
Analysis of Field Data on
Web Security Vulnerabilities

José Fonseca, Nuno Seixas, Marco Vieira, and Henrique Madeira

Abstract—Most web applications have critical bugs (faults) affecting their security, which makes them vulnerable to attacks by

hackers and organized crime. To prevent these security problems from occurring it is of utmost importance to understand the typical

software faults. This paper contributes to this body of knowledge by presenting a field study on two of the most widely spread and

critical web application vulnerabilities: SQL Injection and XSS. It analyzes the source code of security patches of widely used web

applications written in weak and strong typed languages. Results show that only a small subset of software fault types, affecting a

restricted collection of statements, is related to security. To understand how these vulnerabilities are really exploited by hackers, this

paper also presents an analysis of the source code of the scripts used to attack them. The outcomes of this study can be used to train

software developers and code inspectors in the detection of such faults and are also the foundation for the research of realistic

vulnerability and attack injectors that can be used to assess security mechanisms, such as intrusion detection systems, vulnerability

scanners, and static code analyzers.

Index Terms—Security, Internet applications, languages, review and evaluation

Ç

1 INTRODUCTION

MOST information systems and business applications
built nowadays have a web front end and they need

to be universally available to clients, employees, and
partners around the world, as the digital economy is
becoming more and more prevalent in the global economy.
These web applications, which can be accessed from
anywhere, become so widely exposed that any existing
security vulnerability will most probably be uncovered and
exploited by hackers.

In the context of the present work, we use the

terminology introduced by Avizienis et al. [4] that considers

an error as a “deviation of an external state of the system from

the correct service state,” a fault as “the adjudged or hypothesized

cause of an error,” a vulnerability an “internal fault that enables

an external fault to harm the system,” and an attack as a

“malicious external fault.”
The security of web applications becomes a major

concern and it is receiving more and more attention from

governments, corporations, and the research community

[7], [13], [25], [52], [56]. Attackers also followed the move

to the web and as such more than half of current

computer security threats and vulnerabilities affect web

applications [24]. Not surprisingly, the number of reported

attacks that exploit web application vulnerabilities is

increasing [19]. In fact, numerous data breach attacks are

frequently reported due to web application security
problems [31], [36], [43], [45], [53].1

Given the preponderant role of web applications in
many organizations, one can realize the importance of
finding ways to reduce the number of vulnerabilities. This
can be helped with a deeper knowledge on software faults
behind such vulnerabilities [16], [21], [23], [49]; however,
this is a vast field and there is still a lot of work to be done,
like the one presented by Scholte et al. [46].

This paper contributes to fill this gap by presenting a
study on characteristics of source code defects generating
major web application vulnerabilities. The main research
goal is to understand the typical software faults that are
behind the majority of web application vulnerabilities,
taking into account different programming languages. To
understand the relevance of these kinds of vulnerabilities
for the attackers, the paper also analyzes the code used to
exploit them.

Regarding the programming language perspective, we
considered some of the most relevant in the context of web
applications. First, we focused on the most widely used
weak typed language, PHP. Then, we analyzed strong
typed languages, namely Java, C#, and VB. Recall that our
goal is not to analyze each programming language in what
concerns their ability to prevent security vulnerabilities, but
to analyze the vulnerabilities and their relation with some
language characteristics, like the type system.

The vulnerabilities analyzed in our field study were
cross-site scripting (XSS) and SQL injection (SQLi), as these
are two of the most common and critical vulnerabilities
found in web applications [31], [36]. To characterize the
types of software faults that are most likely to create these
vulnerabilities, we classified the pieces of code used to fix

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014 89

. J. Fonseca is with the Research Unit for Inland Development, Institute
Polytechnic of Guarda and the Centre for Informatics and Systems,
University of Coimbra. E-mail: josefonseca@ipg.pt.

. N. Seixas, M. Vieira, and H. Madeira are with the Centre of Informatics
and Systems, University of Coimbra.
E-mail: {naseixas, mvieira, henrique}@dei.uc.pt.

Manuscript received 3 June 2013; revised 3 June 2013; accepted 22 Aug. 2013;
published online 5 Sept. 2013.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2013-01-0014.
Digital Object Identifier no. 10.1109/TDSC.2013.37.

1. The most relevant vulnerabilities are known for many years; however,
they are still proliferating, in spite of the development of tools that help
automate their mitigation (e.g., Java Pathfinder [27]). In fact, the knowledge
about them and how they are created is still insufficient.

1545-5971/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

them in a set of real web applications. Each patch was
inspected in depth to gather the precise characteristics of
the code that was responsible for the security problem and
classified them according to an adaptation of the orthogonal
defect classification (ODC) [6], [8].

The proposed methodology allows gathering the infor-
mation on common mistakes that developers should avoid.
This knowledge is helpful for training [17], and it is crucial
for the specification of guidelines for security code
reviewers, for the evaluation of penetration testing tools,
as well as for the creation of safer internal policies for
programming practices, among others. It can also be used to
build a realistic attack injector [18]. In our study, we
observed that not every vulnerability is equally important
for an attacker, and when not all vulnerabilities can be fixed
in due time, these data may be used to select those that
should be addressed first, for example.

The structure of the paper is as follows. Section 2
discusses related work. Section 3 presents some background
on security vulnerabilities and web programming lan-
guages. Section 4 details the classification of software faults,
the data sources (for web applications and patches), and the
process followed to analyze and classify the patch of each
vulnerability. Section 5 discusses the results of the field
study, and Section 6 presents a detailed vulnerability
analysis. Section 7 presents another study, but on the
exploits developed to attack web applications. Section 8
discusses the threats to validity. Finally, Section 9 concludes
the paper and suggests future work.

2 RELATED WORK

It is unfeasible to produce complex applications without
defects, and even when this occurs, it is impossible to know
it, prove it, and repeat it systematically [22]. Software
developers cannot assure code scalability and sustainability
with quality and security, even when security is defined
from the ground up [20].

One of the aspects that contribute to security problems

seems to be related to how bad different programming

languages are in terms of propensity for mistakes. Clowes [9]

discussed common security problems related to the easiness

in programming with PHP and its features, but this affects

many other programming languages. The choice of the type

system (strong or weak) and the type checking (static or

dynamic) of the programming language also affects the

robustness of the software. For example, a strong typed

language with a static type checking can help deliver a safer

application without affecting its performance [51]. Scholte et

al. [46] presented an empirical study on a large set of input

validation vulnerabilities developed in six programming

languages. However, that work focused on the relationship

between the specific programming language used and the

vulnerabilities that are commonly reported, not going into

details in what concerns the typical software faults that

originate vulnerabilities, like we do in the present work.
One of the best practices to find software faults is to

perform a static analysis to the code [27]. This is a labor-
intensive job, usually done with automated tools, although
they lack the precision of the manual counterpart. To

improve them and to help predict software failures, a new
defect classification scheme was proposed [32]. Another
research work proposed a security resources indicator that
seems to be strongly correlated with change in vulnerability
density over time [54].

Web application vulnerabilities have been addressed by
recent studies from several points of view, but without any
code analysis [3], [7], [31], [36], [54]. To overcome the low
level of detail of existing vulnerability databases, some
researchers proposed approaches based on the market,
instead of on software engineering [37].

The attacker’s perspective has also been of some focus in
the literature [9], [16], [23], [30], but mainly through
empirical data gathered by the authors highlighting social
networking and what could be obtained from attacking
specific vulnerabilities. Some studies analyzed the attacks
from the victim’s perspective, including the proposal of a
taxonomy to classify attacks based on their similarities [2]
and the analysis of attack traces from HoneyPots to separate
the attack types [12]. There is, however, a lack of knowledge
about existing exploits and their correlation with the
vulnerabilities.

To improve software quality, developers need a deeper
knowledge about the software faults that must be mitigated.
The underlying idea is that knowing the root cause of
software defects helps removing their source, therefore
contributing to the quality improvement [29]. Researchers
at IBM developed a classification scheme of software faults,
intended to improve the software design process and,
consequently, reduce the number of faults [6], [8]. It is the
ODC and it is typically used to classify software faults or
defects after they have been fixed and it is also broadly used
by the industry and researchers outside IBM [32].

3 VULNERABILITIES AND PROGRAMMING

LANGUAGES

The Open Web Application Security Project Report listed
the 10 most critical web application security risks, having
SQLi at the top, followed by XSS [36]. Other studies also
found XSS and SQLi as the most prevalent vulnerabilities
[1], [24], [34], [54]. Fig. 1 depicts the yearly percentage of
disclosed XSS and SQLi among all the causes of web
application vulnerabilities showing that they are increasing
over time [33].

SQLi attacks take advantage of unchecked input fields in
the web application interface to maliciously tweak the SQL
query sent to the back-end database. By exploiting an

90 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 1. Evolution of disclosed reports of SQLi and XSS causes of
vulnerabilities [33].

XSS vulnerability, the attacker is able to inject into web
pages unintended client-side script code, usually HTML
and Javascript. SQLi and XSS allow attackers to access
unauthorized data (read, insert, change, or delete), gain
access to privileged database accounts, impersonate other
users (such as the administrator), mimic web applications,
deface web pages, view, and manipulate remote files on the
server, inject and execute server side programs that allow
the creation of botnets controlled by the attacker, and so on.
Details on the most common vulnerabilities, including SQLi
and XSS, along with the reasons of their existence, attacks,
best practices to avoid, detect, and mitigate them can be
found in many referenced works, such as [23], [36], [49].

Many programming languages are currently used to
develop web applications. Ranging from proprietary
languages (e.g., C#, VB) to open source languages (e.g.,
PHP, CGI, Perl, Java), the spectrum of languages available
for web development is immense.

Programming languages can be classified using taxo-
nomies, such as the programming paradigm, the type
system, the execution mode, and so on. The type system,
particularly important in the context of the present work,
specifies how data types and data structures are managed
and constructed by the language, namely how the language
maps values and expressions into types, how it manipulates
these types, and how these types correlate. Regarding the
type system, they can be typed versus untyped, static
versus dynamic typed, and weak versus strong typed [51].
In particular, strong typed languages provide the means to
produce more robust software, since a value of one type
cannot be treated as another type (e.g., a string cannot be
treated as a number), as in weak typed languages.

One of the contributions of this work is to help
understanding the impact of the type system in the security
of web applications. This is of particular significance, as
critical security vulnerabilities like XSS and SQLi are
strongly related to the way the language manages data
types [36]. For example, it is common to find attacks that
inject SQL code by taking advantage of variables that
supposedly should not be strings (e.g., numbers, dates) as
the type of the variable is determined based on the assigned
value. On the other hand, in strong typed languages, this is
not possible because the type of variables is determined
before runtime and the attempt to store a string in a variable
of another type raises an error. However, this does not
prevent the occurrence of vulnerabilities in strong typed
languages, but only by taking advantage of string variables.
In fact, although Java is intrinsically a safe programming
language [5] and it is a strong typed language, vulnerabil-
ities can be found in Java programs due to implementation
faults [28].

4 SECURITY PATCH FIELD STUDY METHODOLOGY

This section presents the methodology to obtain and classify
the source code and the security patches of the web
applications of our field study.

4.1 Web Applications Analyzed

One mandatory condition of our field study is the ability
to analyze the source code of current and previous
versions of the target web applications, together with the
associated security patches. Therefore, we restricted our

search to open source web applications. We also decided
to choose only web applications with a large number of
downloads or installations, and we also preferred award-
winning web applications.

These restrictions are aimed to allow only web applica-
tions relevant to a wide range of users and, wherever
possible, with a higher quality granted by the awards.
Although this does not guarantee generalization of results,
it still shows how mainstream web applications are in
relation to security. Under these conditions, we have chosen
the most relevant applications we could manually analyze,
given the resources at our disposal.

Because PHP is the most widely used language present in
web applications, we used it for the weak typed program-
ming language study. Due to time constraints, other
programming languages like PERL could not be considered.
Given the high number of security problems found, we
only used six web applications (see Table 1): PHP-Nuke
(phpnuke.org), Drupal (drupal.org), PHP-Fusion (php-
fusion.co.uk), WordPress (wordpress.org), phpMyAdmin
(phpmyadmin.net), and phpBB (phpbb.com).

Drupal, PHP-Fusion, and phpBB are web Content
Management Systems (CMS). Drupal won first place at the
2007 Open Source CMS Award [39]. PHP-Fusion was one of
the five overall award winner finalists at the 2007 Open
Source CMS Award [39]. Finally, phpBB is the most widely
used Open Source forum solution and it was the winner
of the 2007 Sourceforge Community Choice Awards for
Best Project for Communications [48]. PHP-Nuke is a well-
known web-based news automation system built as a
community portal and it has been downloaded over 8 million
times from the official site [41]. WordPress is reportedly the
most widely used personal blog publishing platform with
millions of users. phpMyAdmin is a web-based MySQL
administration tool. It is included in many Linux distribu-
tions, it is available in 47 languages, and it was the winner of
the 2007 Sourceforge Community Choice Awards for Best
Tool or Utility for SysAdmins [48].

For the strong typed programming languages, for which
we found less security problems, we used 11 web
applications developed in Java, C#, and VB (see Table 2):
JForum (jforum.net), OpenCMS (opencms.org), BlojSom
(sourceforge.net/projects/blojsom), Roller WebLogger
(rollerweblogger.org), JSPWiki (jspwiki.org), SubText

FONSECA ET AL.: ANALYSIS OF FIELD DATA ON WEB SECURITY VULNERABILITIES 91

TABLE 1
Versions of Weak Typed (PHP) Apps

(subtextproject.com), Dot-NetNuke (dotnetnuke.com),
YetAnotherForum (yetanotherforum.net), BugTracker.NET
(ifdefined.com/bugtrackernet.html), Deki Wiki (developer.
mindtouch.com), and ScrewTurn Wiki (screwturn.eu).

JForum and YetAnotherForum are discussion board
system forums. OpenCMS is a web CMS with a large
community of users and has six books published about
it. BlojSom, Roller WebLogger, and SubText are blog software
packages. Roller WebLogger drives important blogs such as
blogs.sun.com, blog.usa.gov, IBM Lotus Connections, and
IBM Developer Works blogs. JSPWiki, Deki Wiki, and
ScrewTurn Wiki are Wiki engines used by many commu-
nities and organizations. JSPWiki is well known and used by
enterprises such as Recursa, IBM, Shopping.com, and Oxford
University SPIE Project. Dot-NetNuke is a web application
framework for creating interactive web sites and has a
community of over 440,000 users. BugTracker.NET is a web-
based customer support issue tracker.

4.2 Classification of Software Faults from the
Security Vulnerability Point of View

After choosing a web application, we searched the web for
all reported SQLi and XSS patches that were classified
based on the work presented in [15]. This classification
is derived from the code defect types (assignment,
checking, interface, and algorithm) of the ODC software
fault types [6], [8]. As ODC fault types are still too
broad [15], we detailed them according to the nature of
the defect: missing construct, wrong construct, and extra-
neous construct.

All the security vulnerabilities collected could be
classified using only 15 of the fault types already identified
in [15] and one extra fault type, the missing function
call extended (MFCE); however, not all were found in
both weak typed and strong typed web applications
(see Table 3).

The missing function call extended (marked with an * in
Table 3) is a new addition and it is based on a missing
function in situations where the return value is used in
the code (as opposed to the MFC where the return value is
not used).

4.3 Obtaining the Patch Code

For our field study, we need to obtain the web application
code, as well as the source code of the patches. By
comparing them, we analyze the cause of the vulnerabilities
and classify the changes made in the code to fix them.

To gather the source code of security patches, we used

several sources of data, such as developer sites, online

magazines, news sites, sites related to security, hacker sites,

change log files of the application, the version control

system (VCS) repository, and so on.2 Next are the main

sources of information:

1. Security patched files. These files are applied to the
application by replacing the vulnerable files. To
extract only the code change that these files provide,
we used the UNIX diff command applied to both the
patch and the original (vulnerable) file.

2. Updated versions of the web application. This represents
completely new releases of the application contain-
ing new features and fault fixes (including security
ones). Although this was our primary source of data,
it was also the most labor-intensive one. It is
necessary to compare all the files of the vulnerable
and updated versions of the application looking for
security fixes. This process can be eased when there
is a change log file. This file consists of the summary
of changes made to the new version of the applica-
tion, including faults and security issues fixed. After
identifying the vulnerable source file and the fix, the
UNIX diff command was used.

3. Security diff files. These are files containing only the
code changes needed to fix a referenced vulner-
ability. The contents are ready to be applied to the
target application using the UNIX patch command.
This single file has all the information needed;
however, it was not very common.

4. Version control system repositories. Many applications
are developed using a VCS to manage the contribu-
tions of the community of developers from around
the world. We were granted permissions to query
some VCS repositories, so we had access to all the
revisions (similar to versions) of the application and
their change log files. Through the change log file,
we can identify the revisions of the application
where vulnerabilities were fixed. A differential
analysis using the UNIX diff command obtained
the code changes that fixed the vulnerabilities.

4.4 Patch Code Analysis Guidelines

The patch code was analyzed according to the extension of

the ODC classification, emphasizing the nature of the fix as

missing, wrong, or extraneous code. When there was no

information about it, the decision whether it was an XSS or

92 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

TABLE 2
Versions of Strong Typed Apps

2. The complete list of web resources queried was the following:
blogsecurity.net, buayacorp.com, bugs.debian.org, dev.wp-plugins.org,
digitrustgroup.com, downloads.securityfocus.com, downloads.sourceforge.
net, drupal.org, michaeldaw.org, milw0rm.com, notsosecure.com, nuked
gallery.net, nukeresources.com, nvd.nist.gov, osvdb.org, php-fusion.co.uk,
phpbb.com, phpmyadmin.net, phpmyadmin.svn.sourceforge.net, phpnu
ke.org, phpsecure.info, seclists.org, secunia.com, securiteam.com, secunia.
com, securitydot.net, securityfocus.com, sourceforge.net, trac.wordpress.
org, trapkit.de, waraxe.us, wordpress.org, www.virtuax.be.

an SQLi vulnerability was done by looking at the source

code. SQLi involves changing an SQL query string and XSS

displaying an unchecked variable. The classification process

followed these guidelines:

1. We assumed that the information publicly disclosed
in specialized sites is accurate and that the fix
available by the developer of the web application
solves the stated problem.

2. When the patch can fix both XSS and SQLi, the
corresponding fault type is counted for both
vulnerabilities.

3. To correct a single vulnerability several code changes
may be necessary. We consider all the changes as a
series of individual fault type fixes, because missing
any of them makes the application vulnerable.

4. When a particular code change corrects several
vulnerabilities, each vulnerability corrected is
counted.

5. When a single vulnerability affects several versions
of the application and the patch is the same for all,
then it accounts for a single fix.

The methodology to classify the web application security

patches was the following:

1. Manual analysis of the vulnerable source code of the
application and of the code after being patched.

2. Classification of each singular code fix found in the
patch from the perspective of what was done wrong
when developing the application.

3. Loop through the previous steps until all patches of
the web application are analyzed.

By following the above guidelines, it was possible to

classify 95 percent of all the code fixes gathered. The

discarded 5 percent, for which we could not identify the

code responsible for the security fix, account for patches too

complex or the merge of security problems with other faults.

5 RESULTS AND DISCUSSION OF THE

VULNERABILITY FIELD STUDY

This section presents and discusses the results of the field
study. We used the Pearson product-moment correlation
(statistically significant when P < 0:05) to see the strength
and direction of the relationship of two variables. A positive
correlation (positive r) indicates that when one variable

increases so does the other and a negative correlation
(negative r) indicates that when one variable increases the
other decreases. Strong correlation is when r is between 1
and 0.5; medium correlation when r is between 0.5 and 0.3;
weak correlation when r is lower than 0.3 [11]. The number
of samples is n.

5.1 Results for PHP Weak Typed Applications

We classified 655 XSS and SQLi security fixes found in six
web applications developed using PHP. The distribution of

the occurrences throughout the 12 classification fault types
is shown in Fig. 2. Comparing with Table 3, we see that we
did not found any sample for three fault types (MIEB,
MLPA, and WLEC).

The most representative is the MFCE, accounting for
around 3/4 of all the types found. The high value observed
may be related to the common use of specific functions to

validate or clean input data.
The next three most common fault types are the WPFV,

MIFS, and WVAV (see Table 3 for details on these types).
These vulnerabilities were mainly found in the following
situations:

1. Missing quotes around a variable in SQL queries
allowing an attacker to inject strings that are treated
as part of the structure of the query.

2. Missing IF around a statement. When a variable
should not be null, it needs to be initialized to a
specific value; otherwise, a malicious code may be

FONSECA ET AL.: ANALYSIS OF FIELD DATA ON WEB SECURITY VULNERABILITIES 93

TABLE 3
Fault Types Observed in the Field and Corresponding ODC Fault Type

�Fault type added to the extension of the ODC, based on the MFC fault type, when the return value is used in the code.

injected.3 This situation is an exploit of the PHP
directive “register_globals ¼ on” [42], allow-
ing assigning values to variables, based on input
from GET, POST, or COOKIE data. If the developer
relies on the default value and does not assign a
value to the variable, an attacker may exploit it by
tweaking the HTTP GET request, for example.

3. A poor regular expression (regex)4 used to filter
the input. We frequently found several past
versions of the same application, with the same
regex string being slightly updated as new attacks
were discovered.

Excluding the fault types already discussed, the remain-
ing types represent only 7.63 percent of the vulnerabilities.

Our results also show that all fault types contribute to
XSS and only eight to SQLi. The four fault types that do not
contribute to SQLi (MFC, MIA, MLOC, and ELOC) are
residual (1.22 percent). A Pearson correlation showed a
strong, positive correlation to the number of SQLi and XSS
vulnerabilities, which was statistically significant (r ¼ 0:975,
n ¼ 12, P < 0:0005).

A common belief is that vulnerabilities related to input
validation are mainly due to missing IF constructs or even
missing conditions in the IF construct. However, our results
show that the typical PHP approach is to clean the input
data with a function and let the program run normally,
instead of stopping it and raise an exception. In fact,
missing IF fault types (MIFS and MIA) account for
5.5 percent and missing condition fault types (MLAC and
MLOC) account only for 1.52 percent.

5.2 Results for Strong Typed Applications

For the strong typed language, we collected and classified
60 XSS and SQLi vulnerabilities, distributed over 11 web
applications presented in Fig. 3. Comparing with Table 3,
five fault types (WVAV, WFCS, MLAC, MLOC, ELOC)
were not found in this study.

Our data show that MFCE is the most frequent as the
majority of vulnerabilities are sanitized using functions that
clean and validate the input. Another interesting fact is that
most of these fixes (82.93 percent) are related to XSS
vulnerabilities, which by definition is prone to this kind of
error. A Pearson correlation was run to determine the
relationship between the number of SQLi and XSS

vulnerabilities; however, it was not statistically significant
(r ¼ 0:402, n ¼ 10, P < 0:250). We need more samples to
make strong assumptions about these results.

Concerning SQLi, we have not observed the preponder-
ance of a single fault type, as was the case for XSS. The most
frequent is MIEB with 26.32 percent, followed by MFCE
with 21.05 percent. This shows that the way this kind of
vulnerabilities are fixed in strong typed languages is not
only by using simple verification of other application states
(through the introduction of IF...ELSE statements), but also
by using a function to sanitize user input. This simplifica-
tion of the sanitation process using IF statements, compar-
ing with the PHP results, may be a direct contribution of the
type of language used having more robust structures to
manipulate the variables.

5.3 Lessons Learned

From the results discussed previously, we can summarize
the main differences and correlations observed in the
vulnerabilities found in the field for weak and strong typed
web applications.

The major divergence comes from the number of
vulnerabilities detected. While for PHP web applications,
we could identify 655 vulnerabilities in only six applica-
tions, for strong typed languages, we needed 11 applications
to identify only 60 vulnerabilities. It is, indeed, possible to
write vulnerable code using strong typed languages, but
our observation suggests that they are safer than those
developed with weak typed languages, which is also the
trend shown in other reports [46], [55]. The fact that, in a
strong typed language, a well-defined integer variable
cannot be used to store characters is, by itself, a huge
benefit to prevent many vulnerabilities. Some authors go
even further and they agree that a strong type system is,
indeed, necessary to improve the application security by
presenting additions to the type system [44]. Nonetheless,
strong typed languages, by themselves, do not eliminate the
need to validate and sanitize all the inputs from the user, as
we can see by our field results.

The distribution of XSS and SQLi vulnerabilities found is
similar for both weak and strong typed applications (see
Fig. 4). With two-third of all vulnerabilities, XSS is the most
frequent. Usually, XSS is easier to find although SQLi is
more interesting for the attacker [31], [50].

Table 4 summarizes the distribution of the 15 fault types
per vulnerability type for both weak and strong typed web
applications. As we can see highlighted with shade back-
ground, the MFCE is clearly the main cause of vulnerabil-
ities, regardless the type system used (63.33 percent for

94 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 3. Strong typed (Java, C#, VB) web applications vulnerability fault
types summary.Fig. 2. Weak typed (PHP) web applications vulnerability fault types

summary.

3. PHP, as other scripting languages like Perl, does not require variable
initialization (a NULL value is automatically assigned).

4. A regex string describes a search pattern, according to specific syntax
rules, that is used to search inside another string.

strong typed and 75.87 percent for weak typed). More
details and examples on MFCE are shown in Section 6. A
Pearson correlation was run to determine the relationship
between the number of all the strong and weak typed
vulnerabilities. There was a strong, positive correlation,
which was statistically significant (r ¼ 0:976, n ¼ 15,
P < 0:0005). This shows that both weak type and strong
type vulnerabilities follow a similar pattern, but looking at
Table 4, we see that the MFCE is responsible for most of
both XSS and SQLi vulnerabilities, although its prevalence
in XSS is more evident (82.93 percent in strong typed
languages and 77.27 percent in weak typed).

The big difference between weak and strong typed
applications concerns the faults classified in second and
third places. For the weak typed, WPFV and MIFS ranked
second and third, respectively, while for the strong typed,
we found MIEB and MFC in these positions.

MIEB shows that fixes were not only based on the
introduction of simple IF statements, which would corre-
spond to the MIFS found in the weak typed. This kind of fix
can be interpreted in two ways: 1) there were some more
complex algorithm steps to be performed or 2) the
developer was more conservative and followed the best
practice recommendations that state the need for having
complete IF...ELSE statements [10], [14].

Another major difference lies in the fact that WPFV
represents only 3.33 percent of the strong typed applica-
tions, while it represents 7.02 percent of the weak typed,
being the second most frequent fault type. This suggests
that the use of wrong variables (or wrong values of the
variables) in strong typed applications is lower than the
number observed in weak typed applications, as expected.
The fact that WPFV is only in the fifth place also suggests
that the main security problem in applications built with
strong typed languages is due to inputs not correctly
sanitized and not by the use of wrong variables (or
variables with wrong values) in the algorithm. This can be
linked to the fact that, by definition, in strong typed
languages, a variable has a predefined type of data, while in
weak typed, a variable can handle many types, especially in
dynamic typed languages, like PHP.

Another analysis can be made based on the age of the
applications. The majority of the strong typed web applica-
tion vulnerabilities analyzed were only well identified and
disclosed after 2005. By that time, the concern about XSS
and SQLi was already disseminated throughout the world
(see Fig. 1), which can be confirmed by several studies [7],
[13], [25], [31], [52], [56]. Therefore, when most of the strong
typed applications analyzed were implemented, the tech-
nical community was already concerned about these

problems. However, the weak typed web applications
analyzed were released between 1998 and 2003, many years
before most strong typed languages web applications (Java
JDK was released in 1996, C#, and VB around 2002), when
these vulnerabilities were not yet widely known. This may
explain the larger number of vulnerabilities found in PHP
web applications (PHP was created in 1995).

The results presented in this paper also unveil an
important trend, also confirmed by other researchers [23]:
a small set of fault types is responsible for most of the
vulnerabilities. This observation can be used to train soft-
ware developers, focusing their attention on the correct
treatment of the software structures related to the most
frequent types of faults. Additionally, this knowledge can
also be useful to improve the effectiveness of code inspec-
tions, as the team will be more focused on a few important
code structures that can cause most vulnerabilities.

6 DETAILED VULNERABILITY ANALYSIS

During the classification of web application vulnerabilities,
we saw repeating patterns in the code. We observed that the
instructions that fixed the vulnerabilities belonged to a
restricted subset of all the possible code structures of each
fault type. This kind of deep understanding can be explored
to build security tools, like an attack simulator that injects
realistic vulnerabilities to validate intrusion detection
systems and other security mechanisms, like automated
program repair [26].

To make use of these data, which are more granular, and
accommodate the precise situations found, we defined
subtypes for the four most common fault types (MFCE,
WPFV, MIFS, and WVAV). They are shown in Table 5,
along with their occurrences for PHP applications, from
which we have more samples. Once again, we can observe
that a few set of subtypes, MFCE subtypes A and B, are
responsible for most of the vulnerabilities (63.66 percent).
There are also important differences between XSS and SQLi:
MFCE-A is more important in SQLi, but MFCE-B is the
opposite; WPFV-A has a huge importance in SQLi and none
was found in XSS.

FONSECA ET AL.: ANALYSIS OF FIELD DATA ON WEB SECURITY VULNERABILITIES 95

Fig. 4. XSS and SQLi distribution.

TABLE 4
Distribution of Fault Types per Vulnerabilities

The following paragraphs present a detailed analysis of
these fault types and subtypes, discussing the conditions/
locations where they were observed in our field study, with
examples when needed to clarify them.

Missing function call extended (MFCE). This fault type was
observed in situations where there is a missing function
returning a value that is used elsewhere in the code. This
function is always related to the filtering of one of the
arguments where the other arguments are the configuration
of the filtering process. Next are the constraints of the
subtypes A, B, and C:

A. Missing casting to numeric of a variable using a
language specific function or type cast. Furthermore,
we analyzed the situations where this subtype
occurred in PHP and we found the use of the
“intval()”function in 83 percent of the cases and
the use of the “(int)” type cast in 17 percent of
the cases (see Table 6). The function can also act as
an argument of other functions. This situation was
found when the patch added an entire assignment
line, for example: $var ¼ int)$_GET[$var]; or
when there was a replacement of one variable in a
string concatenation. For example, replace:
...“‘str1’.$var. ‘str2’”; with ...”‘str1’ .in-
tval($var). ‘str2’”; or in the case of a function:
$var1 ¼ func(intval($var1));

B. Missing assignment of a variable to a custom made
function. This subtype is similar to MFCE-A and
was found in the same situations of MFCE-A,
except that the filtering function was not a
language specific predefined function and was
instead custom made.

C. Missing assignment of a variable to a predefined
function. This subtype is similar to the MFCE-A
and was found in the same situations of the
MFCE-A, except that the filtering function is not
one of those already present in the MFCE-A
(casting to numeric).

Wrong variable used in parameter of function call (WPFV).

This was typically found when the following changes

occurred in the argument of a function:

A. Missing quotes in variables inside a string argument
of a SQL query. For example, replace func(“SELECT. . .
FROM. . . WHEREid ¼ $var”) with func(“SELECT . . .
FROM . . . WHERE id ¼ ‘$var’”)

B. Wrong regex string of a function argument. When the
patch code is the change in the regex string of a
function argument. In the code analyzed, the regex
string was used to check a variable closely related to
an input value, looking for known suspicious values
that can be part of an attack. For example, replace the
vulnerable regex string REGEXP (“ \̂.id|\.id”)
with REGEXP (“^\\\.id|\\\.id”)

C. Wrong substring of a function argument. When the
argument of the function is the result of the
concatenation of several strings and variables and
the patch code removed or changed one of them.
When the programming language converts the type
automatically, the variable replaced may be of a
different type than the new variable, for example,
from a numeric type to a character type.

D. Wrong variable when it is an argument of a function. For
example, replace: func($var1) with func($var2)

Missing if construct plus statements (MIFS). This type was

found only when an IF condition and just one or two

surrounding statements were missing:

A. Missing traditional “if...then...else” condition. When it is
a traditional IF..THEN...ELSE condition, an ELSIF or
an ELSE.

B. Missing “if...then...else” condition in compact form. This
fault type was also found when the condition is in
the compact form, for example: (($var ! ¼ ‘‘) ?
“true” : “false”)

Wrong value assigned to variable (WVAV). This was

typically found when the following situations changed the

variable assignment:

A. Missing pattern in a regex string assigned to a variable.
In the code analyzed, the regex string was used to
check a variable closely derived from an input value,
looking for known XSS attacks.

96 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

TABLE 5
Fault Subtypes in PHP

TABLE 6
MFCEA Situations Found

B. Wrong value in an array or a concatenation of a new
substring inside a string. The patch changed one of the
concatenation strings or removed one of the items of
the array.

C. Wrong variable assigned to a variable. For example,
replace $var1 = $var2; with $var1 = $var3;

D. Missing quotes in variables inside a string in a SQL query
assignment. For example, replace SELECT...

FROM... WHERE id ¼ $var with SELECT...

FROM...WHERE id ¼ ‘$var’
E. Missing destruction of the variable. For example, unset

($var);
F. Extraneous concatenation operator “.” in an assignment.

For example, replace $var. ¼ ... with $var ¼ ...

From this analysis on PHP vulnerabilities, we observe
that MFCE-A, which accounts for about half of all the
vulnerabilities, can be mitigated directly by a strong type
system. In fact, the MFCE-A represents the missing cast to
numeric of a variable, which is unnecessary in strong
typed languages, because these variables would be
declared as numeric.

7 ANALYSIS OF XSS AND SQLi EXPLOIT DATA

To characterize the relevance of the vulnerabilities ana-
lyzed, including the scope and criticality of possible
attacks, we conducted another study, but this time
focusing on their known exploits. The exploit is the code
developed by hackers to attack a specific vulnerability (or a
set of vulnerabilities) of the target system or application.
The goal is to understand the correlation between
the number of vulnerabilities and exploits, and the level
of the exploit damage.

This analysis was done with data collected from the
database of exploits found in the Milw0rm web site
(milw0rm.com). The Milw0rm is a hacker-related site
devoted to share exploits of vulnerabilities developed by
several hacking groups and individuals. Its database con-
tains around 10,000 exploits. The collection of exploits
available contains attacks to vulnerabilities already fixed,
as well as 0 day vulnerabilities, for which no solution
is available yet. It is one of the most popular exploit databases
and it is the largest that we are aware of. Indeed, many of the
exploits available at the Milw0rm site are also distributed by
other hacker- and security-related sites, like RedOracle
(redoracle.com), osvdb (osvdb.org), SecurityReason (secur-
ityreason.com), and SecurityFocus (securityfocus.com). The
well-known Metasploit framework (metasploit.com), widely
used by hackers and developers for penetration testing and
vulnerability detection, also has some modules based on
exploits from the Milw0rm database.

The Milw0rm database contained 121 XSS and SQLi
exploits for the same web applications we used in the
vulnerability analysis already presented. These exploits
were distributed in the following way: 118 for the six PHP
web applications and three for the 11 strong typed web
applications. This is shown in Table 7. A Pearson correlation
was run to determine the relationship between XSS and
SQLi exploits in each application. It showed a strong,
positive correlation, which was statistically significant
(r ¼ 0:588, n ¼ 17, P < 0:013).

Obviously, the number of vulnerabilities and exploits is
not constant among web applications because the quality of
the code, the hacker interest, and the number of vulner-
abilities disclosed varies. Table 7 clearly shows that there is
a huge difference in the number of exploits developed for
the various web applications analyzed. For example, PHP
web applications are clearly preferred by hackers to exploit.
Moreover, we only found exploits for PHP and Java-based
web applications. For the applications developed in VB and
C#, we could not find any exploit, although applications
developed with these programming languages are (ob-
viously) also exploitable [55]. This does not mean that their
vulnerabilities are neither exploitable nor exploited, only
that they were not present in the source data analyzed. In
fact, we were able to find other exploits targeting some of
these web applications, attacking local file inclusion
vulnerabilities, which we did not consider because they
were outside the scope of our work.

To compare vulnerabilities and exploits for the same web
applications, we run two Pearson correlations: one for XSS
and another for SQLi. Both had a statistically significant
strong correlation: (r ¼ 0:594, n ¼ 17, P < 0:012) for XSS
and (r ¼ 0:596, n ¼ 17, P < 0:012) for SQLi. In fact, we
cannot assert if the popularity of the exploits is due to the
type of language or the popularity of the application, since
PHP applications are, by far, more common.

Table 6 also shows that we have found some SQLi
exploits in applications where we do not have SQLi
vulnerabilities to analyze (JForum and OpenCMS). This
occurs because both studies (the one where we collected
vulnerabilities and the other of the exploits) were executed
independently using different sources of information. This
is the result of a lack of a unified repository that collects
both vulnerabilities and exploits in a systematic and
standardized fashion.

The exploits analyzed were developed between 2003 and
2009 (see Fig. 5). For the SQLi case, the peak was in 2008, but
for XSS, we cannot see a clear trend. Comparing Fig. 5 with
Fig. 1, we see that the growing number of XSS vulnerabilities
does not have a correspondence with the exploits devel-
oped, whereas for SQLi, the exploit growth even overcomes
the vulnerability trend, reinforcing the interest in exploiting

FONSECA ET AL.: ANALYSIS OF FIELD DATA ON WEB SECURITY VULNERABILITIES 97

TABLE 7
Vulnerabilities and Exploits Analyzed

this kind of vulnerability. We also see this from Table 7. This
may be due to the fact that with SQLi, the attacker can access
one of the most valuable assets of the enterprise: the
database data. The database data may contain credit card
numbers, account numbers, social security numbers, user
names, passwords, e-mail accounts, and so on. These goods
have a huge demand in the underground economy, which
indicate that they have a higher cost/benefit ratio compared
to other types of attacks [50].

To understand the importance of each exploit, we
classified the criticality of the effect (in fact it represents
the criticality of the vulnerability, from a management point
of view) according to the Payment Card Industry Data
Security Standard (PCI-DSS), widely used in e-commerce,
e-banking, and other financial applications [40]. This
standard uses five severity levels to classify the danger
that the vulnerabilities pose to the enterprise, where levels 5
and 1 are the most and the least critical, respectively. To be
compliant with the PCI-DSS, an application cannot have
high-level vulnerabilities (levels 5, 4, or 3).

These data were obtained from the analysis of the source
code of the exploits. According to the damage the exploit
was able to inflict, we classified 96 percent of the vulner-
abilities exploited as level 5. The remaining 4 percent were
classified with level 3 that still belongs to the designated
high-level vulnerabilities. From the source code of the
exploits, we saw that the hacker always wants to target the
most valuable asset. The vast majority of exploits allowed
the attacker to either obtain the user name and password
stored in the application back-end database, or to access the
web server as the root or administrator of the machine.

Given that we could find a considerable number of
exploits and that 96 percent of them are among the most
critical, we can say that these results reinforce the
importance of addressing XSS and SQLi vulnerabilities
and the need to increase awareness about them.

8 VALIDITY OF THE RESULTS

The web applications analyzed are just a small sample of
the whole population so, although most of the results have
statistical significance, they may lack practical significance
(they cannot be considered as representative) [38]. Our
observations may not apply to other applications, even for
those written with the same programming languages. There
are many ways and tools to develop an application and they
may influence the outcome. This can also be seen from our
data, if we take into consideration the high standard
deviation values that represents the data dispersion related

to the number of vulnerabilities and exploits per application
(see Table 8). Naturally, our results will fit better to
applications developed with the same languages analyzed,
but as improvements are being introduced to those
languages results may also change. For example, the decline
of malicious file execution attacks may be due to improve-
ments in the fifth release of PHP [36].

However, results from other studies [23], [31], [50], [55]
are in line with ours, so we are confident that most of the
trends shown will apply to similar applications, although
the particular values may be quite different: weak typed
with more vulnerabilities than strong typed, XSS easier to
find, but SQLi with more valuable attacks, newer applica-
tions still with old school vulnerabilities like XSS and SQLi,
few types of mistakes responsible for most of security
problems with MFCE at the top, with most of vulnerabilities
due to unchecked numeric fields.

9 CONCLUSION

This paper analyzes 715 vulnerabilities and 121 exploits of
17 web applications using field data on past security fixes.
Some web applications were written in a weak typed
language and others in strong typed languages. Results
suggest that applications written with strong typed lan-
guages have a smaller number of reported vulnerabilities
and exploits. We had to consider more strong typed
applications to obtain a fair amount of vulnerabilities when
compared to the weak typed.

According to our findings, weak typed are the preferred
targets for the development of exploits. We also observed
that a single fault type (MFCE) was responsible for most
(76 percent) of the security problems analyzed. We saw that
the fault types responsible for XSS and SQLi belong to a
narrow list, which points a path to the improvement of web
applications, namely in the context of code inspections and
the use of tools for static analysis. This study showed that
the way programmers fix vulnerabilities seems to have a
degree of dependence with the type of language used.
However, the number of vulnerabilities analyzed in our
and other studies show that the use of a specific language is
not guarantee of success in preventing vulnerabilities. It is
just one of the many factors that contribute to building a
safer application.

The most relevant fault types analyzed were thoroughly
detailed providing enough information for the definition
of vulnerability fault models that can be used by
researchers interested, for example, in realistic vulnerabil-
ity and attack injectors.

This work can be extended by comparing more vulner-
abilities of web applications written in different languages
and developed by independent programmers. Another

98 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 5. Release date of the exploits.

TABLE 8
Number of Vulnerabilities and Exploits per Application

follow-up work may focus on the importance of the attack
surface in the distribution of vulnerabilities and exploits.
This may compare different results of vulnerabilities and
exploits of both web applications and their add-ons,
regarding their size, for example.

ACKNOWLEDGMENTS

This work was partially supported by the project
“ICIS—Intelligent Computing in the Inter-net of Services”
(CENTRO-07-ST24-FEDER-002003), cofinanced by QREN,
in the scope of the Mais Centro Program and European
Union’s FEDER, and by the PEst-OE/EGE/UI4056/2011,
financed by the Science and Technology Foundation.

REFERENCES

[1] Acunetix Ltd., “Is Your Website Hackable? Do a Web Security
Audit with Acunetix Web Vulnerability Scanner,” http://www.
acunetix.com/security-audit/index/, May 2013.

[2] G. �Alvarez and S. Petrovic, “A New Taxonomy of Web Attacks
Suitable for Efficient Encoding,” Computers and Security, vol. 22,
no. 5, pp. 435-449, July 2003.

[3] P. Anbalagan and M. Vouk, “Towards a Unifying Approach in
Understanding Security Problems,” Proc. Int’l Symp. Software
Reliability Eng., pp. 136-145, 2009.

[4] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 1, pp. 11-
33, Jan.-Mar. 2004.

[5] US-CERT Vulnerability Notes Database, “Homepage,” http://
www.kb.cert.org/vuls/, May 2013.

[6] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D. Moebus,
B. Ray, and M. Wong, “Orthogonal Defect Classification—A
Concept for In-Process Measurement,” IEEE Trans. Software Eng.,
vol. 18, no. 11, pp. 943-956, Nov. 1992.

[7] S. Christey, “Unforgivable Vulnerabilities,” Proc. Black Hat Brief-
ings, 2007.

[8] J. Christmansson and R. Chillarege, “Generation of an Error Set
That Emulates Software Faults,” Proc. IEEE Fault Tolerant
Computing Symp., pp. 304-313, 1996.

[9] S. Clowes, “A Study in Scarlet, Exploiting Common Vulnerabil-
ities in PHP Applications,” http://www.securereality.com.au/
studyinscarlet.txt, 2013.

[10] T. Manjaly, “C# Coding Standards and Best Practices,” http://
www.codeproject.com/KB/cs/c__coding_standards.aspx, May
2013.

[11] J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
second ed., Lawrence Erlbaum, 1988.

[12] M. Cukier, R. Berthier, S. Panjwani, and S. Tan, “A Statistical
Analysis of Attack Data to Separate Attacks,” Proc. Int’l Conf.
Dependable Systems and Networks, pp. 383-392, 2006.

[13] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese, Y. Deswarte, K.
Kursawe, J.C. Laprie, D. Powell, B. Randell, J. Riordan, P. Ryan,
W. Simmonds, R. Stroud, P. Verissimo, M. Waidner, and A.
Wespi, “Conceptual Model and Architecture of MAFTIA,” Project
IST-1999-11583, https://docs.di.fc.ul.pt/jspui/bitstream/10455/
2978/1/03-1.pdf, 2003.

[14] Dotnet Spider, “C# Coding Standards and Best Programming
Pract ices ,” http://www.dotnetspider .com/tutorials/
BestPractices.aspx, May 2013.

[15] J. Durães and H. Madeira, “Emulation of Software Faults: A Field
Data Study and a Practical Approach,” Trans. Software Eng.,
vol. 32, pp. 849-867, 2006.

[16] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. Pektov, XSS
Attacks: Cross Site Scripting Exploits and Defense. Syngress, 2007.

[17] J. Fonseca, M. Vieira, and H. Madeira, “Training Security
Assurance Teams Using Vulnerability Injection,” Proc. Pacific
Rim Dependable Computing Conf., pp. 297-304, 2008.

[18] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability & Attack
Injection for Web Applications,” Proc. Int’l Conf. Dependable
Systems and Networks, pp. 93-102, 2009.

[19] M. Fossi et al., “Symantec Internet Security Threat Report: Trends
for 2010,” Symantec Enterprise Security, 2011.

[20] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone,
“Modeling Security Requirements through Ownership, Permis-
sion and Delegation,” Proc. IEEE Int’l Conf. Requirements Eng.,
pp. 167-176, 2005.

[21] W. Halfond, J. Viegas, and A. Orso, “A Classification of SQL
Injection Attacks and Countermeasures,” Proc. Black Hat Briefings,
2005.

[22] L. Hatton, “The Chimera of Software Quality,” IEEE Software,
vol. 40, no. 8, pp. 104-103, Aug. 2007.

[23] M. Howard, D. LeBlanc, and J. Viega, “19 Deadly Sins of Software
Security: Programming Flaws and How to Fix Them,” McGraw-
Hill, 2005.

[24] IBM Global Technology Services “IBM Internet Security Systems
X-Force1 2010 Trend & Risk Report,” technical report, IBM
Corp., 2011.

[25] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise Alias Analysis for
Static Detection of Web Application Vulnerabilities,” Proc. IEEE
Symp. Security and Privacy, pp. 27-36, 2006.

[26] C. Le Gues et al., “A Systematic Study of Automated Program
Repair: Fixing 55 Out Of 105 Bugs for $8 Each,” Proc. Int’l Conf.
Software Eng., pp. 3-13, 2012.

[27] B. Livshits and S. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis,” Proc. USENIX Security Symp.,
pp. 18-18, 2005.

[28] F. Long, “Software Vulnerabilities in Java,” Cert. technical note,
Software Eng. Inst., Carnegie Mellon Univ., 2005.

[29] R. Mays, C. Jones, G. Holloway, and D. Strudinsky, “Experiences
with Defect Prevention,” IBM Systems J., vol. 29, pp. 4-32, 1990.

[30] K. Mitnick and W. Simon, The Art of Deception: Controlling the
Human Element of Security, first ed., Wiley, 2002.

[31] S. Christey and R. Martin, “Vulnerability Type Distributions
in CVE,” http://cwe.mitre.org/documents/vuln-trends/index.
html, May 2007.

[32] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, M. Vouk,
“Preliminary Results on Using Static Analysis Tools for Software
Inspection.” Proc. Int’l Symp. Software Reliability Eng., pp. 429-439,
2004.

[33] S. Neuhaus and T. Zimmermann, “Security Trend Analysis with
CVE Topic Models” Proc. Int’l Symp. Software Reliability Eng.,
pp. 111-120, 2010.

[34] NTA, “Tests Show Rise in Number of Vulnerabilities Affecting
Web Applications with SQL Injection and XSS Most Common
Flaws,” http://www.nta-monitor.com/posts/2011/03/01-tests_
show_rise_in_number_of_vulnerabilities_affecting_web_
applications_with_sql_injection_and_xss_most_common_
flaws.html, May 2013.

[35] OSVDB, “Open Sourced Vulnerability Database,” http://osvdb.
org, May 2013.

[36] OWASP Foundation, “OWASP Top 10,” https://www.owasp.
org/index.php/Top_10_2010-Main, July 2010.

[37] A. Ozment, “Vulnerability Discovery & Software Security,” PhD
thesis, Computer Laboratory Computer Security Group, Univ. of
Cambridge, 2007.

[38] J. Pallant, SPSS Survival Manual, fourth ed., Open Univ. Press,
2011.

[39] Packt Publishing Ltd., “Homepage,” http://www.packtpub.com,
May 2013.

[40] PCI Security Standards Council, “Payment Card Industry (PCI)
Data Security Standard, Requirements and Security Assessment
Procedures, version 1.2,” www.pcidss.ru/files/pub/pdf/padss_
v1.2_english.pdf, 2008.

[41] PHP-Nuke, “Homepage,” http://phpnuke.org, Dec. 2007.
[42] The PHP Group, “Description of Core php.ini Directives,”

http://pt.php.net/register_globals, May 2013.
[43] The Privacy Rights Clearinghouse, “Chronology of Data Breaches:

Security Breaches 2005-Present,” http://www.privacyrights.org/
data-breach, May 2013.

[44] W. Robertson and G. Vigna, “Static Enforcement of Web
Application Integrity through Strong Typing,” Proc. 18th Conf.
USENIX Security Symp. (USENIX ’09), pp. 283-298, 2009.

[45] SANS Inst., “Top 25 Most Dangerous Programming Errors,”
http://www.sans.org/top25errors/, May 2013.

[46] T. Scholte et al., “An Empirical Analysis of Input Validation
Mechanisms,” Proc. ACM Symp. Applied Computing, pp. 1419-1426,
2012.

[47] Secunia, “Homepage,” http://secunia.com, May 2013.

FONSECA ET AL.: ANALYSIS OF FIELD DATA ON WEB SECURITY VULNERABILITIES 99

[48] Sourceforge, “2007 Community Choice Awards,” http://
sourceforge.net/blog/cca07, May 2013.

[49] D. Stuttard and M. Pinto, The Web Application Hackers Handbook:
Discovering and Exploiting Security Flaws. Wiley, 2007.

[50] Symantec, “Symantec Report on the Underground Economy,”
http://www.symantec.com/threatreport/topic.jsp?id=fraud_
activity_trends&aid=underground_economy_servers. 2008.

[51] N. Tomatis, R. Brega, G. Rivera, and R. Siegwart, “‘May You Have
a Strong (-Typed) Foundation’ Why Strong Typed Programming
Languages Do Matter,” Proc. IEEE Int’l Conf. Robotics and
Automation, 2004.

[52] F. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to
the Detection of SQL Attacks,” Proc. Second Int’l Conf. Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA ’05),
pp. 123-140, 2005.

[53] Verizon, “2011 Data Breach Investigations Report,” http://
www.verizonenterprise.com/resources/reports/rp_data-breach-
investigations-report-2011_en_xg.pdf, 2011.

[54] J. Walden, M. Doyle, G. Welch, and M. Whelan, “Security of Open
Source Web Applications,” Proc. Int’l Symp. Empirical Software Eng.
and Measurement, 2009.

[55] “WhiteHat Website Security Statistics Report, ninth ed.,” https://
www.whitehatsec.com/seekinfo/statsSpring10.html, WhiteHat
Security Inc., Spring 2010.

[56] S. Zanero, L. Carettoni, and M. Zanchetta, “Automatic Detection
of Web Application Security Flaws,” Proc. IEEE Int’l Symp. Secure
Software Eng., 2005.

José Fonseca received the PhD degree in
informatics engineering from the University of
Coimbra, Portugal, in 2011. Since 2005, he has
been with CISUC as a researcher. He has been
teaching computer-related courses at the Poly-
technic Institute of Guarda since 1993. He is the
author or coauthor of more than a dozen papers
in refereed conferences. His research on vulner-
ability and attack injection was granted with the
DSN’s William Carter Award of 2009, sponsored

by the IEEE Technical Committee on Fault-Tolerant Computing and the
IFIP Working Group on Dependable Computing and Fault Tolerance
(WG 10.4).

Nuno Seixas received the master’s degree in
software engineering from Carnegie Mellon
University and the University of Coimbra,
Portugal, in 2008 and the MSc degree in
informatics engineering from the University of
Coimbra in 2007. From 2004 to 2006, he was
with CISUC as a researcher. He has been with
the Portugal Telecom Inovação company since
2005, where he is now part of the technological
coordination group.

Marco Vieira is currently an assistant professor
at the University of Coimbra, Portugal. He is an
expert on dependability benchmarking and his
research interests also include experimental
dependability evaluation, fault injection, security
benchmarking, software development pro-
cesses, and software quality assurance, sub-
jects in which he has authored or coauthored
tens of papers in refereed conferences and
journals. He has participated in many research

projects, both at the national and European level. He has served on
program committees of the major conferences of the dependability area
and acted as a referee for many international conferences and journals
in the dependability and databases areas.

Henrique Madeira is currently an associate
professor at the University of Coimbra, Portugal,
where he has been involved in the research
on dependable computing since 1987. He has
authored or coauthored more than 100 papers in
refereed conferences and journals and has
coordinated or participated in tens of projects
funded by the Portuguese government and by
the European Union. He was the program
cochair of the 2004 International Performance

and Dependability Symposium track of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN-PDS 2004)
and was appointed conference coordinator of IEEE/IFIP DSN 2008.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

100 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

