

RELATÓRIO DE PROJETO

Licenciatura em Energia e Ambiente

Daniele Sahar Lucas Vidal Rúben José Figueiredo Ferreira dezembro | 2016

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DA GUARDA

GUIA LABORATORIAL DE UM PERMUTADOR DE CALOR DE TUBOS CONCÊNTRICOS

DANIELE SAHAR LUCAS VIDAL E RÚBEN JOSÉ FIGUEIREDO FERREIRA RELATÓRIO PARA A OBTENÇÃO DO GRAU DE LICENCIADO EM ENERGIA E AMBIENTE

Dezembro de 2016

FICHA DE IDENTIFICAÇÃO

Identificação dos Alunos

Nome: Daniele Sahar Lucas Vidal

Nº de Aluno: 1010805

Nome: Rúben José Figueiredo Ferreira

Nº de Aluno: 1011417

Curso: Licenciatura em Energia e Ambiente

Estabelecimento de Ensino: Instituto Politécnico da Guarda - Escola Superior de

Tecnologia e Gestão

Dados do Projeto

Título: Guia Laboratorial de um Permutador de Calor de Tubos Concêntricos

Instituição: Instituto Politécnico da Guarda - Escola Superior de Tecnologia e Gestão

Docente Orientador: Professor Rui António Pitarma S. Cunha Ferreira

Grau Académico: Doutor em Engenharia Mecânica

Início: 18 de Julho de 2016

Fim: 11 de Novembro de 2016

PLANO DO PROJETO

Este trabalho insere-se no âmbito da unidade curricular de Projeto e tem como finalidade elaborar um guia laboratorial para o permutador de calor P.A. Hilton H900. Para isso, foinos proposto:

- Recolha bibliográfica e estudo do equipamento ao qual será realizado o guia laboratorial;
- Realização de ensaios experimentais;
- Correção de anomalias e introdução de melhorias no equipamento;
- Elaboração do relatório.

RESUMO

O presente projeto descreve as atividades desenvolvidas e relacionados com o permutador

de calor de tubos concêntricos P. A. Hilton H900.

Dentro do âmbito deste projeto foram realizados ensaios experimentais com a finalidade

de adquirir dados para posterior aplicação nos exercícios de apoio nomeadamente o

método da diferença média logarítmica de temperatura (DMLT) e o método da

efetividade-número de unidades de transferência (ε-NTU).

Foram elaborados manuais de utilização, de segurança e manutenção e um manual rápido

para o equipamento uma vez que os mesmos não foram encontrados. Também foi feita a

manutenção e sugestão de melhorias no equipamento.

Palavras-chave: Permutador de calor, exercício de aplicação, DMLT, ε-NTU, manual.

Abstract

This project describes the activities developed and related to the P. A. Hilton H900

concentric tube heat exchanger.

Within the scope of this project, experimental tests were carried out with the purpose of

acquiring data for later application in the support exercises, namely the log-mean

temperature difference method (LMTD) and the effectiveness-number method of transfer

units (ε-NTU).

User manuals, safety and maintenance manuals and a quick manual for the equipment

have been developed since they were not found. We also made maintenance and

suggestions for improvements in equipment.

Keywords: Heat exchanger, application exercise, DMLT, ε-NTU, manual

AGRADECIMENTOS

Agradecemos às nossas famílias todo o apoio e compreensão pelo tempo que não lhes pudemos dedicar com a finalidade de concretizar este projeto.

Ao Instituto Politécnico da Guarda e em especial à Escola Superior de Tecnologia e Gestão por nos proporcionar a oportunidade de praticar e aprender e por nos fornecer as ferramentas sem as quais não seria possível realizar este projeto.

Ao nosso orientador Professor Rui Pitarma pelo zelo e disponibilidade. Assim como a todos os professores pela incansável vontade de partilhar o saber.

Aos nossos colegas de curso pelo companheirismo ao ajudarem-nos a percorrer este muito proveitoso caminho.

ÍNDICE

Ficha de Ident	tificação	ii
Plano do Proje	eto	iii
Resumo		iv
Agradeciment	tos	vi
Índice de Figu	ıras	viii
Índice de Tab	elas	viii
Abreviaturas,	Símbolos e Unidades	ix
Capítulo 1 - Ir	ntrodução	1
1.1. O Pr	oblema	1
1.2. Obje	tivos	1
1.3. Orga	ınização do Projeto	1
Capítulo 2 – F	Permutadores de Calor	3
2.1. Class	sificação dos permutadores de calor	3
2.1.1.	Processos de Transferência de Calor	3
2.1.2.	Tipo de Construção	3
2.1.3.	Tipos de Escoamentos	4
2.1.4.	Mecanismo de Transferência de Calor	5
2.1.5.	Grau de Compactação	5
2.1.6.	Aplicações	6
2.2. Tipo	s de Permutadores de Calor	6
2.2.1.	Permutadores de Calor de Tubos Concêntricos	6
2.2.2.	Permutadores de Carcaça e Tubos	6
2.3. Equa	ações Gerais para Permutadores de Calor	9
2.3.1.	Equações de Balanço de Energia	9
2.3.2.	Coeficiente Global de Transferência de Calor	9
2.3.3.	Diferença Média Logarítmica de Temperatura	10
2.3.4.	Método da Efetividade - NTU	11
2.3.5.	Comparação Entre os Métodos DMLT e ε-NTU	13
Capítulo 3 – E	Ensaios Experimentais e Exercícios de Aplicação	14
3.1. Nota	Introdutória	14
3.2. Cron	ologia das Atividades Desenvolvidas	14
3.3. Desc	rição do Equipamento e Modo de Operação	15
3.3.1.	Objetivos e Potencialidades do Equipamento	18
3.3.2.	Instruções de Utilização	18
3.3.3.	Medidas de Segurança	19
3.3.4.	Recomendações	19
3.4. Ensa	ios Experimentais e Exercícios de Aplicação	20
3.4.1.	Ensaios Experimentais	20
3.4.2.	Exercícios de Aplicação	23
Capítulo 4 – C	Considerações Finais	33
Bibliografia		34
Anexo I		35

Manual Rápido/Instruções de Funcionamento e Segurança do Equipamento Anexo II	
Resoluções e Soluções dos Exercícios Propostos	38
Resoluções	39
Soluções	68
ÍNDICE DE FIGURAS	
Figura 1 - Esquema do escoamento em corrente paralela	4
Figura 2 - Esquema do escoamento em contracorrente	5
Figura 3 - Permutador de calor de tubos concêntricos	6
Figura 4 - Permutador de calor de carcaça e tubo com uma passagem na carcaça nos tubos	
Figura 5 - Permutador de calor de carcaça e tubo com uma passagem na carcaça	
nos tubos	
Figura 6 - Variação da temperatura com escoamento em corrente paralela	7
Figura 7 - Variação da temperatura com escoamento em contracorrente	8
Figura 8 - Esquema das válvulas em paralelo e em contracorrente	15
Figura 9 - Esquema e especificações do permutador de calor	16
Figura 10 - Visão geral do permutador de calor	17
Figura 11- Permutador de calor P.A. Hilton H900	20
Figura 12 - Gráfico com as variações da temperatura da água no permutador	25
ÍNDICE DE TABELAS	
Tabela 1 - Especificações do permutador de calor	
Tabela 2 - Identificação das componentes do equipamento	
Tabela 3 - Riscos e medidas de segurança ao utilizar o equipamento	
Tabela 4 - Sugestão de tabela para recolha dos dados num ensaio experimental	
Tabela 5 - Calor específico da água (Cp) em KJ/Kg °C*	
Tabela 6 - Soluções para os exercícios propostos	68

ABREVIATURAS, SÍMBOLOS E UNIDADES

Símbolo	Descrição	Unidade
ΔT_{a}	Diferença máxima entre os valores da temperatura no permutador	$^{\circ}\mathrm{C}$
ΔT_{b}	Diferença mínima entre os valores da temperatura no permutador	$^{\circ}\mathrm{C}$
$\Delta T_{\rm f}$	Diferença entre as temperaturas de entrada e de saída do fluido frio	$^{\circ}\mathrm{C}$
$\Delta T_{ml} $	Diferença média logarítmica de temperatura	$^{\circ}\mathrm{C}$
$\Delta T_{\rm q}$	Diferença entre as temperaturas de entrada e de saída do fluido quente	°C
3	Efetividade	Adimensional
A	Área de transferência de calor	m^2
C_{f}	Capacidade térmica do fluído frio	W/°C
C_{min}	Capacidade térmica mínima	W/°C
$C_{\text{m\'ax}}$	Capacidade térmica máxima	W/°C
C_r	Razão entre as capacidades térmicas	Adimensional
C_{q}	Capacidade térmica do fluído quente	W/°C
Ср	Calor específico do fluído	J/Kg °C
Cp_f	Calor específico do fluído frio	J/Kg °C
Cp_q	Calor específico do fluído quente	J/Kg °C
DMLT	Diferença média logarítmica de temperatura	$^{\circ}\mathrm{C}$
$\dot{m}_{ m f}$	Caudal mássico do fluido frio	Kg/s
$\dot{m}_{ m q}$	Caudal mássico do fluido quente	Kg/s
NTU	Número de unidades de transferência	Adimensional
q	Calor do fluido	W
q_f	Calor do fluido frio	W
q _{máx}	Calor máximo do fluido	W
q_r	Calor real do fluido	W
$q_{ m q}$	Calor do fluido quente	W
QQ	Caudal de água quente	$L/min \rightarrow Kg/s$
QF	Caudal de água fria	$L/\min \rightarrow Kg/s$
T1	Temperatura da água quente à entrada do permutador	°C
T2	Temperatura da água quente à saída do permutador	°C
Т3	Temperatura da água fria à entrada ou à saída do permutador conforme a corrente	°C
T4	Temperatura da água fria à saída ou à entrada do permutador conforme a corrente	°C
T5	Temperatura de transição da água fria no tubo concêntrico	$^{\circ}\mathrm{C}$
T6	Temperatura de transição da água quente no tubo concêntrico	$^{\circ}\mathrm{C}$
Tf_{e}	Temperatura do fluido frio a entrada	°C
Tf_s	Temperatura do fluido frio a saída	°C
Tqe	Temperatura do fluido quente a entrada	$^{\circ}\mathrm{C}$
Tq_s	Temperatura do fluido quente a saída	$^{\circ}\mathrm{C}$
u	Coeficiente global de transferência de calor	W/m^2 °C

CAPÍTULO 1 - INTRODUÇÃO

1.1. O Problema

Levando em consideração a importância das aulas práticas no processo de aprendizagem e que os equipamentos envolvidos complementam este aprendizado, é de total interesse que estes equipamentos façam-se acompanhar por guias laboratoriais que suportem e apoiem a utilização dos mesmos.

O equipamento que será estudado e cujo manual será elaborado neste projeto é o Permutador de Calor P. A. Hilton H900 que está disponível para aplicação dos conhecimentos teóricos sobre transferência de calor no Laboratório de Climatização e Ambiente da Escola Superior de Tecnologia e Gestão, cujo manual não foi encontrado.

1.2. Objetivos

Tendo em atenção o que foi mencionado anteriormente, os objetivos deste projeto são:

- Elaboração de um manual rápido, um manual de utilização e um manual de segurança e manutenção para o permutador de calor P. A. Hilton H 900;
- Realização de ensaios experimentais e exercícios de apoio sobre o permutador de calor;
- Manutenção e sugestão de melhorias a realizar no equipamento.

1.3. Organização do Projeto

O presente relatório está organizado em quatro capítulos:

- Neste primeiro capítulo é feita a introdução ao presente relatório;
- No segundo capítulo abordamos de forma sucinta a temática dos permutadores de calor, assim como as equações e métodos utilizados para os exercícios de aplicação;
 - O terceiro capítulo é dedicado aos ensaios experimentais e aos exercícios de aplicação onde fazemos também a cronologia das atividades desenvolvidas e a descrição do equipamento;

- No quarto e último capítulo, foram tecidas as considerações finais onde assinalamos entre outras coisas, a forma como decorreu o projeto assim como algumas sugestões de melhoria.

CAPÍTULO 2 – PERMUTADORES DE CALOR

Segundo Figueiredo (2015, p.291) de um modo geral, designam-se por permutadores de calor os dispositivos concebidos com o propósito de transferir calor entre dois escoamentos a temperaturas distintas. O modo mais simples de transferir calor entre dois escoamentos consiste em misturá-los, obtendo-se naturalmente um escoamento a uma temperatura intermédia, cujo valor corresponde ao da média ponderada das temperaturas de cada escoamento, sendo os coeficientes de ponderação dados pelas capacidades caloríficas transportadas por cada um. Na generalidade, contudo, a mistura dos dois escoamentos não é conveniente, sendo ambos, nos casos mais comuns, separados por uma parede impermeável, mas condutora de calor.

2.1. Classificação dos permutadores de calor

Azevedo (2005) refere que a classificação de permutadores de calor pode ser efetuada de diversas formas consoante o critério considerado. Como exemplos, podemos apresentar as seguintes classificações consoante os critérios:

2.1.1. Processos de Transferência de Calor

• Contacto direto

Neste processo existe contacto entre os fluidos entre os quais se permuta calor. Em alguns casos trata-se da mesma substância sendo o processo uma mistura. Outro exemplo são torres de refrigeração nas quais ar e água se separam, existindo, no entanto, transferência de massa das gotas de água para o ar húmido.

• Contacto indireto

Neste processo podemos ainda ter a transferência direta ou através de um sistema intermédio de armazenamento/transporte. Na transferência direta os fluídos encontram-se em contacto com uma superfície sólida que os separa. Na transferência de calor com um meio intermédio é usado um fluido ou uma matriz sólida que transporta energia entrando em contacto alternativamente com os fluidos principais quente e frio. São exemplos deste tipo os permutadores utilizados em fornos e caldeiras para aquecer o ar para a combustão à custa dos produtos de combustão e os regeneradores nos ciclos de turbina de gás.

2.1.2. Tipo de Construção

Os permutadores de contato direto não são classificados sob este aspeto, sendo a sua constituição a de uma câmara onde se misturam os fluidos que permutam calor. Nos permutadores de contato indireto a classificação faz-se em relação à forma da superfície

sólida que separa os dois fluídos e através da qual se processa a transferência de calor. O permutador abordado neste trabalho tem a construção do tipo tubular.

- Construção tubular: nestes permutadores um dos fluidos circula no interior de tubos circulando o outro fluido no exterior em tubo concêntrico ou no exterior dos tubos, sendo favorecido o escoamento perpendicular ao tubo por permitir maiores coeficientes de convecção.
- **Construção em placas:** as placas podem separar os fluidos e serem montadas em paralelo ou em espiral.
- **Superfícies alhetadas**: tanto os permutadores baseados em tubos como placas podem possuir superfícies alhetadas.
- Nos permutadores com uma matriz sólida intermédia de transporte de calor a construção pode ser de matriz fixa onde periodicamente se troca o fluido que passa nessa ou rotativa (tambor ou disco) sendo neste caso a matriz sólida transportada.

2.1.3. Tipos de Escoamentos

A classificação quanto ao tipo de escoamento relativo entre os fluidos que trocam calor é importante pois permite formular modelos que descrevem a distribuição de temperatura. Nesta classificação distinguem-se os arranjos com passagens simples e múltiplas. O permutador abordado neste trabalho tem o escoamento do tipo simples.

 Passagens Simples: neste tipo de permutadores cada fluido tem escoamento uniforme apenas numa direção e sentido podendo serem classificados pela orientação relativa entre as correntes.

Correntes Paralelas - Os fluídos deslocam-se na mesma direção e sentido.

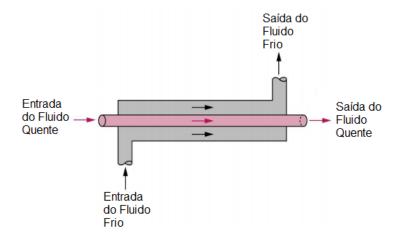


Figura 1 - Esquema do escoamento em corrente paralela Fonte: Adaptado de Bejan (1993)

Contracorrente - Os fluídos deslocam-se na mesma direção, mas em sentidos opostos.

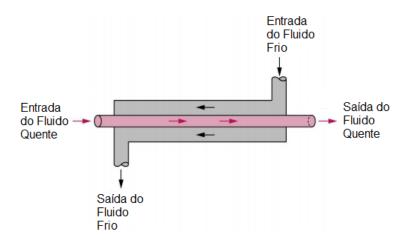


Figura 2 - Esquema do escoamento em contracorrente Fonte: Adaptado de Bejan (1993)

• Passagens Múltiplas: nestes permutadores um dos fluidos tem mais de um sentido de escoamento em relação ao outro ou diversas correntes. São exemplos.

Configuração 2:1 em que a corrente de um dos fluidos tem duas passagens em sentidos opostos, uma em paralelo e outra em contracorrente, em relação ao outro fluído que tem apenas uma passagem. Esta configuração é apenas uma entre outras do tipo m:n, em que o m e o n correspondem ao número de passagens de cada um dos fluidos.

Em permutadores com correntes cruzadas é usual existirem diversas passagens em série para um dos fluídos (em sentidos alternados) enquanto o outro fluído mantém sempre um escoamento perpendicular.

2.1.4. Mecanismo de Transferência de Calor

Em relação ao mecanismo de transferência de ca1or os permutadores podem-se distinguir pela importância da convecção em relação à radiação. A convecção pode ainda dar-se com ou sem mudança de fase. O mecanismo de transferência de ca1or para cada um dos fluidos no permutador pode ser diferente.

2.1.5. Grau de Compactação

Esta classificação permite distinguir os permutadores quanto a sua área especifica designando-se como compactos os permutadores com valores superiores a 700 m² /m³. Este valor não é rígido, mas dá a indicação que se consideram como compactos permutadores em que a dimensão característica pode ser da ordem dos milímetros.

2.1.6. Aplicações

As aplicações dos permutadores são muito numerosas podendo, no entanto, efetuar-se uma classificação tendo em conta o objetivo da sua utilização. São apresentados alguns exemplos:

- Grandes instalações: Caldeiras de aquecimento e de geração de vapor
- Com mudança de fase: Geradores de vapor, Evaporadores, Condensadores.
- Permuta de calor sem mudança de fase: Aquecedores, arrefecedores
- **Recuperação de calor:** Recuperadores quando o calor aproveitado é para outra aplicação e regeneradores quando o calor é aproveitado no próprio ciclo térmico.
- **Dissipadores:** Radiadores, torres de arrefecimento. Nestes pretende-se apenas efetuar um arrefecimento não sendo utilizada a energia transferida para o outro fluido.

2.2. Tipos de Permutadores de Calor

2.2.1. Permutadores de Calor de Tubos Concêntricos

Constituído por um tubo contendo no seu interior um outro, de diâmetro menor e concêntrico como representado na figura 3. Um dos fluidos escoa no tubo interior e o outro no anel circular entre os dois tubos. Dado que ambos os fluidos só atravessam uma vez o permutador, este diz-se de passagem simples.

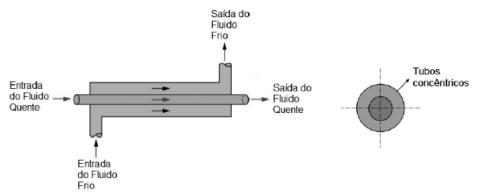


Figura 3 - Permutador de calor de tubos concêntricos Fonte: Adaptado de Bejan (1993)

2.2.2. Permutadores de Carcaça e Tubos

A forma específica varia de acordo com o número de passagens, quer na carcaça quer nos tubos, sendo a mais simples aquela que envolve uma passagem em cada um, tal como se representa na figura 4.

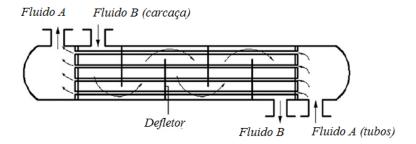


Figura 4 - Permutador de calor de carcaça e tubo com uma passagem na carcaça e uma nos tubos Fonte: Figueiredo (2015)

No caso da figura 5, o fluido A circula nos tubos em duas passagens, enquanto o fluido B executa apenas uma passagem na carcaça. Em geral, esta é provida internamente de defletores, também representados em ambas as figuras, que induzem no escoamento uma direção na medida do possível perpendicular à superfície exterior dos tubos, configuração a que correspondem, sobre aquelas, coeficientes de calor mais elevados.

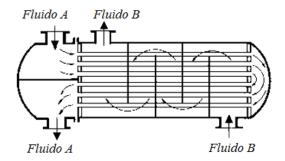


Figura 5 - Permutador de calor de carcaça e tubo com uma passagem na carcaça e duas nos tubos Fonte: Figueiredo (2015)

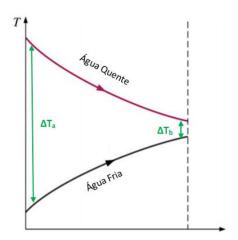


Figura 6 - Variação da temperatura com escoamento em corrente paralela Fonte: Adaptado de Bejan (1993)

Relatório de Projeto Página 7

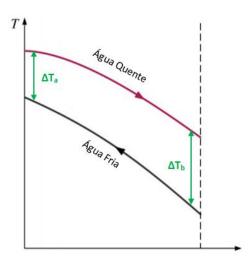


Figura 7 - Variação da temperatura com escoamento em contracorrente Fonte: Adaptado de Bejan (1993)

Existem ainda muitos outros tipos construtivos de permutadores de calor, tais como os de placas, em espiral, os permutadores de correntes cruzadas, etc., bem como diversos modos de funcionamento com as suas classificações próprias. Mas apenas foram explicitados estes dois tipos de permutador, pois são aqueles mais relevantes para o permutador em estudo e cujas equações mencionadas no subcapítulo a seguir estão relacionados com os mesmos.

2.3. Equações Gerais para Permutadores de Calor

Ao longo deste subcapítulo iremos analisar a distribuição de temperatura nos permutadores de calor e apresentar os principais métodos para a sua análise. Ao analisar um permutador de calor é indispensável analisar os balanços de energia aos fluídos através das equações de transferência de calor, conforme indicado a seguir.

2.3.1. Equações de Balanço de Energia

Para a análise de permutadores de calor de uma forma simplificada considera-se que os fluidos são caracterizados por um calor específico constante. Com esta hipótese simplificativa podem-se desenvolver equações para o balanço de energia, diferença média logarítmica de temperatura e eficiência do permutador de uma forma simples. Neste caso o calor perdido pelo fluido quente e ganho pelo fluído frio podem ser escritos como:

$$q_f = q_q \tag{2.1}$$

Sendo:

$$q_f = C p_f \dot{\mathbf{m}}_f \, \Delta T_f \tag{2.2}$$

$$q_q = C p_q \dot{\mathbf{m}}_q \, \Delta T_q \tag{2.3}$$

Onde:

 q_f = calor do fluído frio (W)

 q_q = calor do fluído quente (W)

 Cp_f = calor específico do fluído frio (J/kg °C)

 Cp_a = calor específico do fluído quente (J/kg °C)

 \dot{m}_f = caudal mássico do fluído frio (kg/s)

 \dot{m}_a = caudal mássico do fluído quente (kg/s)

 ΔT_f = diferença entre as temperaturas de entrada e de saída do fluido frio (°C)

 ΔT_q = diferença entre as temperaturas de entrada e de saída do fluido quente (°C)

2.3.2. Coeficiente Global de Transferência de Calor

Nos permutadores de calor de contacto indireto e transferência direta os fluidos que permutam energia encontram-se separados por uma superfície de transferência de calor. A troca de calor entre cada fluido e a superfície pode ser descrita por um coeficiente de convecção.

Assim, o coeficiente global de transferência de calor (u) pode ser usado para determinar a transferência de calor total entre as duas correntes no permutador de calor pela seguinte relação:

$$q = u A \Delta T_{ml} \tag{2.4}$$

Onde:

q = taxa de transferência de calor (W)

u = coeficiente global de transferência de calor (W/(m²·°C))

A =área de transferência de calor (m²)

 ΔT_{ml} = diferença média logarítmica de temperatura (°C)

2.3.3. Diferença Média Logarítmica de Temperatura

Ao longo de um permutador a temperatura do fluido e da superfície variam surgindo assim a necessidade de analisar os perfis de temperatura em configurações típicas e definir a diferença média logarítmica de temperatura entre os fluídos.

Este é o melhor método usado na análise de permutadores de calor quando as temperaturas de entrada e saída dos fluidos quente e frio são conhecidas ou podem ser determinadas pelo balanço de energia.

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \tag{2.5}$$

Onde:

 ΔT_{ml} = diferença média logarítmica de temperatura

 ΔT_a = diferença máxima de temperatura no permutador

 ΔT_b = diferença mínima de temperatura no permutador

Com o método da diferença média logarítmica o que se espera é selecionar o tamanho do permutador de calor que satisfaça as condições de processo. O processo da seleção é então dado por:

- Selecionar o tipo de permutador adequado para a aplicação;
- Determinar as temperaturas de entrada e saída, assim como a taxa de transferência de calor, com o uso das equações de balanço de energia;
- Calcular a diferença média logarítmica de temperatura e fator de correção (se necessário);
- Obter o valor do coeficiente global de transferência de calor (u);
- Calcular a superfície de transferência necessária (A);
- Selecionar um permutador de calor que satisfaça esta área de transferência.

2.3.4. Método da Efetividade - NTU

Este método é mais utilizado para determinar as taxas de transferência de calor e as temperaturas de saída dos fluidos quente e frio para caudais mássicos e temperaturas de entrada prescritas, tendo o permutador de calor sido especificado em termos de tamanho e tipo.

Neste caso a área (superfície) de troca térmica do permutador é conhecida, mas as suas temperaturas de saída não.

Outra possibilidade é a determinação do desempenho de um permutador de calor ou se determinado permutador será suficiente para a aplicação em causa.

Este método baseia-se em um parâmetro adimensional denominado efetividade de um permutador de calor (E).

$$\varepsilon = \frac{Transferência\ de\ Calor\ Real}{Transferência\ de\ Calor\ M\'{a}xima} = \frac{q_r}{q_{m\'{a}x}} \tag{2.6}$$

A transferência de calor máxima ocorrerá quando um dos fluídos sofrer a máxima variação possível.

Para isso, é preciso definir as capacidades térmicas dos fluidos:

$$C_f = Cp_f \,\dot{\mathbf{m}}_f \tag{2.7}$$

$$C_q = Cp_q \,\dot{\mathbf{m}}_f \tag{2.8}$$

Onde:

C_f= capacidade térmica do fluído frio (W/°C)

 C_q = capacidade térmica do fluído quente (W/°C)

 Cp_f = calor específico do fluído frio (J/kg °C)

 Cp_q = calor específico do fluído quente (J/kg °C)

 \dot{m}_f = caudal mássico do fluído frio (kg/s)

 \dot{m}_a = caudal mássico do fluído quente (kg/s)

Troca de calor real:

$$q_r = Cp_f \dot{m}_f \Delta Tf = Cp_q \dot{m}_q \Delta T_q$$
 (2.9)

Cujos parâmetros já foram descritos nas equações (2.2) e (2.3)

Ou seja, a energia que um fluido perde é igual a energia que o outro fluido ganha.

Já o calor máximo do fluído será igual à capacidade térmica mínima:

$$q_{m\acute{a}x} = C_{min} \left(Tq_e - Tf_e \right) \tag{2.10}$$

Sendo assim:

$$\varepsilon = \frac{q_r}{q_{m\acute{a}x}} = \frac{C_f(Tf_s - Tf_e)}{C_{min}(Tq_e - Tf_e)} = \frac{C_q(Tq_e - Tq_s)}{C_{min}(Tq_e - Tf_e)} \quad (2.11)$$

$$C_q < C_f \Rightarrow C_{min} = C_q \Rightarrow C_q = \left(\frac{(Tq_e - Tq_s)}{(Tq_e - Tf_e)}\right)$$
 (2.12)

$$C_f < C_q \Rightarrow C_{min} = C_f \Rightarrow C_f = \left(\frac{(Tf_s - Tf_e)}{(Tq_e - Tf_e)}\right)$$
 (2.13)

Onde:

 Tf_e = Temperatura do fluido frio a entrada (°C)

 Tf_s = Temperatura do fluido frio a saída (°C)

 Tq_e = Temperatura do fluido quente a entrada (°C)

 Tq_s = Temperatura do fluido quente a entrada (°C)

Escoamento em Correntes Paralelas:

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r}$$
 (2.14)

$$NTU = \frac{u A}{C_{min}} \tag{2.15}$$

Onde C_r é igual a razão entre as capacidades térmicas:

$$C_r = \frac{C_{min}}{C_{m\acute{a}x}} \tag{2.16}$$

Escoamento em Contracorrente:

$$NTU = \frac{1}{c_r - 1} ln\left(\frac{\varepsilon - 1}{\varepsilon_{Cr} - 1}\right)$$
, quando (C_r<1) (2.17)

$$NTU = \frac{\varepsilon}{1-\varepsilon}$$
, quando (Cr =1) (2.18)

2.3.5. Comparação Entre os Métodos DMLT e ε-NTU

Segundo (Figueiredo 2015), a utilização do método DMTL é relativamente expedita quando são conhecidos os caudais e as temperaturas de entrada e de saída dos escoamentos envolvidos. Neste tipo de situações, designadas, muitas vezes, por problemas de projeto, interessa conhecer o tipo de permutador a selecionar e a correspondente área A de transmissão de calor. A potência transferida é determinada por uma equação de balanço de energia entre a entrada e saída de qualquer dos escoamentos; uma vez calculados o coeficiente global de transferência de calor (u), a área obtém-se por aplicação da equação (2.4). É claro que o método ε-NTU é igualmente aplicável, bastando para isso determinar-se a razão C_r das capacidades caloríficas transportadas e a eficiência ε por recurso das equações (2.11) ou (2.14). Conhecido o valor do coeficiente u, a área A determina-se a partir da própria definição do número de unidades de transferência, equação (2.15).

Uma outra classe de problemas, habitualmente designada por calculo do comportamento térmico, parte do conhecimento das temperaturas de entrada dos escoamentos, do tipo de permutador e da área de transferência, tendo por objetivo a determinação da potência transferida e as temperaturas de saída do escoamento. Embora, nestes casos, o método DMLT seja igualmente aplicável, ele conduz necessariamente a um processo laborioso de iterações sucessivas, pelo que é aconselhável o uso do método ε-NTU.

CAPÍTULO 3 – ENSAIOS EXPERIMENTAIS E EXERCÍCIOS DE APLICAÇÃO

3.1. Nota Introdutória

Ao longo deste capítulo serão abordados os temas relacionados com o trabalho realizado, onde descreve-se, por ordem cronológica, as atividades que foram desenvolvidas durante a realização deste projeto, descreve-se também o equipamento e o modo de operação e apresenta-se os exercícios de aplicação resultantes dos ensaios experimentais.

3.2. Cronologia das Atividades Desenvolvidas

Na primeira semana procedemos à limpeza de forma a remover a ferrugem acumulada no tambor traseiro provavelmente causada pelo contato prolongado entre a água do tambor e a tubulação ligada ao mesmo e verificamos o estado de conservação das componentes do equipamento.

No seguimento do trabalho de manutenção ao equipamento, foram então realizados alguns ensaios experimentais com a finalidade de verificar o funcionamento do equipamento. Posteriormente foram realizados ensaios com intervalos mais precisos entre as temperaturas para uma melhor perspetiva da comparação entre os resultados e para aplicação das equações gerais mencionadas no capítulo anterior.

Nas semanas seguintes realizamos ensaios experimentais com intervalos padronizados para as temperaturas e caudais. Infelizmente o termostato avariou alguns dias antes do encerramento da Escola para férias. Entretanto no mês de encerramento fizemos o levantamento bibliográfico, elaboramos os respetivos manuais já mencionados anteriormente e começamos a estruturar o relatório.

Em outubro realizamos os restantes ensaios onde utilizamos um termómetro digital com termopares fornecido pelo nosso orientador com a finalidade de suprir a avaria do termostato e para maior certeza na aquisição dos dados. Uma vez que os primeiros ensaios tinham sido realizados no verão, a temperatura da água de entrada era bastante diferente da que verificamos nestes posteriores ensaios, sendo assim, achamos necessário realizar novamente os ensaios, mesmo porque com a utilização do termómetro digital que nos foi fornecido tínhamos uma maior fiabilidade na temperatura da água no tanque.

A fase seguinte foi a de elaboração dos cálculos relativos aos exercícios de aplicação e introdução destes dados no presente relatório.

3.3. Descrição do Equipamento e Modo de Operação

Permutador de Calor de Tubos Concêntricos P. A. Hilton H900

O permutador de calor de tubos concêntricos P. A. Hilton H900 consiste em dois tubos coaxiais, um dentro do outro, para transportar fluidos com diferentes temperaturas. Devido à diferença de temperatura, o fluido que passa pelo tubo concêntrico quente irá transmitir calor para o fluido que passa no tubo concêntrico frio.

Dois tubos concêntricos separados são dispostos em série em um formato de U para reduzir o comprimento total e para fornecer um ponto intermédio de medição da temperatura.

A água quente circula através do tanque de aquecimento que contém uma resistência, a saída do tanque encontra-se uma bomba que faz circular a água quente num circuito fechado, o caudal de água quente é ajustado através de um caudalímetro.

A água fria é introduzida no permutador através de uma mangueira, que se encontra ligada diretamente à rede de distribuição, e circula dentro do permutador através de tubos cujo caudal é ajustado também através de um caudalímetro, e é escoada através de outra mangueira para o exterior, circulando assim em circuito aberto e permanente.

A temperatura da água quente é definida através do controlador de temperatura, onde o *set point* previamente definido é atingido quando a linha vermelha atinge o zero.

Os pontos intermediários de ambos os fluxos quentes e frios são equipados com termómetros para medir as temperaturas de transmissão.

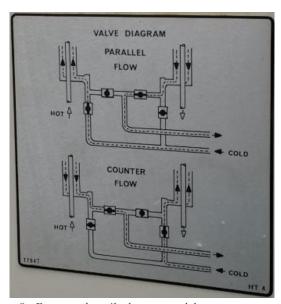


Figura 8 - Esquema das válvulas em paralelo e em contracorrente

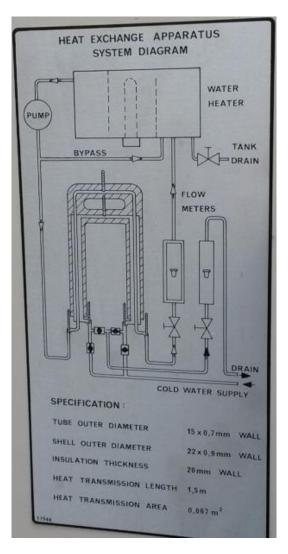


Figura 9 - Esquema e especificações do permutador de calor

Tabela 1 - Especificações do permutador de calor

Diâmetro externo do tubo interno	15 mm
Espessura da parede do tubo interno	0,7 mm
Diâmetro interno do tubo interno	13,6 mm
Diâmetro externo do tubo externo	22 mm
Espessura da parede do tubo externo	0,9 mm
Diâmetro interno do tubo externo	20,2 mm
Espessura do isolamento	20 mm
Comprimento dos tubos de transferência de calor	= 1,5 m
Área de transferência de calor	$= 0.067 \text{ m}^2$

Figura 10 - Visão geral do permutador de calor

Tabela 2 - Identificação das componentes do equipamento

I	Interruptor			
CT	Controlador de Temperatura			
QQ	Caudal de Água Quente			
QF	Caudal de Água Fria			
VQ	Válvulas dos Caudalímetros			
VA	Válvulas Para Retirar Ar às Tubagens			
T1	Temperatura da Água Quente à Entrada do Permutador			
T2	Temperatura da Água Quente à Saída do Permutador			
Т3	Temperatura da Água Fria à Entrada ou à Saída do Permutador Conforme a			
13	³ Corrente			
T4	Temperatura da Água Fria à Saída ou à Entrada do Permutador Conforme a			
14	Corrente			
T5	Temperatura de Transição da Água Fria no Tubo Concêntrico			
T6	Temperatura de Transição da Água Quente no Tubo Concêntrico			

3.3.1. Objetivos e Potencialidades do Equipamento

Demonstrar o aquecimento indireto ou resfriamento por transferência de calor de uma corrente de fluido para outra quando separados por uma parede sólida (transferência de fluido para fluido).

Realizar balanços de energia através de um permutador de calor de tubo concêntrico e calcular a eficiência global em diferentes escoamentos.

Demonstrar as diferenças entre o escoamento em contracorrente (fluxos em direções opostas) e em correntes paralelas (fluxos na mesma direção) e o efeito sobre o calor transferido, eficiências de temperatura e perfis de temperatura.

Determinar o coeficiente global de transferência de calor (u) para um permutador de calor de tubo concêntrico usando a diferença média logarítmica de temperatura (DMLT) e o método ε-NTU para realizar os cálculos (para escoamentos em contracorrente e correntes paralelas).

3.3.2. Instruções de Utilização

- 1. Fechar as válvulas dos caudalímetros (VQ) e a válvula do tanque de água quente;
- 2. Encher o tanque com água, sem ultrapassar a altura das chicanas;
- 3. Ligar a mangueira de entrada de água fria à rede e abrir a torneira;
- **4.** Ligar a mangueira de drenagem a um escoamento;
- **5.** Ligar o permutador à corrente elétrica, mas antes verificar se o mesmo está desligado através do interruptor frontal (I);
- **6.** Definir o *set point* da temperatura da água quente através do controlador de temperatura (CT);
- 7. Definir o tipo de corrente (contracorrente ou correntes paralelas) através das válvulas frontais (ver figura 8);
- **8.** Ligar o permutador de calor através do interruptor frontal (I);
- Definir os caudais de água fria e quente desejados através dos caudalímetros (QQ e QF);
- **10.** Retirar o ar das tubagens através das válvulas (VA), preferencialmente com mangueiras para evitar molhar o equipamento;
- 11. Aguardar até a temperatura atingir o set point desejado;
- **12.** Após 5 minutos verificar a temperatura de saída da água quente, ao fim de mais 5 minutos verificar se a temperatura de saída da água quente está igual, se não houver alteração, proceder às medições, se houver alterações é preciso aguardar mais tempo.

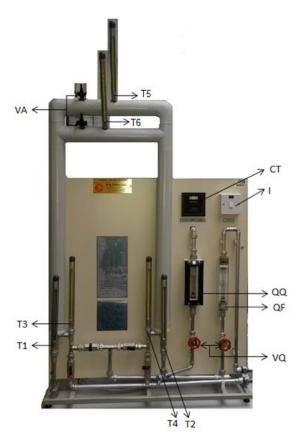
3.3.3. Medidas de Segurança

Tabela 3 - Riscos e medidas de segurança ao utilizar o equipamento

3.3.4. Recomendações

Esvaziar completamente o tanque de armazenamento de água quente se o equipamento não for utilizado durante longos períodos para evitar o aparecimento e a acumulação de ferrugem na tubagem, na resistência e no tanque.

Durante as operações de limpeza:


- Desligue sempre o equipamento no interruptor;
- Desligue o equipamento da corrente elétrica;
- A limpeza deve ser efetuada quando o equipamento estiver frio.

3.4. Ensaios Experimentais e Exercícios de Aplicação

3.4.1. Ensaios Experimentais

Objetivo: medir a variação das temperaturas de entrada e saída da água quente e da água fria em um permutador de calor de tubos concêntricos, com a variação dos seguintes fatores:

- Tipo de escoamento (em paralelo e em contracorrente);
- Caudal de água quente e de água fria;
- Temperatura da água quente que sai do tambor.

	Identificação dos componentes				
I	Interruptor				
CT	Controlador de Temperatura				
QQ	Caudal de Água Quente				
QF	Caudal de Água Fria				
QF VQ	Válvulas dos Caudalímetros				
VA	Válvulas Para Retirar Ar às Tubagens				
T1	Temperatura da Água Quente à Entrada do Permutador				
T2	Temperatura da Água Quente à Saída do Permutador				
Т3	Temperatura da Água Fria à Entrada ou à Saída do Permutador Conforme a Corrente				
T4	Temperatura da Água Fria à Saída ou à Entrada do Permutador Conforme a Corrente				
Т5	Temperatura de Transição da Água Fria no Tubo Concêntrico				
Т6	Temperatura de Transição da Água Quente no Tubo Concêntrico				

Figura 11- Permutador de calor P.A. Hilton H900

Procedimentos:

- Fechar as válvulas dos caudalímetros (VQ) e a válvula do tanque de água quente;
- Encher o tanque com água, até ultrapassar a altura das chicanas;
- Ligar a mangueira de entrada de água fria à rede e abrir totalmente a torneira;
- Ligar a mangueira de drenagem a um escoamento;
- Ligar o permutador à corrente elétrica, e verificar que o mesmo está desligado através do interruptor frontal (I);
- Definir o *set point* da temperatura da água quente através do controlador de temperatura (CT) para a temperatura desejada em °C;

Relatório de Projeto

- Definir o tipo de corrente (contracorrente ou correntes paralelas) através das válvulas frontais (ver figura 8);
- Ligar o permutador de calor através do interruptor frontal (I);
- Definir o caudal de água quente desejado através da caudalímetro (QQ);
- Definir o caudal de água fria desejado através do caudalímetro (QF);
- Retirar o ar das tubagens através das válvulas (VA), preferencialmente com mangueiras para evitar molhar o equipamento;
- Aguardar até a temperatura atingir o set point desejado;
- Após 10 a 15 minutos verificar a temperatura de saída da água quente, ao fim de mais 5 minutos verificar se a temperatura de saída da água quente está igual, se não houver alteração, proceder às medições, se houver alterações é preciso aguardar mais tempo.

Utensílios e equipamentos utilizados:

- Permutador de Calor
- Cronómetro

Para facilitar os cálculos sugerimos a utilização de uma tabela como a que se encontra a seguir:

Tabela 4 - Sugestão de tabela para recolha dos dados num ensaio experimental

Temperatura no controlador		
Temperatura de entrada da	Temperatura de entrada da água da rede	
Caudal mássico da água que	nte (m _q)	
Caudal mássico da água fria (m _f)		
Tipo de escoamento		
	T1	
Água Quente	T5	
	T2	
	Т3	
Água Fria	Т6	

Para os cálculos serão utilizadas as equações descritas na secção 2.3 do presente relatório. Onde o coeficiente global de transferência de calor (u) será encontrado através da dedução feita a partir da equação (2.4), como demonstrado a seguir:

$$q = u A \Delta T_{ml}$$

$$u = \left(\frac{q}{(A \, \Delta T_{ml})}\right)$$

Tabela 5 - Calor específico da água (Cp) em KJ/Kg °C*

°C	0	1	2	3	4	5	6	7	8	9
0	4.217	4.214	4.212	4.201	4.207	4.205	4.202	4.200	4.197	4.195
10	4.192	4.191	4.190	4.189	4.188	4.187	4.186	4.185	4.184	4.183
20	4.182	4.182	4.181	4.181	4.180	4.180	4.180	4.179	4.179	4.178
30	4.178	4.178	4.178	4.178	4.178	4.178	4.178	4.178	4.178	4.178
40	4.178	4.178	4.178	4.179	4.179	4.179	4.179	4.179	4.180	4.180
50	4.180	4.180	4.181	4.181	4.182	4.182	4.182	4.183	4.183	4.184
60	4.184	4.185	4.185	4.186	4.186	4.187	4.188	4.188	4.188	4.189
70	4.189	4.190	4.190	4.191	4.192	4.193	4.193	4.194	4.195	4.195

*Encontrada por interpolação a partir de uma tabela da fonte citada a baixo. Fonte: Bejan (1993)

3.4.2. Exercícios de Aplicação

Nesta secção descrevem-se diferentes condições de funcionamento do equipamento, resultantes de vários ensaios experimentais para os quais devem ser calculados os parâmetros térmicos do permutador de calor exigidos para cada exercício.

Exemplo:

Para as condições do ensaio apresentados resumidamente na tabela a seguir, calcular os parâmetros DMLT e ε-NTU.

Dados				
Temperatura no Controlador	40 °C			
Temperatura de Entrada da Águ	20 °C			
Caudal de Água Quente (\dot{m}_q)	2 L/min			
Caudal de Água Fria (m _f)	2 L/min			
Tipo de Corrente	Paralelo			
	T1	39°C		
Água Quente	T5	36 °C		
	T2	34 °C		
	Т3	25 °C		
Água Fria	T6	22 °C		
_	T4	20 °C		

Cálculos:

A diferença média logarítmica da temperatura é calculada diretamente a partir das temperaturas registadas durante o ensaio, onde:

- \rightarrow ΔT_a é a diferença máxima entre os valores da temperatura no permutador (temperatura da água quente e da água fria a entrada do permutador);
- \rightarrow ΔT_{b} é a diferença mínima entre os valores da temperatura no permutador (temperatura da água quente e da água fria a saída do permutador).

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \begin{cases} \Delta T_a = T1 - T4 \Leftrightarrow \Delta T_a = 39 - 20 \Leftrightarrow \Delta T_a = 19^{\circ}C \\ \Delta T_b = T2 - T3 \Leftrightarrow \Delta T_b = 34 - 25 \Leftrightarrow \Delta T_b = 11^{\circ}C \end{cases}$$

$$\Delta T_{ml} = \frac{(19 - 11)}{ln\left(\frac{19}{11}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{14,64}^{\circ}C$$

Relatório de Projeto

Para a efetividade precisamos de calcular outros parâmetros como:

- \rightarrow o calor do fluído quente (q_q) ; Onde:
 - O Cp_q é o calor específico da água quente, e para estes casos consideramos o valor médio da água quente, que neste ensaio é de 36°C:
 - O caudal mássico da água quente deve ser convertido para kg/s;
 - ΔTq é a diferença entre a temperatura da água quente que entra e da água quente que sai.

$$q_q = Cp_q \dot{\mathbf{m}}_q \, \Delta T_q \Rightarrow \begin{cases} Cp_q = 4178 \, \mathrm{J/Kg} \, ^{\circ}\mathrm{C} \, \text{ (tabela 5)} \\ \dot{\mathbf{m}}_q = \frac{2 \, L}{60 \, min} \Leftrightarrow \, \dot{\mathbf{m}}_q = 0,033 \, kg/s \\ \Delta T_q = 39 - 34 \, \Leftrightarrow \, \Delta T_q = 5 ^{\circ}\mathrm{C} \end{cases}$$

$$q_q = 4178 \times 0,033 \, \times 5 \, \Leftrightarrow \, q_q = \mathbf{689,37} \, \mathbf{W}$$

→ O coeficiente global de transferência de calor (u);

$$u = \left(\frac{q}{(A \times \Delta T_{ml})}\right) \Rightarrow A = 0.067 \ m^2 \ (tabela \ 1)$$

$$u = \left(\frac{689.37 \ W}{(0.067 \ m^2 \times 14.67 \ ^{\circ}C)}\right) \Leftrightarrow u = 702.81 \ W/m^2 \circ C$$

 \rightarrow A capacidade térmica do fluído quente (C_q);

$$C_q = Cp_q \ \dot{\mathbf{m}}_q \Rightarrow \begin{cases} Cp_q = 4178 \ \mathrm{J/Kg} \, ^{\circ}\mathrm{C} \ (tabela \ 5) \\ \dot{\mathbf{m}}_q = \frac{2 \, L}{60 \, min} \Leftrightarrow \ \dot{\mathbf{m}}_q = 0.033 \, kg/s \end{cases}$$

$$C_q = 4178 \, \mathrm{J/Kg} \, ^{\circ}\mathrm{C} \times 0.033 \, kg/s \Leftrightarrow \quad \mathbf{C}_q = \mathbf{137.87} \, \mathbf{W} / ^{\circ}\mathrm{C}$$

 \rightarrow A capacidade térmica do fluído frio (C_f);

Sendo assim, como a capacidade térmica do fluído quente é menor do que a do fluido frio, a capacidade térmica mínima será a do fluido quente:

$$C_q < C_f \Rightarrow C_{min} = C_q$$

 \rightarrow A razão entre as capacidades térmicas (C_r);

$$C_r = \frac{C_{min}}{C_{m\acute{a}x}} \Rightarrow \begin{cases} C_{min} = C_q \\ C_{m\acute{a}x} = C_f \end{cases}$$

$$C_r = \frac{137,87 \, W/^{\circ}C}{137,97 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},9993$$

→ O número de unidades de transferência (NTU);

$$NTU = \frac{u A}{C_{min}}$$

$$NTU = \frac{702,81 \times 0,067}{137,87} \Leftrightarrow NTU = \mathbf{0}, \mathbf{34}$$

 \rightarrow E por fim a efetividade (ϵ);

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r}$$

$$\varepsilon = \frac{(1 - exp^{((-0.34)*(1+0.9993))}}{1 + 0.9993} \iff \varepsilon = 0.25$$

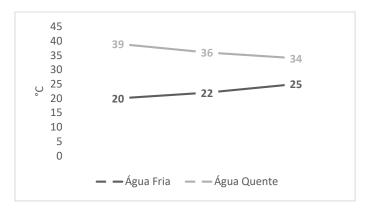


Figura 12 - Gráfico com as variações da temperatura da água no permutador

Relatório de Projeto

EXERCÍCIO 1

Ao realizar um ensaio em um permutador de calor de tubos concêntricos com correntes em paralelo com a finalidade de arrefecer um caudal mássico da água quente de 2 l/min de 44°C para 37°C, a água de arrefecimento entrava no equipamento a 20°C e saia a 26°C. Tendo em consideração os dados do ensaio, determine o coeficiente global de transferência de calor (u)?

EXERCÍCIO 2

Utilizando os valores fornecidos na tabela a seguir, calcule a efetividade (ε).

Dados				
Caudal de água quento	2 1/min			
Caudal de água fria (r	2 l/min			
Tipo de corrente	Tipo de corrente			
	T1	48 °C		
Água Quente	T5	43 °C		
	T2	40 °C		
	Т3	27 °C		
Água Fria	T6	23 °C		
	T4	20 °C		

EXERCÍCIO 3

Através dos valores da tabela a seguir, elabore um gráfico com as temperaturas e identifique o tipo de corrente do escoamento.

Temperaturas				
	T1	52 °C		
Água Quente	T5	46 °C		
	T2	43 °C		
	T3	29 °C		
Água Fria	T6	24 °C		
	T4	20 °C		

Através de um ensaio experimental em um permutador de calor de tubos concêntricos, encontramos os valores que constam da tabela a seguir:

Dados			
Caudal de água quent	Caudal de água quente (\dot{m}_q)		
Caudal de água fria (r	$\dot{\mathbf{n}}_f)$	2 1/min	
Tipo de corrente		Paralelo	
	T1	56 °C	
Água Quente	T5	50 °C	
	T2	45 °C	
	Т3	30 °C	
Água Fria	T6	25 °C	
	T4	20 °C	

Para um coeficiente global de transferência de calor (u) de aproximadamente 944 W/m²°C, qual deve ser a área de troca de calor?

EXERCÍCIO 5

Para as condições do ensaio apresentados resumidamente na tabela a seguir, calcular os parâmetros DMLT e ϵ -NTU.

Dados			
Caudal de água quento	Caudal de água quente (\dot{m}_q)		
Caudal de água fria (r	n_f)	1 l/min	
Tipo de corrente		Paralelo	
Água Quente	T1 T5 T2	40°C 38 °C 36 °C	
Água Fria	T3 T6 T4	28 °C 24 °C 20 °C	

EXERCÍCIO 6

Ao realizar um ensaio em um permutador de calor de tubos concêntricos com correntes em paralelo com a finalidade de arrefecer um caudal mássico da água quente de 2 l/min de 44°C para 39°C, a água de arrefecimento entrava no equipamento a 20°C e saia a 30°C. Tendo em consideração os dados do ensaio, determine o coeficiente global de transferência de calor (u)?

Utilizando os valores fornecidos na tabela a seguir, calcule a efetividade (ε) .

Dados			
Caudal de água quent	2 1/min		
Caudal de água fria (r	1 l/min		
Tipo de corrente		Paralelo	
	T1	49 °C	
Água Quente	T5	45 °C	
	T2	43 °C	
	T3	34 °C	
Água Fria	T6	27 °C	
	T4	20 °C	

EXERCÍCIO 8

Através dos valores da tabela a seguir, elabore um gráfico com as temperaturas e identifique o tipo de corrente do escoamento.

Temperaturas			
	T1	53 °C	
Água Quente	T5	50 °C	
	T2	46 °C	
	T3	35 °C	
Água Fria	T6	29 °C	
	T4	20 °C	

EXERCÍCIO 9

Através de um ensaio experimental em um permutador de calor de tubos concêntricos, encontramos os valores que constam da tabela a seguir:

Dados			
Caudal de água quent	2 1/min		
Caudal de água fria (\dot{m}_f)		1 l/min	
Tipo de corrente		Paralelo	
	T1	56 °C	
Água Quente	T5	52 °C	
	T2	49 °C	
	Т3	37 °C	
Água Fria	T6	31 °C	
	T4	20 °C	

Relatório de Projeto

Para um coeficiente global de transferência de calor (u) de aproximadamente 660 W/m²°C, qual deve ser a área de troca de calor?

EXERCÍCIO 10

Para as condições do ensaio apresentados resumidamente na tabela a seguir, calcular os parâmetros DMLT e ε-NTU.

Dados			
Caudal de água quent	Caudal de água quente (\dot{m}_q)		
Caudal de água fria (r	Caudal de água fria (\dot{m}_f)		
Tipo de corrente		Contracorrente	
	T1	39°C	
Água Quente	T5	37 °C	
	T2	33 °C	
	Т3	19 °C	
Água Fria	T6	21 °C	
	T4	25 °C	

EXERCÍCIO 11

Ao realizar um ensaio em um permutador de calor de tubos concêntricos com contracorrente com a finalidade de arrefecer um caudal mássico da água quente de 2 l/min de 43°C para 36°C, a água de arrefecimento entrava no equipamento a 19°C e saia equipamento a 26°C. Tendo em consideração os dados do ensaio, determine o coeficiente global de transferência de calor (u)?

EXERCÍCIO 12

Utilizando os valores fornecidos na tabela a seguir, calcule a efetividade (ε).

Dados			
Caudal de água quent	$e(\dot{m}_q)$	2 l/min	
Caudal de água fria (r	Caudal de água fria (\dot{m}_f)		
Tipo de corrente		Contracorrente	
	T1	47 °C	
Água Quente	T5	43 °C	
	T2	38 °C	
	Т3	19 °C	
Água Fria	T6	22 °C	
	T4	27 °C	

Relatório de Projeto

Através de um ensaio experimental em um permutador de calor de tubos concêntricos, encontramos os valores que constam da tabela a seguir:

Dados			
Caudal de Água Quent	Caudal de Água Quente (\dot{m}_q)		
Caudal de Água Fria (1	$\dot{\mathbf{m}}_f$)	2 L/min	
Tipo de Ensaio		Contracorrente	
	T1	52 °C	
Água Quente	T5	46 °C	
	T2	42 °C	
	Т3	19 °C	
Água Fria	T6	23 °C	
	T4	29 °C	

Para um coeficiente global de transferência de calor (u) de aproximadamente 958 W/m^{2} °C, qual deve ser a área de troca de calor?

EXERCÍCIO 14

Através dos valores da tabela a seguir, elabore um gráfico com as temperaturas e identifique o tipo de corrente do escoamento.

Temperaturas			
	T1	55 °C	
Água Quente	T5	50 °C	
	T2	44 °C	
	T3	19 °C	
Água Fria	T6	23 °C	
	T4	29 °C	

Para um coeficiente global de transferência de calor (u) de aproximadamente 660 W/m^2 °C, qual deve ser a área de troca de calor?

Para as condições do ensaio apresentados resumidamente na tabela a seguir, calcular os parâmetros DMLT e ϵ -NTU.

Dados			
Caudal de água quent	Caudal de água quente (\dot{m}_q)		
Caudal de água fria (r	Caudal de água fria (\dot{m}_f)		
Tipo de corrente		Contracorrente	
	T1	40 °C	
Água Quente	T5	38 °C	
	T2	35 °C	
	Т3	20 °C	
Água Fria	T6	23 °C	
	T4	28 °C	

EXERCÍCIO 16

Ao realizar um ensaio em um permutador de calor de tubos concêntricos com contracorrente com a finalidade de arrefecer um caudal mássico da água quente de 2 l/min de 44°C para 38°C, a água de arrefecimento entrava no equipamento a 20°C e saia a 30°C. Tendo em consideração os dados do ensaio, determine o coeficiente global de transferência de calor (u)?

EXERCÍCIO 17

Utilizando os valores fornecidos na tabela a seguir, calcule a efetividade (ε).

Dados			
Caudal de água quent	$e(\dot{m}_q)$	2 1/min	
Caudal de água fria (r	n_f)	1 l/min	
Tipo de corrente		Contracorrente	
	T1	48 °C	
Água Quente	T5	46 °C	
	T2	42 °C	
	Т3	20 °C	
Água Fria	T6	26 °C	
	T4	33 °C	

Através dos valores da tabela a seguir, elabore um gráfico com as temperaturas e identifique o tipo de corrente do escoamento.

Temperaturas			
	T1	53 °C	
Água Quente	T5	49 °C	
	T2	45 °C	
	T3	20 °C	
Água Fria	T6	27 °C	
	T4	35 °C	

EXERCÍCIO 19

Através de um ensaio experimental em um permutador de calor de tubos concêntricos, encontramos os valores que constam da tabela a seguir:

Dados				
Caudal de água quent	$e(\dot{m}_q)$	2 1/min		
Caudal de água fria (r	$\dot{\mathbf{n}}_f)$	1 l/min		
Tipo de corrente		Contracorrente		
	T1	57 °C		
Água Quente	T5	52 °C		
	T2	47 °C		
	Т3	20 °C		
Água Fria	T6	28 °C		
	T4	37 °C		

Para um coeficiente global de transferência de calor (u) de aproximadamente 998 W/m^{2} °C, qual deve ser a área de troca de calor?

CAPÍTULO 4 – CONSIDERAÇÕES FINAIS

Este projeto foi uma ferramenta importante para a prática de alguns conhecimentos teóricos adquiridos na unidade curricular de Fenómenos de Transferência, e através do mesmo também adquirimos conhecimentos mais abrangentes relativamente aos permutadores de calor.

Uma vez que o equipamento encontrava-se há algum tempo sem ser utilizado, foi preciso proceder à sua manutenção através da limpeza do tanque que se encontrava com alguma ferrugem acumulada, substituição de um termómetro pois este encontrava-se partido, isolamento das ligações que após primeira utilização apresentavam fugas e ao ajuste de válvulas, e mangueiras, isso facilitou a elaboração do manual, pois ao fazermos a manutenção passamos a conhecer melhor o funcionamento do equipamento.

Relativamente aos ensaios, o principal inconveniente era a demora na estabilização da temperatura e consequentemente o desperdício de água uma vez que o ciclo de água fria do equipamento deve trabalhar em sistema aberto.

A principal dificuldade na realização deste projeto foi a avaria do termostato que foi resolvida através da utilização de um termómetro digital exterior. Mas o principal propósito do trabalho foi alcançado, que era elaborar os manuais do equipamento.

Para melhoria do equipamento sugerimos:

- Trocar os termómetros por termopares ou termómetros digitais de modo a obtermos uma medição mais precisa;
- Alterar as válvulas de controlo de caudal quente e frio pois as mesmas já possuem uma grande folga tornando difícil a regulação do caudal;
- Substituir as purgas por novas ou então inserir tubos de ligação à rede de drenagem pois embora a perda seja pequena, pode causar danos ao equipamento;
- Alterar a base do depósito de água quente de modo a efetuar-se uma drenagem mais fácil da água;
- Substituir o termostato que está ligado ao tanque, e caso não seja possível utilizar um termómetro digital para confirmar se a temperatura já corresponde ao desejado (pré-estabelecido).

BIBLIOGRAFIA

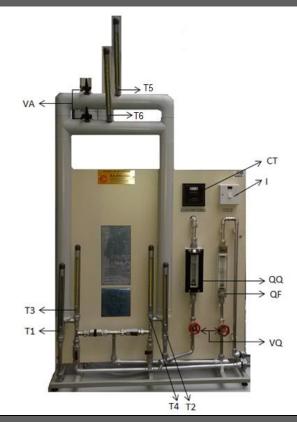
- Azevedo, J. L. (2005). Apontamentos de Permutadores de Calor Equipamentos Térmicos. Obtido em 08 de Agosto de 2016, de https://fenix.tecnico.ulisboa.pt/downloadFile/3779571244141/Permutadores1C.p df
- Bejan, A. (1993). Heat Transfer. New York: Wiley.
- Figueiredo, R. (2015). Transmissão de Calor. Lisboa: Lidel.
- Incropera, F. P., & Dewitt, D. P. (1998). Fundamentos de Transferência de Calor e de Massa. Rio de Janeiro: LTC Livros Técnicos e Científicos.
- Pitarma, R. A. (2015). Conteúdo Programático da Unidade Curricular de Fenómenos de Transferência. Obtido em Julho de 2015, de Instituto Politécnico da Guarda: http://twintwo.ipg.pt

ANEXO I

Manual Rápido/Instruções de Funcionamento e Segurança do Equipamento

GUIA DE SEGURANÇA NO TRABALHO

INSTRUÇÃO DE FUNCIONAMENTO E SEGURANÇA


Data:
05 / 09 / 2016Elaborado por:
Daniele Vidal e Rúben
FerreiraAprovado por:
Rui PitarmaPágina 1 de 2Permutador de calor de MarcaP. A. Hilton

EQUIPAMENTEO:

Permutador de calor de tubos concêntricos

Marca P. A. Hilton
Modelo H900

IDENTIFICAÇÃO DAS COMPONENTES DO EQUIPAMENTO

I	Interruptor		
CT	Controlador de temperatura		
QQ	Caudal de água quente		
QF	Caudal de água fria		
VQ	Válvulas dos caudalímetros		
VA	Válvulas para retirar ar às tubagens		
T1	Temperatura da água quente à		
11	entrada do permutador		
T2	Temperatura da água quente à		
12	saída do permutador		
	Temperatura da água fria à entrada		
T3	ou à saída do permutador conforme		
	a corrente		
	Temperatura da água fria à saída ou		
T4	à entrada do permutador conforme a		
	corrente		
T5	Temperatura de transição da água		
10	fria no tubo concêntrico		
T6	Temperatura de transição da água		
quente no tubo concêntrico			

INSTRUÇÕES DE UTILIZAÇÃO

- 1. Fechar as válvulas dos caudalímetros (VQ) e a válvula do tanque de água quente;
- 2. Encher o tanque com água, sem ultrapassar a altura das chicanas;
- 3. Ligar a mangueira de entrada de água fria à rede e abrir a torneira;
- 4. Ligar a mangueira de drenagem a um escoamento;
- 5. Ligar o permutador à corrente elétrica, mas antes verificar se o mesmo está desligado através do interruptor frontal (I);
- 6. Definir o set point da temperatura da água quente através do controlador de temperatura (CT);
- 7. Definir o tipo de corrente (contracorrente ou correntes paralelas) através das válvulas frontais (ver figura 8);
- 8. Ligar o permutador de calor através do interruptor frontal (I);
- 9. Definir os caudais de água fria e quente desejados através dos caudalímetros (QQ e QF);
- **10.** Retirar o ar das tubagens através das válvulas (VA), preferencialmente com mangueiras para evitar molhar o equipamento;
- 11. Aguardar até a temperatura atingir o set point desejado;
- **12.** Após 5 minutos verificar a temperatura de saída da água quente, ao fim de mais 5 minutos verificar se a temperatura de saída da água quente está igual, se não houver alteração, proceder às medições, se houver alterações é preciso aguardar mais tempo.

GUIA DE SEGURANÇA NO TRABALHO

INSTRUÇÃO DE FUNCIONAMENTO E SEGURANÇA

Data: 05 / 09 / 2016	Elaborado Daniele Vidal (Ferreira	e Rúben	Aprovado por: Rui Pitarma	Página 2 de 2
Permutador of	de calor de	Marca	P. A. Hilton	
tubos concên	tricos	Modelo	H900	

RISCOS	MEDIDAS DE SEGURANÇA
Queimadura	 Verifique antes de cada utilização, o estado de conservação dos cabos elétricos, tomadas e interruptores; Nunca efetue ligações nem arranjos «improvisados», mesmo que estes sejam provisórios;
Choque elétrico	 Desligue a energia se: Derramar algo sobre a máquina. Suspeitar que a máquina precisa de assistência técnica ou reparação.
Corte	 Qualquer anomalia que detetar contacte um responsável; Não toque na resistência quando estiver quente; Quando introduzir as mãos no interior do tanque, tenha atenção para não se cortar.

MEDIDAS EM CASO DE EMERGÊNCIA

Desligue a máquina e chame o responsável!

RECOMENDAÇÕES

Esvaziar completamente o tanque de armazenamento de água quente se o equipamento não for utilizado durante longos períodos para evitar o aparecimento e a acumulação de ferrugem na tubagem, na resistência e no tanque.

Durante as operações de limpeza:

- Desligue sempre a máquina no interruptor;
- Desligue a máquina da corrente elétrica;
- Todos os utensílios podem ser lavados com detergente neutro.

Relatório de Projeto

ANEXO II

Resoluções e Soluções dos Exercícios Propostos

Resoluções

A seguir apresentam-se as resoluções de todos os parâmetros (DMLT e ϵ -NTU), através das equações da secção 2.3 do presente relatório, para os exercícios propostos.

EXERCÍCIO 1

Dados			
Temperatura no Contr	olador	45 °C	
Temperatura de Entra	da da Água	20 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s
Caudal de Água Fria ($\dot{\mathbf{m}}_f$)	2 L/min	= 0.033 Kg/s
Tipo de Ensaio		P	aralelo
	T1	44 °C	$\Delta T_a = T1-T4$
Água Quente	T5	40 °C	= 44-20
	T2	37 °C	= 24°C
	T3	26 °C	$\Delta T_b = T2 - T3$
Água Fria	T6	23 °C	=37-26
_	T4	20 °C	= 11°C
Cpq 40 °C		417	8 J/Kg °C
Cpf	23 °C	418	1 J/Kg °C

Cálculos:

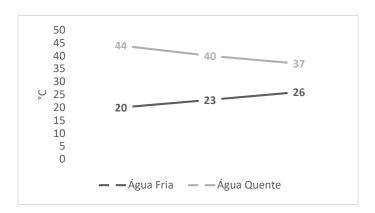
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(24 - 11)}{\ln\left(\frac{24}{11}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{16,66} \, ^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (44 - 37) \Leftrightarrow q_q = 965, 18 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{965,18 W}{(0,067 m^2 \times 16,66 °C)}\right) \Leftrightarrow u = 864,63 W/m^2 °C$$

$$C_q = Cp_q \, \dot{\mathrm{m}}_f \ \Rightarrow \ C_q = 4178 \, J/Kg^\circ C \times 0.033 \, Kg/s \ \Leftrightarrow \ \boldsymbol{C_q} = \ \boldsymbol{137.87} \, \boldsymbol{W}/^\circ \boldsymbol{C}$$

$$C_f = Cp_f \,\dot{\mathrm{m}}_f \Rightarrow C_f = 4181 \, J/Kg^\circ C \times 0.033 \, Kg/s \iff C_f = 137.97 \, W/^\circ C$$


Como:

$$C_{q} < C_{f} \rightarrow C_{min} = C_{q}$$

$$C_{r} = \frac{C_{min}}{C_{máx}} \Rightarrow C_{r} = \frac{137,87 \, W/^{\circ}C}{137,97 \, W/^{\circ}C} \Leftrightarrow C_{r} \cong \mathbf{0,9993}$$

$$NTU = \frac{u \, A}{C_{min}} \Rightarrow NTU = \frac{864,63 \times 0,067}{137,87} \Leftrightarrow \mathbf{NTU} = \mathbf{0,42}$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \varepsilon = \frac{(1 - exp^{((-0.42)*(1+0.9993))}}{1 + 0.9993} \Leftrightarrow \varepsilon = \mathbf{0.28}$$

EXERCÍCIO 2

Dados				
Temperatura no Contr	olador	50 °C		
Temperatura de Entra	da da Água		20 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	2 L/min	= 0.033 Kg/s	
Tipo de Ensaio		P	aralelo	
	T1	48 °C	$\Delta T_a = T1-T4$	
Água Quente	T5	43 °C	= 48-20	
	T2	40 °C	= 28°C	
	T3	27 °C	$\Delta T_b = T2 - T3$	
Água Fria	Т6	23 °C	=40-27	
_	T4	20 °C	= 13°C	
Cpq 43 °C		417	9 J/Kg °C	
Cp_{f}	23 °C	418	1 J/Kg °C	

Cálculos:

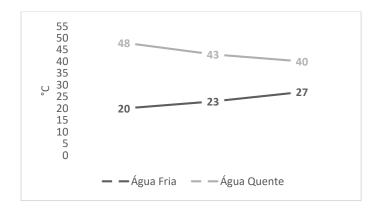
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(28 - 13)}{ln\left(\frac{28}{13}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{19,55} \, ^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4179 \times (48 - 40) \Leftrightarrow q_q = 1103.26 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1103,26 W}{(0,067 m^2 \times 19,55 °C)}\right) \Leftrightarrow u = 842,28 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4179 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.91 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4181 J/Kg^{\circ}C \times 0.033 Kg/s \Leftrightarrow C_f = 137.97 W/^{\circ}C$$


Como:

$$C_a < C_f \rightarrow C_{min} = C_a$$

$$C_r = \frac{C_{min}}{C_{max}} \Rightarrow C_r = \frac{137,91 \, W/^{\circ}C}{137.97 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{9996}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{842,28 \times 0,067}{137,91} \Leftrightarrow NTU = 0,41$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \varepsilon = \frac{(1 - exp^{((-0.41)*(1+0.9996))}}{1 + 0.9996} \Leftrightarrow \varepsilon = \mathbf{0.28}$$

Dados			
Temperatura no Contr	olador		55 °C
Temperatura de Entra	da da Água	20 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s
Caudal de Água Fria (\dot{m}_f)	2 L/min	=0,033 Kg/s
Tipo de Ensaio		P	aralelo
	T1	52 °C	$\Delta T_a = T1-T4$
Água Quente	T5	46 °C	= 52-20
	T2	43 °C	= 32°C
	Т3	29 °C	$\Delta T_b = T2 - T3$
Água Fria	T6	24 °C	=43-29
_	T4	20 °C	= 14°C
Cp _q 46 °C		417	9 J/Kg °C
Cp _f 24 °C		418	0 J/Kg °C

Cálculos:

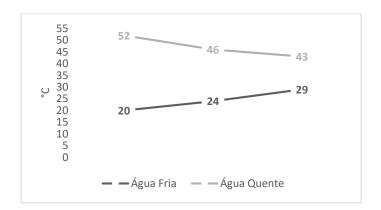
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(32 - 14)}{\ln\left(\frac{32}{14}\right)} \Leftrightarrow \Delta T_{ml} = 21,77 \,^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4179 \times (52 - 43) \Leftrightarrow q_q = 1241.16 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1241,16 W}{(0,067 m^2 \times 21,77^{\circ}C)}\right) \Leftrightarrow u = 850,93 W/m^{2\circ}C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4179 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.91 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4180 J/Kg^{\circ}C \times 0.033 Kg/s \Leftrightarrow C_f = 137.94 W/^{\circ}C$$


Como:

$$C_q < C_f \rightarrow C_{min} = C_q$$

$$C_r = \frac{C_{min}}{C_{max}} \Rightarrow C_r = \frac{137,91 \, W/^{\circ}C}{137.94 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{9998}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{850,93 \times 0,067}{137,91} \Leftrightarrow NTU = 0,41$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \varepsilon = \frac{(1 - exp^{((-0.41)*(1+0.9998))}}{1 + 0.9998} \Leftrightarrow \varepsilon = \mathbf{0.28}$$

Dados			
Temperatura no Contr	olador	60 °C	
Temperatura de Entra	da da Água	28 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	2 L/min	=0,033 Kg/s
Tipo de Ensaio		P	aralelo
	T1	56 °C	$\Delta T_a = T1-T4$
Água Quente	T5	50 °C	= 56-20
_	T2	45 °C	= 36°C
	T3	30 °C	$\Delta T_b = T2 - T3$
Água Fria	Т6	25 °C	=45-30
_	T4	20 °C	= 15°C
Cpq	50 °C	4180 J/Kg °C	
Cpf	25 °C	4180 J/Kg °C	

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(36 - 15)}{ln\left(\frac{36}{15}\right)} \Leftrightarrow \Delta T_{ml} = 23,99 \,^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4180 \times (56 - 45) \Leftrightarrow q_q = 1517,34 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1517,34 W}{(0,067 m^2 \times 23,99^{\circ}C)}\right) \Leftrightarrow u = 944,01 W/m^{2\circ}C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4180 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.94 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4180 J/Kg^{\circ}C \times 0.033 Kg/s \Leftrightarrow C_f = 137.94 W/^{\circ}C$$

Como:

$$C_f = C_q$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{137,94 \, W/^{\circ}C}{137,94 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{1}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{944,01 \times 0,067}{137,94} \Leftrightarrow NTU = 0,46$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \quad \varepsilon = \frac{(1 - exp^{((-0.46)*(1+1))}}{1 + 1} \Leftrightarrow \quad \varepsilon = 0.30$$

Dados				
Temperatura no Contr	olador	40 °C		
Temperatura de Entra	da da Água		20 °C	
Caudal de Água Quen	te (\dot{m}_q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($\dot{\mathbf{m}}_f$)	1 L/min	=0,017Kg/s	
Tipo de Escoamento		P	aralelo	
	T1	40°C	$\Delta T_a = T1-T4$	
Água Quente	T5	38 °C	= 40-20	
_	T2	36 °C	= 20°C	
	T3	28 °C	$\Delta T_b = T2 - T3$	
Água Fria	T6	24 °C	=36-28	
_	T4	20 °C	= 8°C	
Cp _q 38 °C		417	8 J/Kg °C	
Cp _f 24 °C		418	0 J/Kg °C	

Cálculos:

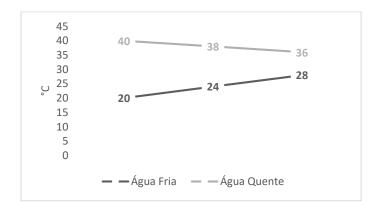
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(20 - 8)}{ln\left(\frac{20}{8}\right)} \Leftrightarrow \Delta T_{ml} = 13,10 \, {}^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (40 - 36) \Leftrightarrow q_q = 551,50 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{551,50 W}{(0,067 m^2 \times 13,10 °C)}\right) \Leftrightarrow u = 628,35 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4178 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.87 \, W/^{\circ}C$$

$$C_f = Cp_f \,\dot{\mathrm{m}}_f \Rightarrow C_f = 4180\,J/Kg^{\circ}C \times 0.017\,Kg/s \Leftrightarrow C_f = 71.06\,W/^{\circ}C$$


Como:

$$C_f < C_q \rightarrow C_{min} = C_f$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{71,06 \, W/^{\circ} C}{137,87 \, W/^{\circ} C} \Leftrightarrow C_r \cong \mathbf{0,52}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{628,35 \times 0,067}{71,06} \Leftrightarrow NTU = 0,59$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \quad \varepsilon = \frac{(1 - exp^{((-0.59)*(1+0.52))}}{1 + 0.52} \Leftrightarrow \quad \varepsilon = 0.39$$

Dados				
Temperatura no Contr	olador	45 °C		
Temperatura de Entra	da da Água	20 °C		
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	1 L/min	=0.017Kg/s	
Tipo de Ensaio		P	aralelo	
	T1	44 °C	$\Delta T_a = T1-T4$	
Água Quente	T5	40 °C	= 44-20	
	T2	39 °C	= 24°C	
	T3	30 °C	$\Delta T_b = T2 - T3$	
Água Fria	Т6	25 °C	=39-30	
	T4	20 °C	= 9°C	
Cp_q	40 °C	417	8 J/Kg °C	
Cp_{f}	Cp _f 25 °C		0 J/Kg °C	

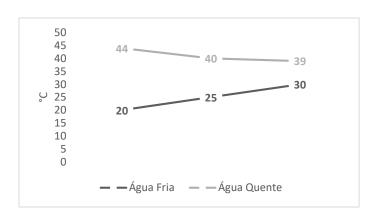
Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(24 - 9)}{ln\left(\frac{24}{9}\right)} \Leftrightarrow \Delta T_{ml} = 15,29 \,^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (44 - 39) \Leftrightarrow q_q = 689.37 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{689,37 W}{(0,067 m^2 \times 15,29 °C)}\right) \Leftrightarrow u = 672,93 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4178 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.87 \, W/^{\circ}C$$


$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4180 J/Kg^{\circ}C \times 0.017 Kg/s \Leftrightarrow C_f = 71.06 W/^{\circ}C$$

Como:

$$C_f < C_q \rightarrow C_{min} = C_f$$

$$C_r = \frac{C_{min}}{C_{máx}} \quad C_r = \frac{71,06 \, W/^{\circ}C}{137,87 \, W/^{\circ}C} \quad C_r \cong \mathbf{0,52}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{672,93 \times 0,067}{71,06} \Leftrightarrow NTU = 0,63$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \quad \varepsilon = \frac{(1 - exp^{((-0.63)*(1+0.52))} \Leftrightarrow}{1 + 0.52} \quad \varepsilon = \mathbf{0.41}$$

Dados			
Temperatura no Contr	olador	50 °C	
Temperatura de Entra	da da Água		20 °C
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s
Caudal de Água Fria ($\dot{\mathbf{m}}_f$)	1 L/min	=0.017Kg/s
Tipo de Ensaio		P	aralelo
	T1	49 °C	$\Delta T_a = T1-T4$
Água Quente	T5	45 °C	= 49-20
_	T2	43 °C	= 29°C
	Т3	34 °C	$\Delta T_b = T2-T3$
Água Fria	T6	27 °C	=43-34
_	T4	20 °C	= 9°C
Cp _q 45 °C		417	9 J/Kg °C
Cp _f 25 °C		418	0 J/Kg °C

Cálculos:

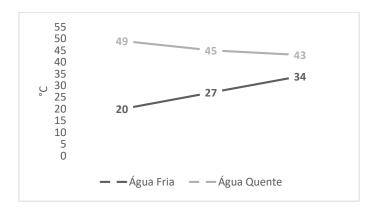
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(29 - 9)}{\ln\left(\frac{29}{9}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{17,09} \, ^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4179 \times (49 - 43) \Leftrightarrow q_q = 827.44 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{827,44 W}{(0,067 m^2 \times 17,09 °C)}\right) \Leftrightarrow u = 722,64 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4179 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.91 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4181 J/Kg^{\circ}C \times 0.017 Kg/s \Leftrightarrow C_f = 71.08 W/^{\circ}C$$


Como:

$$C_f < C_q \rightarrow C_{min} = C_f$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{71,08 \, W/^{\circ} C}{137,91 \, W/^{\circ} C} \Leftrightarrow C_r \cong \mathbf{0,52}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{722,64 \times 0,067}{71,08} \Leftrightarrow NTU = 0,68$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \quad \varepsilon = \frac{(1 - exp^{((-0.68)*(1+0.52))}}{1 + 0.52} \Leftrightarrow \quad \varepsilon = \mathbf{0.42}$$

Dados			
Temperatura no Contr	olador	55 °C	
Temperatura de Entra	da da Água	20 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	1 L/min	=0.017Kg/s
Tipo de Ensaio		Paralelo	
	T1	53 °C	$\Delta T_a = T1-T4$
Água Quente	T5	50 °C	= 53-20
	T2	46 °C	= 33°C
	T3	35 °C	$\Delta T_b = T2 - T3$
Água Fria	Т6	29 °C	=46-35
_	T4	20 °C	= 11°C
Cpq	50 °C	418	0 J/Kg °C
Cpf	29 °C		8 J/Kg °C

Cálculos:

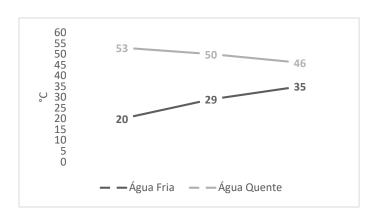
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(33 - 11)}{ln\left(\frac{33}{11}\right)} \Leftrightarrow \Delta T_{ml} = 20,03 \, {}^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4180 \times (53 - 46) \Leftrightarrow q_q = 965,58 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{965,58 W}{(0,067 m^2 \times 20,03^{\circ}C)}\right) \Leftrightarrow u = 719,50 W/m^{2\circ}C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4180 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.94 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4178 J/Kg^{\circ}C \times 0.017 Kg/s \Leftrightarrow C_f = 71.03 W/^{\circ}C$$


Como:

$$C_f < C_q \rightarrow C_{min} = C_f$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{71,03 \, W/^{\circ} C}{137,94 \, W/^{\circ} C} \Leftrightarrow C_r \cong \mathbf{0,52}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{719,50 \times 0,067}{71,03} \Leftrightarrow NTU = 0,68$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \varepsilon = \frac{(1 - exp^{((-0.68*(1+0.52))})}{1 + 0.52} \Leftrightarrow \varepsilon = 0.42$$

Dados				
Temperatura no Contr	olador	60 °C		
Temperatura de Entra	da da Água		28 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($\dot{\mathbf{m}}_f$)	1 L/min	=0.017Kg/s	
Tipo de Ensaio		Paralelo		
	T1	56 °C	$\Delta T_a = T1-T4$	
Água Quente	T5	52 °C	= 56-20	
	T2	49 °C	= 36°C	
	Т3	$37 ^{\circ}\text{C}$ $\Delta T_b = T2 - T$		
Água Fria	T6	31 °C	=49-37	
	T4	20 °C	= 12°C	
Cpq	Cp _q 52 °C		0 J/Kg °C	
Cp_{f}	31 °C	4178 J/Kg °C		

Cálculos:

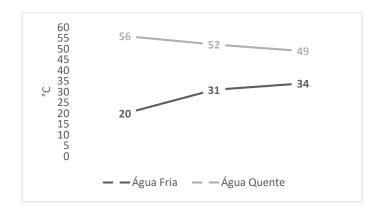
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(36 - 12)}{ln\left(\frac{36}{12}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{21,85} \, {}^{\circ}\mathbf{C}$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4180 \times (56 - 49) \Leftrightarrow q_q = 965.58 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{965,58 W}{(0,067 m^2 \times 21,85^{\circ}C)}\right) \Leftrightarrow u = 659,57 W/m^2 \circ C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4180 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.94 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4178 J/Kg^{\circ}C \times 0.017 Kg/s \Leftrightarrow C_f = 71.03 W/^{\circ}C$$


Como:

$$C_f < C_q \rightarrow C_{min} = C_f$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{71,03 \, W/^{\circ}C}{137,94 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0,52}$$

$$NTU = \frac{u A}{C_{min}} \Rightarrow NTU = \frac{659,57 \times 0,067}{71,03} \Leftrightarrow NTU = 0,62$$

$$\varepsilon = \frac{(1 - exp^{((-NTU)*(1+C_r))}}{1 + C_r} \Rightarrow \varepsilon = \frac{(1 - exp^{((-0.62)*(1+0.52))}}{1 + 0.52} \Leftrightarrow \varepsilon = \mathbf{0.40}$$

Dados				
Temperatura no Contr	olador	40 °C		
Temperatura de Entra	da da Água		19 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	2 L/min	=0.033Kg/s	
Tipo de Escoamento		Contracorrente		
Água Quente	T1	39°C	$\Delta T_a = T1-T3$	
	T5	37 °C	= 39-19	
_	T2	33 °C	= 20°C	
	Т3	19 °C	$\Delta T_b = T2 - T4$	
Água Fria	Т6	21 °C	=33-25	
_	T4	25 °C	= 8°C	
Cp _q 37 °C		4178 J/Kg °C		
Cpf	21 °C	4182 J/Kg °C		

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(20 - 8)}{\ln\left(\frac{20}{8}\right)} \Leftrightarrow \Delta T_{ml} = 13,10 \,^{\circ}C$$

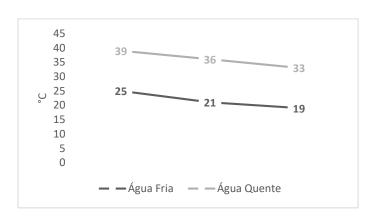
$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (39 - 33) \Leftrightarrow q_q = 827.24 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{827,24 W}{(0,067 m^2 \times 13,10 °C)}\right) \Leftrightarrow u = 942.51 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4178 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.87 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4182 J/Kg^{\circ}C \times 0.033 Kg/s \Leftrightarrow C_f = 138.01 W/^{\circ}C$$

Logo:


$$C_q < C_f \rightarrow C_{min} = C_q$$

$$\varepsilon = \frac{(Tq_e - Tq_s)}{(Tq_e - Tf_e)} \Rightarrow \quad \varepsilon = \frac{(39 - 33)}{(39 - 19)} \Leftrightarrow \quad \varepsilon = \mathbf{0.30}$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{137,87 \, W/^{\circ}C}{138,01 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{9999}$$

Como o $C_r \cong 1$ logo:

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \Rightarrow NTU = \frac{0.3}{(1 - 0.3)} \Leftrightarrow NTU = 0.43$$

Dados				
Temperatura no Contr	olador	45 °C		
Temperatura de Entra	da da Água		19 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	2 L/min	= 0.033 Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	43 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	39 °C	= 43-19	
	T2	36 °C	= 24°C	
	T3	19 °C ΔT _b = T2-T		
Água Fria	Т6	22 °C	=36-26	
	T4	26 °C	= 10°C	
Cpq	39 °C	4178 J/Kg °C		
Cpf	22 °C			

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(10 - 24)}{\ln\left(\frac{10}{24}\right)} \Leftrightarrow \Delta T_{ml} = 15,99 \,^{\circ}C$$

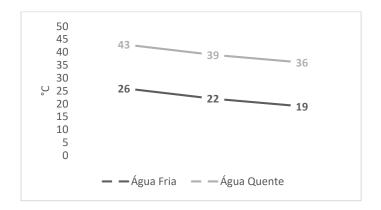
$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (43 - 36) \Leftrightarrow q_q = 965.12 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{965,12 W}{(0,067 m^2 \times 15,99 °C)}\right) \Leftrightarrow u = 900,86 W/m^2 °C$$

$$C_q = Cp_q \, \dot{\mathbf{m}}_f \Rightarrow C_q = 4178 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.87 \, W/^{\circ}C$$

$$C_f = Cp_f \,\dot{\mathbf{m}}_f \Rightarrow C_f = 4181 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_f = \mathbf{137.97} \, W/^{\circ}C$$

Logo:


$$C_q < C_f \rightarrow C_{min} = C_q$$

$$\varepsilon = \frac{(Tq_e - Tq_s)}{(Tq_e - Tf_e)} \Rightarrow \quad \varepsilon = \frac{(43 - 36)}{(43 - 19)} \Leftrightarrow \quad \varepsilon = \mathbf{0}, \mathbf{29}$$

$$C_r = \frac{C_{min}}{C_{max}} \Rightarrow C_r = \frac{137,87 \, W/^{\circ}C}{137,97 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{9992}$$

Como o $C_r \cong 1$ logo:

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \Rightarrow NTU = \frac{0.29}{(1 - 0.29)} \Leftrightarrow NTU = 0.41$$

EXERCÍCIO 12

Dados				
Temperatura no Contr	olador	50 °C		
Temperatura de Entra	da da Água		19 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	2 L/min	= 0.033 Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	47 °C	$\Delta T_a = T1-T3$	
Água Quente	Т5	43 °C	= 47-19	
	T2	38 °C	= 28°C	
	T3	19 °C ΔT _b = T2-T		
Água Fria	Т6	22 °C	=38-27	
	T4	27 °C	= 11°C	
Cp_q	43 °C	4179 J/Kg °C		
Cpf	22 °C	4181 J/Kg °C		

Cálculos:

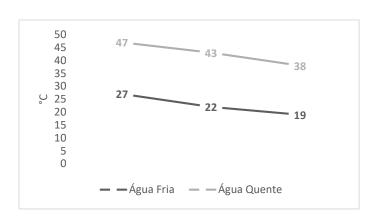
$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(11 - 28)}{ln\left(\frac{11}{28}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{18}, \mathbf{20} \, {}^{\circ}\mathbf{C}$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (47 - 38) \Leftrightarrow q_q = 1240.87 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1240,87 W}{(0,067 m^2 \times 18,20 °C)}\right) \Leftrightarrow u = 1017,61 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_{f\Rightarrow} \quad C_q = 4179 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \iff C_q = 137.91 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4181 J/Kg^{\circ}C \times 0.033 Kg/s \Leftrightarrow C_f = 137.97 W/^{\circ}C$$


Logo:

$$C_q < C_f \rightarrow C_{min} = C_q$$

$$\varepsilon = \frac{(Tq_e - Tq_s)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(47 - 38)}{(47 - 19)} \Leftrightarrow \varepsilon = \mathbf{0.32}$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{137,91 \, W/^{\circ}C}{137,97 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{9996}$$

Como o $C_r \cong 1$ logo:

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \Rightarrow NTU = \frac{0.32}{(1 - 0.32)} \Leftrightarrow NTU = 0.48$$

Dados				
Temperatura no Contr	olador		55 °C	
Temperatura de Entra	da da Água		19 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria (\dot{m}_f)	2 L/min	=0.033 Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	52 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	46 °C	= 52-19	
	T2	42 °C	= 33°C	
	Т3	19 °C ΔT _b = T2 -7		
Água Fria	T6	23 °C	=42-29	
	T4	29 °C	= 13°C	
Cpq	46 °C	4179 J/Kg °C		
Cp_{f}	23 °C	4181 J/Kg °C		

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(33 - 13)}{ln\left(\frac{33}{13}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{21}, \mathbf{47} \circ \mathbf{C}$$

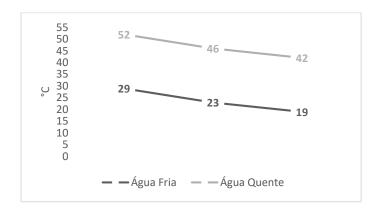
$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4179 \times (52 - 42) \Leftrightarrow q_q = 1379.07 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1379,07 W}{(0,067 m^2 \times 21,47 °C)}\right) \Leftrightarrow u = 958,69 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4179 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.91 \, W/^{\circ}C$$

$$C_f = Cp_f \,\dot{\mathrm{m}}_f \ \Rightarrow \ C_f = 4181 \, J/Kg^\circ C \times 0.017 \, Kg/s \ \Leftrightarrow \ C_f = 137.97 \, W/^\circ C$$

Logo:


$$C_q < C_f \rightarrow C_{min} = C_q$$

$$\varepsilon = \frac{(Tq_e - Tq_s)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(52 - 42)}{(52 - 19)} \Leftrightarrow \varepsilon = \mathbf{0.30}$$

$$C_r = \frac{C_{min}}{C_{max}} \Rightarrow C_r = \frac{137,91W/^{\circ}C}{137,97W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{9996}$$

Como o $C_r \cong 1$ logo:

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \Rightarrow NTU = \frac{0.3}{(1 - 0.3)} \Leftrightarrow NTU = 0.43$$

EXERCÍCIO 14

Dados				
Temperatura no Contr	olador	60 °C		
Temperatura de Entra	da da Água		19 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	2 L/min	=0,033 Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	55 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	50 °C	= 55-19	
	T2	44 °C	= 36°C	
	T3	19 °C	$\Delta T_b = T2 - T4$	
Água Fria	Т6	23 °C	=44-29	
	T4	29 °C	$=15^{\circ}\mathrm{C}$	
Cp _q 50 °C		418	0 J/Kg °C	
Cpf	23 °C	4181 J/Kg °C		

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(36 - 15)}{ln\left(\frac{36}{15}\right)} \Leftrightarrow \Delta T_{ml} = 23,99 \,^{\circ}C$$

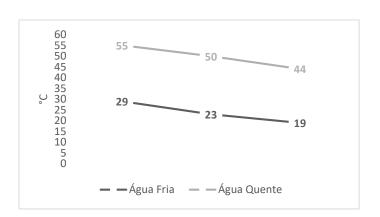
$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4180 \times (55 - 44) \Leftrightarrow q_q = 1517,34 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1517,34 W}{(0,067 m^2 \times 23,99 \,^{\circ}C)}\right) \Leftrightarrow u = 944,01 W/m^2 \,^{\circ}C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4180 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.94 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4181 J/Kg^{\circ}C \times 0.033 Kg/s \Leftrightarrow C_f = 137.97 W/^{\circ}C$$

Logo:


$$C_q < C_f \rightarrow C_{min} = C_q$$

$$\varepsilon = \frac{(Tq_e - Tq_s)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(55 - 44)}{(55 - 19)} \Leftrightarrow \varepsilon = \mathbf{0.31}$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{137,94 \, W/^{\circ}C}{137,97 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{9998}$$

Como o $C_r \cong 1$ logo:

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \Rightarrow NTU = \frac{0.31}{(1 - 0.31)} \Leftrightarrow NTU = 0.45$$

Dados				
Temperatura no Contr	olador	40 °C		
Temperatura de Entra	da da Água		19 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	1 L/min	=0.017Kg/s	
Tipo de Escoamento		Contracorrente		
	T1	40 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	38 °C	= 40-20	
_	T2	35 °C	= 20°C	
	Т3	20 °C ΔT _b =T2-T		
Água Fria	Т6	23 °C	=35-28	
_	T4	28 °C	= 7°C	
Cp_q	38 °C	38 °C 4178 J/		
Cpf	23 °C 4181 J/Kg		1 J/Kg °C	

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(20 - 7)}{ln\left(\frac{20}{7}\right)} \Leftrightarrow \Delta T_{ml} = 12,38 \, {}^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (40 - 35) \Leftrightarrow q_q = 689.37 W$$

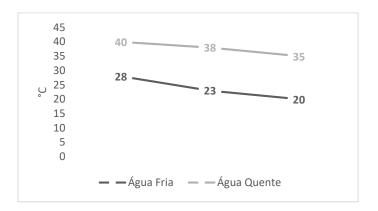
$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{689,37 W}{(0,067 m^2 \times 12,38 °C)}\right) \Leftrightarrow u = 831,11 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_{f\Rightarrow} \quad C_q = 4178 \frac{J}{Kg} \,^{\circ}C \times 0.033 \frac{Kg}{s} \Leftrightarrow \quad C_q = 137.87 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_{f \Rightarrow} C_f = 4181 J/Kg^{\circ}C \times 0.017 Kg/s \Leftrightarrow C_f = 71.08 W/^{\circ}C$$

Logo:

$$C_f < C_q \rightarrow C_{min} = C_f$$


$$\varepsilon = \frac{(Tf_s - Tf_e)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(28 - 20)}{(40 - 20)} \Leftrightarrow \varepsilon = 0.40$$

$$C_r = \frac{C_{min}}{C_{max}} \Rightarrow C_r = \frac{71,04 \, W/^{\circ} C}{137,87 \, W/^{\circ} C} \Leftrightarrow C_r \cong \mathbf{0.52}$$

Como o $C_r \cong 0,52$ logo:

$$NTU = \frac{1}{C_r - 1} ln\left(\frac{\varepsilon - 1}{\varepsilon_{Cr} - 1}\right) \Rightarrow NTU = \frac{1}{0.52 - 1} ln\left(\frac{0.40 - 1}{(0.40 \times 0.52) - 1}\right)$$

$$NTU = \mathbf{0.58}$$

EXERCÍCIO 16

Dados				
Temperatura no Contr	olador	45 °C		
Temperatura de Entra	da da Água		19 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	1 L/min	=0.017Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	44 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	40 °C	= 44-20	
_	T2	38 °C	= 24°C	
	T3	20 °C ΔT _b =T2-T		
Água Fria	Т6	24 °C	=38-30	
_	T4	30 °C	= 8°C	
Cp_q	40 °C	4178 J/Kg °C		
Cpf	24 °C	4180 J/Kg °C		

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(24 - 8)}{\ln\left(\frac{24}{8}\right)} \Leftrightarrow \Delta T_{ml} = 14,56 \,^{\circ}C$$

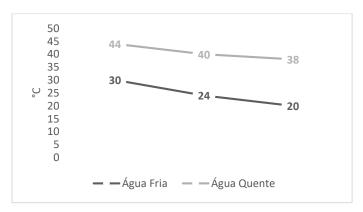
$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4178 \times (44 - 38) \Leftrightarrow q_q = 827.24 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{827,24 W}{(0,067 m^2 \times 14,56^{\circ}C)}\right) \Leftrightarrow u = 848,00 W/m^{2} \circ C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4178 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.87 \, W/^{\circ}C$$

$$C_f = Cp_f \dot{m}_f \Rightarrow C_f = 4180 J/Kg^{\circ}C \times 0.017 Kg/s \Leftrightarrow C_f = 71.06 W/^{\circ}C$$

Logo:


$$C_f < C_q \rightarrow C_{min} = C_f$$

$$\varepsilon = \frac{(Tf_s - Tf_e)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(30 - 20)}{(44 - 20)} \Leftrightarrow \varepsilon = 0.42$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{71,06 \, W/^{\circ} C}{137,87 \, W/^{\circ} C} \Leftrightarrow C_r \cong \mathbf{0.52}$$

Como o $C_r \cong 0,52$ logo:

$$NTU = \frac{1}{C_r - 1} ln\left(\frac{\varepsilon - 1}{\varepsilon_{Cr} - 1}\right) \Rightarrow NTU = \frac{1}{0.52 - 1} ln\left(\frac{0.42 - 1}{(0.42 \times 0.52) - 1}\right)$$

$$NTU = \mathbf{0.62}$$

Dados				
Temperatura no Contr	olador		50 °C	
Temperatura de Entra	da da Água		20 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	1 L/min	=0.017Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	48 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	46 °C	= 48-20	
	T2	42 °C	= 28°C	
	Т3	20 °C	$\Delta T_b = T2 - T4$	
Água Fria	Т6	26 °C	=42-33	
_	T4	33 °C	= 9°C	
Cp _q 46 °C		4179 J/Kg °C		
Cp_{f}	26 °C	4180 J/Kg °C		

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(28 - 9)}{ln\left(\frac{28}{9}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{16}, \mathbf{74} \, {}^{\circ}\mathbf{C}$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4179 \times (48 - 42) \Leftrightarrow q_q = 827.44 W$$

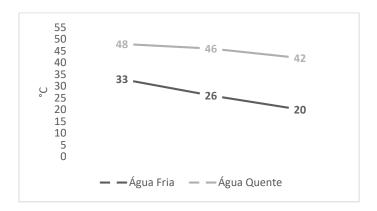
$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{827,44 W}{(0,067 m^2 \times 16,74 °C)}\right) \Leftrightarrow u = 737,74 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4179 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.91 \, W/^{\circ}C$$

$$C_f = Cp_f \,\dot{\mathrm{m}}_f \Rightarrow C_f = 4180\,J/Kg^{\circ}C \times 0.017\,Kg/s \Leftrightarrow C_f = 71.06\,W/^{\circ}C$$

Logo:

$$C_f < C_q \rightarrow C_{min} = C_f$$


$$\varepsilon = \frac{(Tf_s - Tf_e)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(33 - 20)}{(48 - 20)} \Leftrightarrow \varepsilon = 0.46$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{71,06 \, W/^{\circ} C}{137,91 \, W/^{\circ} C} \Leftrightarrow C_r \cong \mathbf{0},\mathbf{52}$$

Como o $C_r \cong 0,52$ logo:

$$NTU = \frac{1}{C_r - 1} ln\left(\frac{\varepsilon - 1}{\varepsilon_{Cr} - 1}\right) \Rightarrow NTU = \frac{1}{0.52 - 1} ln\left(\frac{0.46 - 1}{(0.46 \times 0.52) - 1}\right)$$

$$NTU = 0.71$$

EXERCÍCIO 18

Dados				
Temperatura no Contr	olador	55 °C		
Temperatura de Entra	da da Água		20 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($(\dot{\mathbf{m}}_f)$	1 L/min	=0.017Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	53 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	49 °C	= 53-20	
	T2	45 °C	= 33°C	
	T3	20 °C ΔT _b =T2-T		
Água Fria	Т6	27 °C	=45-35	
	T4	35 °C	$=10^{\circ}\mathrm{C}$	
Cpq	49 °C	4180 J/Kg °C		
Cpf	•		9 J/Kg °C	

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(33 - 10)}{ln\left(\frac{33}{10}\right)} \Leftrightarrow \Delta T_{ml} = 19,26 \,^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4180 \times (53 - 45) \Leftrightarrow q_q = 1103,52 W$$

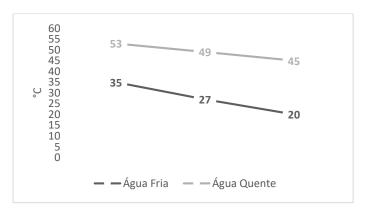
$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1103,52 W}{(0,067 m^2 \times 19,26 \,^{\circ}C)}\right) \Leftrightarrow u = 855,16 W/m^2 \,^{\circ}C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4180 \, J/Kg^{\circ}C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.94 \, W/^{\circ}C$$

$$C_f = Cp_f \,\dot{\mathrm{m}}_f \Rightarrow C_f = 4179 \,J/Kg^{\circ}C \times 0.017 \,Kg/s \Leftrightarrow C_f = 71.04 \,W/^{\circ}C$$

Logo:

$$C_f < C_q \rightarrow C_{min} = C_f$$


$$\varepsilon = \frac{(Tf_s - Tf_e)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(35 - 20)}{(53 - 20)} \Leftrightarrow \varepsilon = 4,45$$

$$C_r = \frac{C_{min}}{C_{máx}} \Rightarrow C_r = \frac{71,04 \, W/^{\circ}C}{137,94 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0.52}$$

Como o $C_r \cong 0,52$ logo:

$$NTU = \frac{1}{C_r - 1} ln\left(\frac{\varepsilon - 1}{\varepsilon_{Cr} - 1}\right) \Rightarrow NTU = \frac{1}{0,52 - 1} ln\left(\frac{0,45 - 1}{(0,45 \times 0,52) - 1}\right)$$

$$NTU = \mathbf{0}, \mathbf{69}$$

Dados				
Temperatura no Contr	olador	60 °C		
Temperatura de Entra	da da Água		20 °C	
Caudal de Água Quen	te (ṁ _q)	2 L/min	= 0.033 Kg/s	
Caudal de Água Fria ($\dot{\mathbf{m}}_f$)	1 L/min	=0.017Kg/s	
Tipo de Ensaio		Contracorrente		
	T1	57 °C	$\Delta T_a = T1-T3$	
Água Quente	T5	52 °C	= 57-20	
	T2	47 °C	= 37°C	
	T3	20 °C ΔT _b =T2-T		
Água Fria	T6	28 °C	=47-37	
_	T4	37 °C	= 10°C	
Cp_q	52 °C	4180 J/Kg °C		
Cpf	28 °C	4179 J/Kg °C		

Cálculos:

$$\Delta T_{ml} = \frac{(\Delta T_a - \Delta T_b)}{ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} \Rightarrow \Delta T_{ml} = \frac{(37 - 10)}{ln\left(\frac{37}{10}\right)} \Leftrightarrow \Delta T_{ml} = \mathbf{20,64} \,^{\circ}C$$

$$q_q = \dot{m}_q C p_q \Delta T_q \Rightarrow q_q = 0.033 \times 4180 \times (57 - 47) \Leftrightarrow q_q = 1379.4 W$$

$$u = \left(\frac{q}{(A \Delta T_{ml})}\right) \Rightarrow u = \left(\frac{1379,4 W}{(0,067 m^2 \times 20,64 °C)}\right) \Leftrightarrow u = 997,48 W/m^2 °C$$

$$C_q = Cp_q \,\dot{\mathrm{m}}_f \Rightarrow C_q = 4180 \, J/Kg^\circ C \times 0.033 \, Kg/s \Leftrightarrow C_q = 137.94 \, W/^\circ C$$

$$C_f = Cp_f \,\dot{\mathrm{m}}_f \ \Rightarrow \ C_f = 4179 \, J/Kg^\circ C \times 0.017 \, Kg/s \ \Leftrightarrow \ C_f = 71.04 \, W/^\circ C$$

Logo:

$$C_f < C_q \rightarrow C_{min} = C_f$$


$$\varepsilon = \frac{(Tf_s - Tf_e)}{(Tq_e - Tf_e)} \Rightarrow \varepsilon = \frac{(37 - 20)}{(57 - 20)} \Leftrightarrow \varepsilon = \mathbf{0.46}$$

$$C_r = \frac{C_{min}}{C_{max}} \Rightarrow C_r = \frac{71,04 \, W/^{\circ}C}{137,94 \, W/^{\circ}C} \Leftrightarrow C_r \cong \mathbf{0.52}$$

Como o $C_r \cong 0,52$ logo:

$$NTU = \frac{1}{C_r - 1} ln\left(\frac{\varepsilon - 1}{\varepsilon_{Cr} - 1}\right) \Rightarrow NTU = \frac{1}{0.52 - 1} ln\left(\frac{0.46 - 1}{(0.46 \times 0.52) - 1}\right)$$

$$NTU = \mathbf{0.71}$$

Soluções

Tabela 6 - Soluções para os exercícios propostos

Exercício	DMLT [° C]	$[W/m^2$ ° $C]$	ε	NTU	Área [m²]	Tipo de escoamento
1		864,63				
2			0,28			
3						Paralelo
4					0,067	
5	13,10			0,59		
6		672,93				
7			0,42			
8						Paralelo
9					0,067	
10	13,10			0,43		
11		900,86				
12			0,32			
13					0,067	
14						Contracorrente
15	12,38			0,58		
16		848,00				
17			0,46			
18						Contracorrente
19					0,067	