clean backup made before the start of the whole pro-
cess. Using the generated attackload, the web application is
automatically attacked. While the attack is being performed,
the HTTP and SQL communications are monitored by the
respective proxies and results are analyzed and stored in
the attack injector tool internal database by the HTTP Com-
munication Analyzer and MySQL Communication Analyzer, as
explained before.

At the end it is necessary to verify if the attack was suc-
cessful or not. This is done by the Attack Success Detector
component. The attack is successful if, as a result of the
execution of the attackload, the structure of the SQL query
is altered [38]. This occurs when the attackload footprint is
present in the query in specific conditions. Cases where

the attackload footprint is placed inside a string variable
of the SQL query are not considered, because usually a
string can convey any combination of characters, numbers
and signs. In the other cases, if it is possible to alter the
structure of the query due to the attackload, then there is a
successful SQLi attack.

One final remark about the VAIT is that it does not
try to exploit the vulnerability in the sense of obtaining,
altering, deleting, etc., sensible information from the web
application database. It only tries to evaluate whether
some particular instance of the web application (depend-
ing on the vulnerability injected) is vulnerable to such
attacks or not. The VAIT also stores the SQL query string
executed during the attack and the specific vulnerability
exploited for later analysis. The output information given
by the VAIT is the most important outcome and is a fun-
damental piece of data for enterprises and security prac-
titioners. This data allows developers of the tool under
assessment to correct the weaknesses discovered during
the attack process. An example of an improvement of an
IDS for databases that resulted from the output of the
VAIT is presented in Section 6.2.

5 ATTACK INJECTION UTILIZATION SCENARIOS

We envisage the following two scenarios as the most rele-
vant utilizations of the proposed attack injection method-
ology and its VAIT tool:

1. Inline. The VAIT is executed while the security
assurance mechanisms under evaluation are also
being executed.

2. Offline. The VAIT is executed in advance to provide a
set of realistic vulnerabilities for later use.

5.1 Inline Scenario

In the inline scenario, the VAIT can be used to evaluate tools
and security assurance mechanisms, like IDS for databases,
web application IDS, web application firewalls and reverse
proxies. For example, when assessing an IDS for databases
(see Section 6.2 for a case study), the SQL probe should be
placed before the IDS, so that the IDS is located between the
SQL probe and the database (see Fig. 2 to locate the SQL
probe and the database). During the attack stage, when the
IDS inspects the SQL query sent to the database, the attack
injector tool also monitors the output of the IDS to identify
if the attack has been detected by the IDS or not. The entire
process is performed automatically, without human inter-
vention. The output of the VAIT also contains, in this case,
the logs of the IDS detection. By analyzing the attacks that
were not detected by the IDS, the security practitioner can
gather some insights on the IDS weaknesses and, possibly,
how the IDS could be improved. In addition to the case
study presented in Section 6.2, this procedure has already
been used to test five SQLi detection mechanisms [39].

5.2 Offline Scenario

In the offline scenario, the VAIT injects vulnerabilities into
the web application and attacks them to check if they can be
exploited or not. The outcome is the set of vulnerabilities
that can, effectively, be attacked. They can then be used in a

TABLE 2
Basic Attack Payload String Examples

FONSECA ET AL.: EVALUATION OF WEB SECURITY MECHANISMS USING VULNERABILITY & ATTACK INJECTION 447

variety of situations, such as: to provide a testbed to train
and evaluate security teams that are going to perform code
review or penetration testing, to test static code analyzers,
to estimate the number of vulnerabilities still present in the
code, to evaluate web application vulnerability scanners,
etc. It may also provide a ready to use testbed for web appli-
cation security tools that can be integrated into assessment
tools like the Moth [40] and projects like the Stanford Secu-
rity Bench [41], or in web applications installed in honey-
pots prepared to collect data about how hackers execute
their attacks. This gathers insights on how hackers operates,
what assets they want to attack and how they are using the
vulnerabilities to attack other parts of the system.

The offline scenario can also be applied to assess the qual-
ity of test cases developed for a given web application. For
example, assuming that the test cases cover all the applica-
tion functionalities in every situation, if the application code
is changed (via vulnerability injection), the test cases should
be able to discover that something is wrong. In situations
where the test cases are not able to detect the modification,
they should be improved and, maybe, the improvement can
even uncover other unknown faulty situations.

As an example, let us consider the assessment of web
application vulnerability scanners, used to test for security
problems in deployed web applications (see Section 6.3 for
a case study). These scanners perform black-box testing by
interacting with the web application from the point of view
of the attacker. In this scenario, the VAIT injects vulnerabil-
ities and attacks them to see those that can be successfully
attacked. These vulnerabilities are used, one by one, to
assess the detection capability of the web application vul-
nerability scanner. This procedure can be used to obtain the
percentage of vulnerabilities that the scanner cannot detect,
and what are the most difficult types to detect. In this typi-
cal offline setup, the vulnerabilities can be injected one at a
time (like in the case of vulnerability scanners) or multiple
vulnerabilities at once (for the case of training security
assurance teams, for example).

5.3 Attack Scenario Remarks

An attack can be considered successful if it leads to an
“error” [14]. Obviously, the consequences of the attack
(the “failure” and its severity) are dependent on the con-
crete situation, on what is compromised (credit card num-
bers, social security numbers, bank account information,
passwords, emails, etc.), on how it is compromised (infor-
mation disclosure, ability to alter the data or to insert
new data, etc.) and on how valuable is the compromised
asset (the value to the company, to the client from which
the information belongs, to the companies operating in
the same market, etc.) [10]. Although it is not a direct
goal of the attack injection methodology presented here it
can, however, provide important insights about security
related issues allowing further analysis to obtain data
about the consequences of the attack.

To avoid attacks, web application developers are cur-
rently reducing the number of error messages displayed to
the user. This does not prevent SQLi attacks, but makes it
harder to identify SQLi vulnerabilities using the black-box
approach. However, after the vulnerability is found it is as
easy to exploit as it was before. One consequence of this

trend is an extraordinary increase in the false-positive and
false-negative rates of black-box testing tools such as auto-
matic web application vulnerability scanners [42], [27]. This
also applies to other security mechanisms that use the same
methodology, like the SQLmap sponsored by the OWASP
project, for example [43]. The attack injection approach
described in this chapter is quite immune to this counter-
measure technique, because of the way the data used for the
analysis is obtained: through the use of probes placed in dif-
ferent layers of the web application setup and correlating
their data (e.g., HTTP and SQL interactions).

6 EXPERIMENTAL EVALUATION AND RESULTS

To demonstrate the proposed VAIT we conducted three
groups of experiments. In the first group, we injected vul-
nerabilities into three web applications to verify the quality
of the vulnerabilities injected and the attack performance. In
the second group, we tested an IDS for databases by using it
inline with the VAIT. The goal was to evaluate the efficiency
of the IDS in detecting the SQLi attacks performed by the
VAIT. In the final group of experiments, we evaluated two
top commercial web application vulnerability scanners
regarding the detection of vulnerabilities that may be
exploited by ad-hoc SQLi attacks.

For the evaluation experiments, we used Linux, Apache,
Mysql and PHP web applications. The server runs Linux
and the web server is Apache. This server hosts a PHP web
application that uses a Mysql database. This software topol-
ogy was chosen because it represents one of the most com-
mon technologies used to build custom web applications
nowadays.

Three web applications were used in the experiments.
The first is the groupware/content management system
TikiWiki [44], which builds wikis (websites allowing
users to contribute to them by adding and modifying
their contents). It is widely used for building sites, such
as the Official Firefox Support site and the KDE wiki. It
was one of the finalists of the sourceforge.net 2007 for
the most collaborative project award.

The second web application is the phpBB. It is a well-
known LAMP web application and it has become the most
widely used Open Source forum solution [45]. It is used by
millions of users worldwide and won the sourceforge.net
2007 community choice award for best project for communi-
cations. It is also the forum module that is integrated into
the phpNuke content management and portal web applica-
tion. For these two applications (TikiWiki and phpBB) we
bounded the attack surface only to the public sections, in
order to limit the quantity of data that we had to analyze.

Lastly, there is a custom publication management web
application called MyReferences. It was developed by a
computer science PhD student for the management of PDF
documents, and information about them such as the title,
the conference, the year of publication, the document type,
the relevance, and the authors. The information may be
edited, queried and displayed.

Overall, the public section of TikiWiki has three files
with 1,857 lines of code, phpBB has five files with 4,639
lines of code, whereas MyReferences has two files with
479 lines of code.

448 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014

6.1 Vulnerabilities and Attacks Injected

The goal of this experiment was to validate the ability
of the VAIT to inject vulnerabilities and also to exploit
them to attack web applications, automatically. Towards
this end, we wanted to know, on average, how many
lines of code are necessary to be able to inject a vulnera-
bility. Also, we wanted to know how many of those vul-
nerabilities can be successfully attacked. This gives a
measure of the quality of the vulnerabilities injected, as it
proves that they are indeed exploitable. Finally, we also
wanted to know the effort needed to attack them and the
success rate of these attacks. This gives a measure of the
quality of the attacks. Besides being used as a sanity
check of the VAIT, this data can also be used to help
improve it in the future.

In the preparation stage, the gathering of the informa-
tion about the web application pages and their links can
be done manually or using a web crawler. In order to
keep the same conditions for all the applications analyzed
all the tests were done using the same web crawler, the
one present in the Acunetix web vulnerability scanner.
There are several web crawlers available nowadays [46],
but only a few are able to insert values in the web applica-
tion fields, such as the WebSphinx. For this purpose, the
crawler presented in the WAVES framework can also be
used [47] or the crawlers built in the commercial web
application vulnerability scanners, which are usually very
good in performing this task of website exploration.

The results of the attack injection in the target web
applications are summarized in Table 3. The tool
took approximately 11 minutes in the attack stage of the
TikiWiki, 12 minutes in the phpBB and 4 minutes in the
MyReferences. The vulnerabilities injected represent all
the “Missing Function Call Extended” SQLi types that

can realistically be injected into the files used in the
experiments. As already stated, these vulnerabilities must
comply with a restrictive set of rules in order to be con-
sidered realistic [17]. On average, the tool injected one
vulnerability for every 129 lines of PHP code.

A collection of attackloads (see Table 2) was applied to
each vulnerability injected and 38 percent of these attacks
were successful. This measure of success comes from the
presence of the attackload footprint in the SQL queries sent
to the database.

We analyzed, one by one, each vulnerability injected that
was not successfully attacked, in order to understand the
reason why the attack was not successful. In five situations,
belonging to the edit_authors.php file of the MyRefer-
ences web application the vulnerability was injected by
removing an intval PHP function. By removing this func-
tion it is expected that the variable could be attacked inject-
ing string values, such as “or 1 ¼ 1”. However, the affected
variables are used inside strings formatted with the %d for-
mat, which also filters non-numeric variables. Therefore,
this string formatting gives another level of protection pre-
venting the attack to succeed through the supposedly vul-
nerable variable. In these situations, when the tool injects
one vulnerability (by removing the code responsible for the
sanitation of the variable) it leaves the other pieces of code
still preventing the variable from being exploited. Recall
that only a single vulnerability is injected at a time (even
when multiple vulnerabilities can be injected in the same
file). The reason is that we have no field study data support-
ing the realistic injection of more than one vulnerability at
the same time.

All the other situations where it was not possible
to attack the vulnerability, including the ones in tiki-

login.php of the TikiWiki web application, are the result

TABLE 3
Attack Injection Results of the Web Applications Analyzed

FONSECA ET AL.: EVALUATION OF WEB SECURITY MECHANISMS USING VULNERABILITY & ATTACK INJECTION 449

of a simplification in the prototype of the VAIT. This occurs
when two variables with the same name are used in the
same PHP file, although they are used in different blocks of
code (they have a different scope). The VAIT can be tricked
by this situation and, therefore, may try to inject a vulnera-
bility in a place that has no relation with the right variable.
In this case, the change in the code has no effect on the way
the SQL query is built and, therefore, it is not an injection of
a vulnerability. In the particular case tested, the problem
was the use of a variable in a query and the use of an unre-
lated variable with the same name in a GET parameter of a
HTML form. They are not related to each other as their
scope of action is disjoint. This issue should be solved with
the help of an improved PHP parser built into the VAIT.

The vulnerabilities that could not be attacked represent
only 20 percent of all the vulnerabilities injected. Except
for the particular cases explained before, the results show
that the tool is effective in providing a sufficient number
of realistic vulnerabilities in a web application and that
these vulnerabilities can be successfully attacked. Further-
more, the output of some vulnerabilities that cannot be
attacked is not a limitation of the methodology itself, but
of simplifications of the variable analyzer component of
the VAIT when evaluating the scope of PHP variables.
However, most of these situations are going to be
addressed by a new version of the PHP parser that is cur-
rently under development.

6.2 Case Study 1: IDS Evaluation

One possible use for the VAIT is the inline evaluation of
security counter measures, such as an IDS for databases. An
IDS is a very interesting tool, because it can defend the

database from within, coping with new exploitation techni-
ques that many times provide new means to overcome
perimeter counter measures. In this case study, the IDS
must be integrated with the VAIT, because the IDS output
must be closely monitored during the attack stage.

From the previous experiment (Section 6.1) we know
that the vulnerabilities injected can be successfully
attacked. To evaluate the IDS we wanted to know its abil-
ity to detect the attacks to these vulnerabilities. This is
done not only by obtaining the ratio of attacks detected
(and not detected) by the IDS, but also by the false posi-
tives (false alarms). Both metrics are very important to
characterize the IDS as they give a degree of assurance of
what is expected to be detected (from the detection ratio)
and the manual workload effort to do the screening pro-
cess of all the alarms (from the false positive ratio). With
the missing attacks and false alarms data we also wanted
to know if the VAIT is able to provide enough informa-
tion to help the developers to improve the IDS.

For this case study, we used an IDS for databases [48]. It
can deal with Oracle and MySQL databases, but we only
used the latter. This IDS implements an anomaly detection
approach and includes a learning phase and a detection
phase. Before initiating the attack injection, the IDS is
trained with the target web application using the web
crawler to execute the web application functions. After the
training phase of the IDS, the VAIT is configured to operate
together with the IDS and monitor its output.

The results of these experiments, for the three target web
applications, are shown in Table 4. They show that the IDS
was able to detect 99 percent of the attacks injected and
missed only five of them (difference between the successful
attacks and the attacks detected by the IDS). It also shows

TABLE 4
Evaluation Results of the IDS

450 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014

that, allied to the high detection rate of the IDS, there is also
a high false positive rate.

The VAIT not only collects the results shown in Table 4,
but it also gives all the details of the attacks, like the exact
HTTP attack code, the target variable, the attackload used,
the query sent to the database, etc. With all this information,
developers and security practitioners can improve their
security mechanisms and procedures. After this experi-
ment, we analyzed why the IDS was unable to correctly
detect all the attacks. Using the data collected by the VAIT
we could replay these attacks while debugging the IDS. For
example, this helped locate a defective function of the IDS,
responsible for cleaning the SQL commands. There was one
particular situation when processing the query structure
that was not covered correctly, missing converting TAB
characters to SPACE characters. Thanks to the VAIT, the
bug is now fixed and this shows how the VAIT can also be
used to improve security mechanisms. After fixing this bug,
the IDS was able to detect all the attacks, although still pro-
viding some false positive values. These may be related to
an insufficient learning period so, to be able to detect all
good interactions as they are, the IDS must be trained for a
longer period, until all the profiles are fully learned.

This experiment highlights the need to test security
mechanisms considering realistic scenarios, which is one
of the advantages of the VAIT. Further assessment of
several SQL detection tools was already done using the
proposed VAIT [39]. Some of the tools are widely used,
like Apache Scalp, Snort or GreenSQL and others are
from academia research, like the ACD Monitor and the
IDS used in this case study. The results of the experi-
ments highlighted the overall difficulty of these tools in
detecting the attacks with a reasonable false positive rate
(see [39] for details).

6.3 Case Study 2: Web Application Vulnerability
Scanners Evaluation

In this case study, we evaluated another type of security
tool: web application vulnerability scanners. These scanners
are commercial tools used to audit the web application secu-
rity from the point of view of the attacker as they try to pen-
etrate the web application as a black-box (without accessing
the source code). The scanners provide an easy and auto-
matic way to search for vulnerabilities, avoiding the repeti-
tive and tedious task of doing hundreds or even thousands
of tests by hand for each vulnerability type. They can assess
a myriad of security aspects such as XSS, SQLi, path tra-
versal, file disclosure, web server vulnerabilities, etc. They
use signatures of identified attacks of known web applica-
tions (and web application versions), but they can also test
for ad-hoc XSS and SQLi vulnerabilities. In this study we
used the HP WebInspect 7.7 (WebInspect) [49] and the IBM
Watchfire AppScan 7.0 (AppScan) [50] commercial web
scanners to test their ability to discover unreported SQLi
vulnerabilities.

For the experiments with the scanners we wanted to
know the percentage of vulnerabilities that they are able
to detect. We also wanted to assess the relationship
between the vulnerabilities detected by each scanner (to
see if they are complementary to each other or if they are
similar and detect the same set vulnerabilities). This data

can be used not only to compare the scanners but also to
help deciding if several scanners should be used, or if a
manual analysis should also be performed, before deploy-
ing a web application.

The experiments are different from the ones conducted
for the IDS. In this case, the VAIT is executed in advance
(offline) for the three target web applications in order to
identify the collection of vulnerabilities that could be
attacked successfully. Then, for each vulnerability (one at
a time), the web applications were tested with each scan-
ner (also one at a time) and the results collected. Before
running each scanner, the web application database was
restored to prevent bias from previous experiments.

The complete results of the tests are detailed in Table 5.
The number of SQLi vulnerabilities detected by the scanners
is minimal. In fact, they were able to detect only 9 percent
(WebInspect) and 7 percent (AppScan) of the vulnerabilities
injected. The main reason for these poor results is that scan-
ners heavily rely on the output of the web application (the
HTML data the web browser receives from the web server)
to detect vulnerabilities. However, the way web applica-
tions are built nowadays, hiding most of the error messages,
make the task of identifying this type of vulnerabilities
really difficult for black-box scanners. As a result, it is clear
that the output of these scanners, when used to assess the
security of an ad-hoc web application, cannot be the sole
source used to assess the web application for vulnerabilities.

When collecting this data we also observed that there
was only one vulnerability detected simultaneously by
both scanners. All the others were only detected by a sin-
gle scanner. The conclusion that different scanners find
different vulnerabilities is confirmed by the results from
other studies [27], so whenever possible several tools
should be used simultaneously.

To improve the detection rate of SQLi, the scanners
could use an approach similar to the one used by the
VAIT: use a probe in the SQL communication path to
gather data that can be sent back to the tool for analysis. In
fact, an analogous scanning procedure that searches for an
extensive collection of web application vulnerabilities is
used by the AcuSensor technology from Acunetix [51].

7 CONCLUSION

This paper proposed a novel methodology to automatically
inject realistic attacks in web applications. This methodol-
ogy consists of analyzing the web application and generat-
ing a set of potential vulnerabilities. Each vulnerability is
then injected and various attacks are mounted over each
one. The success of each attack is automatically assessed
and reported.

The realism of the vulnerabilities injected derives from
the use of the results of a large field study on real security
vulnerabilities in widely used web applications. This is, in
fact, a key aspect of the methodology, because it intends to
attack true to life vulnerabilities. To broaden the boundaries
of the methodology, we can use up to date field data on a
wider range of vulnerabilities and also on a wider range
and variety of web applications.

To demonstrate the feasibility of the methodology, we
developed a tool that automates the whole process: the

FONSECA ET AL.: EVALUATION OF WEB SECURITY MECHANISMS USING VULNERABILITY & ATTACK INJECTION 451

VAIT. Although it is only a prototype, it highlights and
overcomes implementation specific issues. It emphasized
the need to match the results of the dynamic analysis
and the static analysis of the web application and the
need to synchronize the outputs of the HTTP and SQL
probes, which can be executed as independent processes
and in different computers. All these results must pro-
duce a single analysis log containing both the input and
the output interaction results. The VAIT prototype
focused on the most important fault type, the MFCE
(vulnerabilities caused by a missing function protecting
a variable), generating SQLi vulnerabilities. Although
this fault type represents the large majority of all the
faults classified in the field study and can be considered
representative, other fault types can also be imple-
mented, namely those that come next concerning their
relevance.

The experiments have shown that the proposed meth-
odology can effectively be used to evaluate security
mechanisms like the IDS, providing at the same time
indications of what could be improved. By injecting vul-
nerabilities and attacking them automatically the VAIT
could find weaknesses in the IDS. These results were
very important in developing bug fixes (that are already
applied to the IDS software helping in delivering a better
product). The VAIT was also used to evaluate two com-
mercial and widely used web application vulnerability
scanners, concerning their ability to detect SQLi vulner-
abilities in web applications. These scanners were unable
to detect most of the vulnerabilities injected, in spite of
the fact that some of them seemed to easily be probed
and confirmed by the scanners. The results clearly show

that there is room for improvement in the SQLi detection
capabilities of these scanners.

ACKNOWLEDGMENTS

This work was partially supported by the project “ICIS -
Intelligent Computing in the Internet of Services” (CEN-
TRO-07-ST24-FEDER-002003), co-financed by QREN, in the
scope of the Mais Centro Program and European Union’s
FEDER, and by the project PEst-OE/EGE/UI4056/2014,
financed by the Science and Technology Foundation.

REFERENCES

[1] USA, “Sarbanes-Oxley Act,” 2002.
[2] Payment Card Industry (PCI) Data Security Standard, PCI Security

Standards Council, 2010.
[3] S. Christey and R. Martin, “Vulnerability Type Distributions in

CVE,” Mitre Report, May 2007.
[4] S. Zanero, L. Carettoni, and M. Zanchetta, “Automatic Detection

of Web Application Security Flaws,” Black Hat Briefings, 2005.
[5] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise Alias Analysis for

Static Detection of Web Application Vulnerabilities,” Proc. IEEE
Symp. Security Privacy, 2006.

[6] J. Williams and D. Wichers, “OWASP Top 10,” OWASP Founda-
tion, Feb. 2013.

[7] IBM Global Technology Services “IBM Internet Security Systems
X-Force 2012 Trend & Risk Report,” IBM Corp., Mar. 2013.

[8] Verizon “2011 Data Breach Investigations Report,” 2011.
[9] The Privacy Rights Clearinghousewww.privacyrights.org/data-

breach, Accessed 1 May 2013, Apr. 2012.
[10] M. Fossi, et al., “Symantec Internet Security Threat Report: Trends

for 2010,” Symantec Enterprise Security, 2011.
[11] M. Fossi, et al., “Symantec Report on the Underground Economy,

Symantec Security Response,” 2008.
[12] R. Richardson and S. Peters, “2010/2011 CSI Computer Crime &

Security Survey,” Computer Security Inst., 2011.

TABLE 5
Overall Results of the Web Application Vulnerability Scanners

452 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014

[13] D. Avresky, J. Arlat, J.C. Laprie, and Y. Crouzet, “Fault Injection
for Formal Testing of Fault Tolerance,” IEEE Trans. Reliability,
vol. 45, no. 3, pp. 443-455, Sept. 1996.

[14] D. Powell and R. Stroud, “Conceptual Model and Architecture of
MAFTIA,” Project MAFTIA, Deliverable D21, 2003.

[15] V. Krsul, “Software Vulnerability Analysis,” PhD thesis, Purdue
Univ., West Lafayette, IN 1998.

[16] J. Fonseca and M. Vieira, “Mapping Software Faults with Web
Security Vulnerabilities,” Proc. IEEE/IFIP Int’l. Conf. Dependable
Systems and Networks, June 2008.

[17] J. Fonseca, M. Vieira, and H. Madeira, “Training Security Assur-
ance Teams using Vulnerability Injection,” Proc. IEEE Pacific Rim
Dependable Computing Conf., Dec. 2008.

[18] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
Injection and Dependability Evaluation of Fault-Tolerant Sys-
tems,” IEEE Trans. Computers, vol. 42, no. 8, pp. 913-923, Aug.
1993.

[19] R. Iyer, “Experimental Evaluation,” Proc. IEEE Symp. Fault Toler-
ant Computing, pp. 115-132, Special Issue FTCS-25 Silver Jubilee,
1995.

[20] J. Carreira, H. Madeira, and J.G. Silva, “Xception: Software Fault
Injection and Monitoring in Processor Functional Units,” IEEE
Trans. Software Eng., vol. 24, no. 2, Feb. 1998.

[21] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R.K. Iyer,
“NFTAPE: A Framework for Assessing Dependability in Distrib-
uted Systems with Lightweight Fault Injectors,” Proc. Computer
Performance and Dependability Symp., 2000.

[22] J. Christmansson and R. Chillarege, “Generation of an Error Set
that Emulates Software Faults,” Proc. IEEE Fault Tolerant Comput-
ing Symp., 1996.

[23] H Madeira, M. Vieira, and D. Costa, “On the Emulation of Soft-
ware Faults by Software Fault Injection,” Proc. IEEE/IFIP Int‘l
Conf. Dependable System and Networks, 2000.

[24] J. Dur~aes and H. Madeira, “Emulation of Software Faults: A Field
Data Study and a Practical Approach,” IEEE Trans. Software Eng.,
vol. 32, no. 11, pp. 849-867, Nov. 2006.

[25] N. Neves, J. Antunes, M. Correia, P. Ver�ıssimo, and R. Neves,
“Using Attack Injection to Discover New Vulnerabilities,” Proc.
IEEE/IFIP Int’l Conf. Dependable Systems and Networks, 2006.

[26] J. Fonseca, M. Vieira, and H. Madeira, “Testing and Comparing
Web Vulnerability Scanning Tools for SQLi and XSS Attacks,”
Proc. IEEE Pacific Rim Int’l Symp. Dependable Computing, Dec. 2007.

[27] Ananta Security “Web Vulnerability Scanners Comparison,”
anantasec.blogspot.com/2009/01/web-vulnerability-scanners-
comparison.html, accessed 1 May 2013, 2009.

[28] M. Buchler, J. Oudinet, and A. Pretschner, “Semi-Automatic Secu-
rity Testing of Web Applications from a Secure Model,” Proc. Int’l
Conf. Software Security and Reliability, 2012.

[29] cgisecurity.net, www.cgisecurity.com/articles/csrf-faq.shtml#
whatis, Dec. 2008.

[30] Sam NG. CISA, CISSP. SQLBlock.com, www.owasp.org/images/
7/7 d/Advanced_Topics_on_SQL_Injection_Protection.ppt, 2006.

[31] S. McConnell, “Gauging Software Readiness with Defect
Tracking,” IEEE Software, vol. 14, no. 3, May/June 1997.

[32] SANS Institute isc.sans.org/diary.html?storyid¼3823, accessed 1
May 2013, Jan. 2008.

[33] NTA, www.nta-monitor.com/posts/2011/03/01-tests_show_
rise_in_number_of_vulnerabilities_affecting_web_applications_
with_sql_injection_and_xss_most_common_flaws.html,Mar. 2011.

[34] The PHP Group pt.php.net, accessed 1 May 2013, Dec. 2007.
[35] W. Halfond, J. Viegas, and A. Orso, “A Classification of SQLi

Attacks and Countermeasures,” Proc. Int‘l Symp. Secure Software
Eng., 2006.

[36] J. Fonseca, M. Vieira, and H. Madeira, “The Web Attacker Per-
spective-A Field Study,” Proc. IEEE Int’l. Symp. Software Reliability
Eng., Nov. 2010.

[37] pentestmonkey.net/cheat-sheets, accessed 1 May 2013, pentest-
monkey.net, 2009.

[38] G. Buehrer, B. Weide, and P. Sivilotti, “Using Parse Tree Valida-
tion to Prevent SQLi Attacks,” Proc. Int’l Workshop Software Eng.
and Middleware, 2005.

[39] I. Elia, J. Fonseca, and M. Vieira, “Comparing SQLi Detection
Tools Using Attack Injection: An Experimental Study,” Proc. IEEE
Int’l Symp. Software Reliability Eng., Nov. 2010.

[40] A. Riancho, “Moth, Bonsai-Information Security,” www.bonsai-
sec.com/en/research/moth.php, accessed 1 May 2013, 2009.

[41] B. Livshits, “Stanford SecuriBench,” suif.stanford.edu/�livshits/
securibench, Accessed 1 May 2013, 2005.

[42] J. Grossman, “SQLi, Eye of the Storm,” The Security J., vol. 26,
pp. 7-10, 2009.

[43] B. Damele, “Sqlmap: Automatic SQLi Tool,” sqlmap.sourceforge.
net, Accessed 1 May 2013, 2009.

[44] TikiWiki, tikiwiki.org, Accessed 1 May 2013, Dec. 2008.
[45] phpBB, www.phpbb.com, accessed 1 May 2013, Dec. 2008.
[46] Java-source.net, 2008, java-source.net/open-source/crawlers,

Accessed 1 May 2013.
[47] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web Appli-

cation Security Assessment by Fault Injection and Behavior Mon-
itoring,” Proc. Int’l Conf. World Wide Web, pp. 148-159, 2003.

[48] J. Fonseca, M. Vieira, and H. Madeira, “Detecting Malicious SQL,”
Proc. Conf. Trust, Privacy & Security in Digital Business, Sept. 2007.

[49] HP, download.hpsmartupdate.com/webinspect, Accessed 1 May
2013, Sept. 2013.

[50] IBM, www-03.ibm.com/software/products/us/en/appscan,
Accessed 1 May 2013, Sept. 2013.

[51] Acunetix “Finding The Right Web Application Scanner; Why
Black Box Scanning Is Not Enough,” www.acunetix.com/
websitesecurity/rightwvs.htm, Accessed 1 May 2013, 2009.

Jos�e Fonseca received the PhD degree in
informatics engineering from the University of
Coimbra in 2011. Since 2005, he has been
with the CISUC as a researcher. He teaches
computer related courses in the Polytechnic
Institute of Guarda since 1993. He is the author
or coauthor of more than 20 papers in refereed
conferences and journals. His research on vul-
nerability and attack injection was granted with
the DSN’s William Carter Award of 2009, spon-
sored by the IEEE Technical Committee on

Fault-Tolerant Computing (TC-FTC) and IFIP Working Group on
Dependable Computing and Fault Tolerance (WG 10.4).

Marco Vieira is an assistant professor at the Uni-
versity of Coimbra, Portugal. He is an expert on
dependability benchmarking and his research
interests also include experimental dependability
evaluation, fault injection, security benchmarking,
software development processes, and software
quality assurance, subjects in which he has auth-
ored or coauthored more than 100 papers in
refereed conferences and journals. He has par-
ticipated in many research projects, both at the
national and European level. Marco Vieira has

served on program committees of the major conferences of the depend-
ability area and acted as referee for many international conferences and
journals in the dependability and databases areas.

Henrique Madeira is a full professor at the Uni-
versity of Coimbra, where he has been involved
in the research on dependable computing since
1987. He has authored or coauthored more than
150 papers in refereed conferences and journals
and has coordinated or participated in tens of
projects funded by the Portuguese government
and by the European Union. He was the Program
co-chair of the International Performance and
Dependability Symposium track of the IEEE/IFIP
International Conference on Dependable Sys-

tems and Networks, DSN-PDS2004 and was appointed Conference
Coordinator of IEEE/IFIP DSN 2008.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FONSECA ET AL.: EVALUATION OF WEB SECURITY MECHANISMS USING VULNERABILITY & ATTACK INJECTION 453

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

