
Looking at Web Security Vulnerabilities from the
Programming Language Perspective: A Field Study

Nuno Seixas, José Fonseca, Marco Vieira, Henrique Madeira
CISUC, Department of Informatics Engineering

University of Coimbra
Coimbra, Portugal

naseixas@dei.uc.pt, josefonseca@ipg.pt, mvieira@dei.uc.pt, henrique@dei.uc.pt

Abstract—This paper presents a field study on web security
vulnerabilities from the programming language type system
perspective. Security patches reported for a set of 11 widely
used web applications written in strongly typed languages
(Java, C#, VB.NET) were analyzed in order to understand the
fault types that are responsible for the vulnerabilities observed
(SQL injection and XSS). The results are analyzed and
compared with a similar work on web applications written
using a weakly typed language (PHP). This comparison points
out that some of the types of defects that lead to vulnerabilities
are programming language independent, while others are
strongly related to the language used. Strongly typed languages
do reduce the frequency of vulnerabilities, as expected, but
there still is a considerable number of vulnerabilities observed
in the field. The characterization of those vulnerabilities shows
that they are caused by a small number of fault types. This
result is relevant to train programmers and code inspectors in
the manual detection of such faults, and to improve static code
analyzers to automatically detect the most frequent vulnerable
program structures found in the field.

Keywords-Security vulnerabilities; software faults;
programming languages; field study

I. INTRODUCTION
Web applications are frequently deployed with critical

software bugs that can be maliciously exploited. These
applications are so widely exposed that existing
vulnerabilities will most probably be uncovered and
exploited by hackers. To prevent vulnerabilities, developers
should apply best coding practices, perform security reviews
of the code, execute penetration tests, use code vulnerability
analyzers, etc. However, many times developers focus on the
implementation of functionalities and on satisfying the user’s
requirements and disregard security aspects. Additionally,
numerous developers are not specialized on security and the
common time-to-market constraints limit an in depth test for
security vulnerabilities. Knowing the preponderant role of
web applications in most organizations, one can realize the
importance of finding ways to reduce the probability of
deploying applications with security vulnerabilities.

Software bugs that are responsible for security
vulnerabilities may have a devastating cost if exploited by
hackers. Although configuration and human issues are also
potential causes for vulnerabilities, the root cause of most
security attacks are vulnerabilities created by software faults.
Knowing the preponderant role of web applications in most

organizations, one can realize the importance of finding
ways to reduce the probability of deploying applications with
security vulnerabilities.

Although there are many publications and periodic
organization reports (e.g., Open Web Application Security
Project Foundation) showing that web application
vulnerabilities are a major concern, very few scientific
studies have been focused on the detailed analysis of the
fault types behind such vulnerabilities.

A recent field study [1] analyzed 655 security patches of
six widely used web applications developed in PHP. The
types of faults that are most likely to lead to software
vulnerabilities were characterized, in order to better
understand the potential relation between software defects
and security vulnerabilities. Results show that a small subset
of generic software faults is responsible for almost all the
security problems studied (essentially, Cross Site Scripting
(XSS) and SQL injection) and that there is a single fault type
(Missing Function Call Extended1) that is responsible for
73% of all the security problems analyzed.

The problem is that the study presented in [1] is limited
to web applications written in the PHP language. PHP is a
dynamically typed language (weak typing) widely used in
the development of web applications. Although we believe
that the results from [1] are also valid for other weak typed
programming languages (e.g., PERL, CGI), we consider that
they cannot be applied to languages that use a different type
system such as Java, C#, and VB.NET.

In the present work we analyzed 24 widely used open
source web applications written in statically-typed languages
(strong typing) in order to understand the most frequent
types of software faults that lead to web security
vulnerabilities such as XSS and SQL injection. It is worth
mentioning that SQL injection and XSS are two of the most
critical vulnerabilities in web applications [2]. The popularity
of attacks exploiting these types of vulnerabilities is typically
related to the easiness in finding and exploiting such
vulnerabilities, the importance of the assets they can
disclose, and the level of damage they may inflict.

All the vulnerabilities reported for the selected
applications were carefully analyzed in order to understand
and classify the software fault that made the code vulnerable.

1 The Missing Function Call Extended fault type refers to a vulnerability
caused by missing the use of a function to clean the values stored in the
target variable.

The web applications used in the study are widely used open
source applications, and some of them are actually used to
support real business. All applications already have several
released versions in which software defects were fixed and
are not newcomers in the field.

Great care was taken to allow a fair comparison of the
results between our current study and the previous study for
PHP applications [1]. The goal is to help understanding
security vulnerabilities from the point-of-view of the
language used for the development of the applications.

The paper is structured as follows: section II presents
some background in security vulnerabilities in programming
languages focusing the language type system. Section III
presents the methodology used in our field study, including
the description of the applications used and the process
followed to analyze and classify each vulnerability patch.
Section IV presents the results and discusses lessons learned,
and Section V concludes the paper.

II. SECURITY VULNERABILITIES IN WEB PROGRAMMING
LANGUAGES

Many different programming languages are currently
used in the development of web applications. Ranging from
proprietary languages (e.g., C# and VB.NET) to open source
languages (e.g., PHP, CGI, Perl or Java), the spectrum of
languages available for web development is immense.

Programming languages can be classified using several
different taxonomies (e.g., programming paradigm, type
system, execution mode, generation, etc). The type system,
particularly important in the context of the present work,
specifies how data types and data structures are managed and
constructed by the language, namely how the language maps
values and expressions into types, how it manipulates those
types, and how those types interrelate. Based on the type
system, programming languages can be classified in the
following way [3]:

• Typed vs untyped. A typed language defines for
each operation the applicable data types (e.g., only
numbers can be divided, only strings can be
concatenated, dividing a number by a string is not
possible). On the other hand, an untyped language
(e.g., assembler) allows any data type to be used in
any operation. In this case, all data types are
understood as bits sequences that can be manipulated
by any operation.

• Static vs dynamic typed. Static typing implies that
all expressions must have their types defined before
execution, typically during compilation (e.g., the
sum of two integers cannot be stored in a date
variable; an integer number cannot be passed as a
parameter to a function that is expecting a string). In
dynamic typing, operations are analyzed at runtime
to determine and enforce their type-safety (i.e., types
are associated based on actual values at runtime
rather than based on the source code expression
itself).

• Weak vs strong typed. In weak typed languages a
value of one type can be treated as another type (e.g.,
a string can be treated as a number). Strong typed

languages prevent this situation and an attempt to
use a wrong type value in a given operation raises an
exception.

In this work we are particularly interested in

understanding the impact of the type system in terms of
security vulnerabilities. This is of particular interest, as many
critical security vulnerabilities like XSS and SQL Injection
(see [2] for details on these vulnerabilities) are strongly
related to the way the language manages data types. For
example, SQL Injection attacks take advantage of
improperly validated inputs to change the SQL commands
that are sent to the database.

In dynamic typed languages it is sometimes possible to
inject SQL code by taking advantage of variables that
supposedly should not be strings (e.g., numbers, dates) as the
type of the variable is determined based on the assigned
value. On the other hand, in static typed languages this is not
possible because the type of variables is determined before
runtime and the attempt to store a string in a variable of
another type will raise an error. However, this does not mean
that SQL injection is not possible in static typed languages.
In fact, it is indeed possible but only by taking advantage of
variables of string-type, which reduces the number of
variables through which a hacker can try to inject SQL code.

As mentioned before, the field study presented in this
paper consists in identifying and classifying real security
vulnerabilities detected and corrected in open source web
applications developed using static strong typed languages.
The results were analyzed and compared to the ones
presented in [1] for PHP (a dynamically-weak typed
language). The goal was to try to understand if the types of
defects that lead to vulnerabilities are programming language
independent. The rest of this paper presents the field study
approach and the results obtained.

III. FIELD STUDY METHODOLOGY
The first step in our study consisted in selecting a set of

web applications developed using strong typed languages
and identifying the security vulnerabilities discovered and
fixed in the different versions of those applications.

The identified vulnerabilities were analyzed and
classified using the classification approach proposed in [1].
The results were then analyzed and compared to the ones
presented in that study, in order to identify the impact of the
language type system in the number and in the type of
vulnerabilities found in the field.

A. Applications Studied
Our target applications were open source and with

reported security vulnerabilities. The goal was to be sure that
it was possible to have access to the source code (including
the code from older versions) in order to be able to analyze
and understand the security vulnerability and how it was
fixed. Actually, the way a given vulnerability is fixed is a
key aspect in the classification of the type of vulnerability.
This is essential to assure that our classification is orthogonal
and guarantees a valid comparison with previous studies [1].
Typically, a vulnerability can be fixed in more than one way.

However, it is the way the programmer actually used to fix
the vulnerability that is considered for its classification. This
allows us to classify each vulnerability as being of a single
type.

As one of our goals was to compare the results from this
study with the ones presented in [1], we have considered
primarily web applications from the same domains used in
that study. This way, we focused our search in the following
types of applications: Bloggers, Content Management
Systems (CMS), Forum Software, Issue Tracking, Portals,
Webmail and Wiki Engines.

The site “Open Source Software in Java” [4] was
particularly useful as entry point for the process of
identifying the web applications for this study, as the most
representative open source applications written in Java are
registered and described in this web site.

After identifying a large set of applications in the
domains mentioned before, we started searching for security
vulnerabilities using three well know repositories: Security
Focus [5], OSVDB [6], and Secunia [7]. Initially, we were
expecting to identify a large number of vulnerabilities in
applications developed using this language. However, unlike
in [1] where six web applications accounted for the 655
vulnerabilities studied, we found a very low number of
reported vulnerabilities per application.

Thus we decided to extend our study to incorporate also
applications developed using C# and VB.NET (found in the
“Open Source Software in C#” web site [8]), which have the
same data type system as Java. Although the total number of
vulnerabilities identified increased, it still remained quite
low, at least when comparing to the results presented in [1]
(see Section IV for details).

Although we analyzed a total of 24 web applications, we
were able to find vulnerabilities descriptions for only 11
applications. This way, our study focused on the following
set of applications with reported vulnerabilities (see more
details on this on section IV.C): JForum [9], OpenCMS [10],
BlojSom [11], Roller WebLogger [12], JSPWiki [13],
SubText [14], DotNetNuke [15], YetAnotherForum [16],
BugTracker .NET [17], Deki Wiki [18], ScrewTurn Wiki
[19].

It is important to reemphasize that many of these
applications are widely used, including in the support of real
businesses. All applications already have several released
versions and are not newcomers to the field.

B. Patch Analysis and Vulnerability Classification
For all the applications analyzed, we collected the source

code of both the vulnerable version and the patched version.
By comparing these two versions we could understand the
vulnerability and classify what code has been changed to
correct it.

To gather information on the security patches (including
source code) we used mirror websites, sites with source
code, online reviews, news sites, sites related to security,
changelog files of the application, the version control system
repository, etc. Finding the source code of old versions is
usually a very difficult task that requires searching in
different sources. However, for the purpose of this study, we
only needed the original piece of code and the piece of the
code that corrected the vulnerability (i.e., the source code of
the entire application is not required). The two main types of
sources used were:

• The version control system repository: most of the
applications analyzed have their source code
completely available through SVN or CVS servers
that are publicly accessible.

• The web site of the application: some of the
applications had all the versions available in their
web sites, ready for download.

Once the source code was obtained, a differential

analysis was performed to identify the locations in the code
where the faults were fixed. This operation was done through
the use of diff tools and manual analysis of the code.

The software faults that generated the detected
vulnerabilities were classified using the classification
approach proposed in [1]. Table I summarizes the fault types
considered. It is important to emphasize that the fault types
in Table I are used in this paper as reference for the fault
classification. These types of faults are simply the most
common types of faults observed in [1] and are not discussed
in this paper in the context of strong/weak typing language.
They are simply used as starting point for fault classification.

To allow meaningful comparison between both studies,
the guidelines for classifying the security vulnerabilities
were exactly the same ones used in [1], namely:

1. When the patch can fix both XSS and SQL Injection
the corresponding fault type is accounted for both
security vulnerabilities.

TABLE I. FAULT TYPES CLASSIFICATION

Fault type Description
MFC Missing function call

MFC extended Missing function call returning the same data type as the argument
MVIV Missing variable initialization using a value
MIA Missing if construct around statements
MIFS Missing if construct plus statements
MIEB Missing if construct plus statements plus else before statements
MLPA Missing small and localized part of the algorithm
WPFV Wrong variable used in parameter of function call
WLEC Wrong logical expression used as branch condition

EFC Extraneous function call

2. It is assumed that the information publicly disclosed
in specialized sites is accurate and that the fix made
by the programmer of the patch and made available
by the provider that develops the web application
solves the stated problem.

3. To correct a single vulnerability several code
changes may be necessary and they are counted as
several vulnerabilities. All the changes will be
considered as a series of singular fault type fixes. For
example, suppose that two functions are needed to
properly sanitize a variable. Missing any of these
functions makes the application vulnerable, so both
of them must be taken into account.

4. When a particular code change corrects immediately
several vulnerabilities, each one is considered as a
singular fix.

5. A security vulnerability may affect several versions
of the application but the fix is accounted only for
one.

IV. RESULTS AND DISCUSSION
The goal of this practical experience report is to report a

field study focusing on SQL Injection and XSS
vulnerabilities in web applications developed using strong
typed languages. We analyzed and classified the faults the
lead to these two types of vulnerabilities, using the
methodology presented above. The field study was agnostic
concerning the types of faults; that is, we simple classified
all faults (that originated SQL Injection and XSS
vulnerabilities) reported for the open source applications
presented in Section III.A and we did not focus on selecting
a specific subtype of faults (e.g., faults related to the
strong/weak typing aspects). In other words, the goal is not
to analyze only faults strictly related to the strong/weak
typing features, but to provide a field study on faults reported
in applications written in strong typed languages and

compare the results (i.e., all faults observed) with the
observations of [1].

We have collected and classified 60 XSS and SQL
Injection security vulnerabilities, distributed over 11
different web applications. XSS is the most frequent type of
vulnerability observed in our sample, accounting for 68.33%
of the vulnerabilities analyzed, while SQL Injection
corresponds to 31.67% (see Fig. 1). Comparing this result
with the distribution observed in [1] for web applications
written using a weakly-typed language, we can conclude that
the distribution is similar. In fact, the distribution observed in
[1] was 70% for XSS against 29.47% for SQL Injection.
This result also confirms different CVE reports [2][20] that
point out XSS as the most frequent type of web security
vulnerability.

The detailed distribution of vulnerabilities by fault types
is presented in Fig. 2. As shown, the most frequent fault type
was MFC Extended, which corresponds to a missing
function call returning the same data type as the argument.

Figure 1. XSS vs SQL Injection Vulnerabilities

Figure 2. Vulnerabilities fault type summary

This fault type is normally associated to the use of a function
responsible for the sanitization of an input. For example, in
ScrewTurn Wiki, the code:

user = user.Replace("\r","").Replace("\n","");

was replaced by:

user = Sanitize(user);

This fault type is the most frequent one because the

majority of vulnerabilities are due to inputs not validated or
not properly sanitized, and so, the obvious fix is to
implement functions that simply clean and validate the input
received from the user. Another interesting fact is that most
of these fixes are related to XSS vulnerabilities, which by
definition are prone to this kind of error.

A. Strong Typing vs Weak Typing
Table II shows the fault types responsible for the

vulnerabilities observed in our current field study on web
applications written in statically typed languages (strong
typing) and the results of the previous study on dynamically
typed languages (weak typing).

The MFC extended (Missing Function Call extended)
type of software fault is clearly the main cause of web
application vulnerabilities, no mater the type system of the
programming language used (63.33% of the faults in our
current study and 75.87% in the previous study [1]). In other
words, the occurrence of MFC extended software faults
seems independent from the type system of the programming

language used. However, nothing can be concluded
regarding language independence, as we do not have enough
data to confirm that.

The MFC extended type of fault is also responsible for
both SQL injection and XSS vulnerabilities, although its
prevalence in XSS is even more evident (82.93% in strong
typed languages and 77.27% in weak typed).

Looking at the results presented in Table II, the big
differences between weak typing and strong typing concern
the faults classified in second and third place, MIEB
(Missing if construct plus statements plus else before
statements) and MFC (Missing function call). While in weak
typed applications, the second and third positions were
WPFV (Wrong variable used in parameter of function call)
and MIFS (Missing if construct plus statements), in our
study we have found for these positions the MIEB and MFC
fault types.

MIEB shows that the fixes were not only based on the
introduction of an “if” statement, which would correspond to
the MIFS found in the weak typed. This kind of fix can be
interpreted in two ways: (i) there were some more complex
algorithm steps to be performed or (ii) the team was more
conservative and followed the best practices
recommendations that state the need for having complete
“if” and “else” statements [21][22]. This is currently
accepted as good practice when working with strong typed
languages and explains why the MIEB appears in second
place, against the third place for MIFS in the weak typed
applications.

Another major difference lays in the fact that WPFV
(Wrong variable used in parameter of function call)
represents only 3.33% in the current study, while in the weak

TABLE II. DISTRIBUTION OF FAULT TYPES PER VULNERABILITIES

Strong type (Java, C#, VB.Net) Weak dynamic type (PHP) [1]
Fault type #

Faults
SQL Inj.

(%)
XSS
(%) SQL + XSS (%) #

Faults
SQL Inj.

(%)
XSS
(%) SQL + XSS (%)

MFC Ext 38 21.05% 82.93% 63.33% 497 72.54% 77.27% 75.88%
MIEB 6 26.32% 2.44% 10.00% 0 0.00% 0.00% 0.00%
MFC 4 15.79% 2.44% 6.67% 4 0.52% 0.65% 0.61%
MIFS 3 15.79% 0.00% 5.00% 34 6.22% 4.76% 5.19%
MLPA 2 5.26% 2.44% 3.33% 0 0.00% 0.00% 0.00%
WPFV 2 10.53% 0.00% 3.33% 46 17.10% 2.81% 7.02%
WLEC 2 5.26% 2.44% 3.33% 0 0.00% 0.00% 0.00%
MVIV 1 0.00% 2.44% 1.67% 9 0.52% 1.73% 1.37%
MIA 1 0.00% 2.44% 1.67% 2 0.00% 0.43% 0.31%
EFC 1 0.00% 2.44% 1.67% 6 0.52% 1.08% 0.92%

MVAE 0 0.00% 0.00% 0.00% 0 0.00% 0.00% 0.00%
MLAC 0 0.00% 0.00% 0.00% 9 1.04% 1.52% 1.37%
MVAV 0 0.00% 0.00% 0.00% 0 0.00% 0.00% 0.00%
WVAV 0 0.00% 0.00% 0.00% 28 1.04% 5.63% 4.27%
WFCS 0 0.00% 0.00% 0.00% 18 0.52% 3.68% 2.75%
MLOC 0 0.00% 0.00% 0.00% 1 0.00% 0.22% 0.15%
WAEP 0 0.00% 0.00% 0.00% 0 0.00% 0.00% 0.00%
ELOC 0 0.00% 0.00% 0.00% 1 0.00% 0.22% 0.15%
Total 60 100% 100% 100% 655 100% 100% 100%

typed applications [1] it represents 7.02%, being the second
most frequent fault type. This shows that the number of
programming faults resulting in the use of wrong variables in
strong typed languages (our current study) is lower than the
one observed in weak typed, suggesting that the main
problems are due to inputs not correctly/completely sanitized
and not caused by the use of wrong variables in the
algorithm.

This can be linked to the fact that, by definition, in strong
typed languages, a variable has a predefined type of data,
while in weakly typed one variable can handle different
types of data, especially in dynamic typed languages like
PHP (the one used in [1]). This means that even when the
programmer uses a variable of a wrong type, the mistake will
not be detected at compile time in weak typed languages.
However, in strong typed languages, the programmer needs
to use a variable declared for that specific type of data and
so, the probability of using wrong variables is much lower.

B. Vulnerability Analysis: XSS & SQL Injection
Looking at XSS column in Table II we can see that the

most frequent fault type is MFC extended, with a percentage
of 82.93%. This can be explained by the fact that the most
important way of exploiting this vulnerability is through the
input of special data into the application. So, if the
application has a way to sanitize and validate this input, the
vulnerability will not be present anymore. Also, in the
majority of cases, this kind of fault type was fixed by the
introduction of a sanitizing function, to clean up the input
received from the user.

Concerning the SQL Injection vulnerability, we can see
in Table II that vulnerabilities have been caused by different
types of faults, as we have not observed the preponderance
of a single type of software fault (as was the case for XSS).

The most frequent fault type that causes SQL injection
vulnerabilities is MIEB with 26.32%, followed by MFC
Extended with 21.05%. This shows that the lack of input
sanitization is not the most frequent problem. The fix of this
kind of security vulnerabilities must be done not only by
sanitizing the user input but also by the verification of other
application states, through the introduction of “if… else…”
statements.

C. Lessons Learned
From the results discussed in the previous two sections,

we can summarize the main differences observed in
vulnerabilities found in the field in applications written with
strong typed and weak typed languages.

The first difference comes right from the number of
detected security vulnerabilities. While in [1], the authors
identified 655 security vulnerabilities in only 6 applications;
in this study we identified 60 security vulnerabilities in 11
applications, taken from an initial set of 24 web applications.
That is, we could not find any recorded vulnerability for 13
of the web applications analyzed. Obviously, this does not
mean that these 13 applications have not had vulnerabilities
fixed: we just could not find any vulnerability description
recorded for these applications.

The general reading of these results is that strong typed
languages do contribute to decrease the frequency of SQL
injection and XSS vulnerabilities in application code. In fact,
the strong typed languages, which, by definition have
variables defined for a specific type, make the use of wrong
variables less probable. But strong typed languages, by
themselves, do not eliminate the need to validate and sanitize
all the inputs from the user, in order to avoid the introduction
of executable instructions (XSS) or SQL queries (SQL
Injection). This is clearly corroborated by our field results, as
we still can find vulnerabilities in web applications written in
strong typed languages.

Another interesting analysis can be made based on the
age of the applications. The majority of the vulnerabilities
that we analyzed were identified after 2005. By this time, the
concern about XSS and SQL Injection vulnerabilities was
already disseminated throughout the world, which can be
confirmed by the publication of several studies in this area
[23][24][25][26][27]. So, when the analyzed applications
were implemented, the technical community was already
concerned about these problems, and could start addressing it
earlier in the application development roadmap. The fact that
we can still find a significant number of vulnerabilities
reported in the field shows that producing secure code is far
from being trivial.

The results presented in this paper also show an
important feature: the vulnerabilities found in the field are
not caused by a large diversity of software fault types. On the
contrary, there is a small set of fault types that is responsible
for most of the vulnerabilities, as already observed in section
IV. This fact can be used to train programmers, focusing
their attention on the correct treatment of the program
structures related to the most frequent types of faults.
Additionally, the knowledge of the most common types of
software faults that lead to SQL injection and XSS
vulnerabilities can also be useful to improve effectiveness of
code inspections, as the inspection team will be aware of the
fact that most vulnerabilities are caused by a small number of
faulty program structures.

Static code analyzes tools can also benefit from the
identification of the most common types of faults observed
in our field study, as the tools can be optimized to improve
detection of such vulnerabilities.

V. CONCLUSION
In this study, we analyzed open source web applications,

written with strong typed languages (Java, C# and VB.NET)
focusing on security vulnerabilities. For this analysis, we
used the methodology presented in [1]. Comparing the
results from the two studies, we can conclude that the use of
strong typed languages does influence security
vulnerabilities. Applications written with strong typed
languages seem to have a smaller number of reported
vulnerabilities.

In this study we found 60 vulnerabilities in 11
applications, while in [1] the authors found 655 in 6
applications. We can also state that the fault types identified
in both studies belong to a narrow list, which points a path to

improve web applications, namely in the context of code
inspections and the use of tools for static analysis [28].

This study also showed that the way the programmers
fixed the reported vulnerabilities has some differences,
depending on the language used.

REFERENCES
[1] Fonseca, J., Vieira, M.: “Mapping Software Faults with Web Security

Vulnerabilities”, IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2008), Anchorage, Alaska, USA, June,
2008

[2] Stock, A., Williams, J., Wichers, D., “OWASP top 10”, OWASP
Foundation, July, 2007

[3] Tomatis, N., Brega, R., Rivera, G., Siegwart, R., "May you have a
strong (-typed) foundation, Why strong-typed programming
languages do matter”, IEEE International Conference on Robotics
and Automation, New Orleans, LA, USA, April 26-May 1, 2004

[4] Open Source Software in Java, December, 2008, http://java-
source.net/

[5] Security Focus, December, 2008, http://www.securityfocus.com/
[6] OSVDB: The Open Source Vulnerability Database, December, 2008,

http://osvdb.org
[7] Secunia, December, 2008, http://secunia.com
[8] Open Source Software in C#, December, 2008, http://csharp-

source.net/
[9] JForum, December, 2008, http://www.jforum.net/
[10] OpenCMS from Alkacon Software, December 10th, 2008,

http://www.opencms.org/
[11] BlojSom, December, 2008,

http://wiki.blojsom.com/wiki/display/blojsom3/About+blojsom
[12] The Roller WebLogger, December, 2008,

http://rollerweblogger.org/project/

[13] JSPWiki, December, 2008, http://www.jspwiki.org/
[14] SubText, December, 2008, http://subtextproject.com/
[15] DotNetNuke, December, 2008, http://www.dotnetnuke.com/
[16] YetAnotherForum, December, 2008, http://www.yetanotherforum.net/
[17] BugTracker .NET, December, 2008,

http://www.ifdefined.com/bugtrackernet.html
[18] Deki Wiki, December, 2008, http://wiki.developer.mindtouch.com/
[19] ScrewTurn Wiki, December, 2008,

http://www.screwturn.eu/Default.aspx?AspxAutoDetectCookieSuppor
t=1

[20] Steve, C., Martin, R., ” Vulnerability Type Distributions in CVE”,
Mitre report, May, 2007

[21] C# Coding Standards and Best Practices, December 2008,
http://www.codeproject.com/KB/cs/c__coding_standards.aspx

[22] C# Coding Standards and Best Programming Practices, December
2008, http://www.dotnetspider.com/tutorials/BestPractices.aspx

[23] Valeur, F., Mutz, D., Vigna, G.: “A Learning-Based Approach to the
Detection of SQL Attacks”, IEEE Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA 2005),
Vienna, Austria, July, 2005

[24] Christey, S., “Unforgivable Vulnerabilities”, Black Hat Briefings,
2007

[25] Zanero, S., Carettoni, L., Zanchetta, M., “Automatic Detection of
Web Application Security Flaws”, Black Hat Briefings, 2005

[26] David, P., Stroud, R., “Conceptual Model and Architecture of
MAFTIA”, LAAS-CNRS, 2003

[27] Jovanovic, N., Kruegel, C., Kirda, E., “Precise Alias Analysis for
Static Detection of Web Application Vulnerabilities”, IEEE
Symposium on Security and Privacy, 2006

[28] Nagy, C., Mancoridis, S., "Static security analysis based on input-
related software faults", 13th European Conference on Software
Maintenance and Reengineering (CSMR'09), Kaiserslautern,
Germany, March, 2009

