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1. Introduction

The deflation process is linked to a large number of methods for determination of eigenvalues and the Wielandt one is
probably the most classical [7]. We present here a variant of this deflation applied to regular matrix pencils.

First we recall some fundamental results about regular matrix pencils [1].
Let kB� A, where A and B are complex matrices, be a regular matrix pencil of order n. There are matrices S and T of full

rank and of dimensions n� r and n� t respectively, such that 0 6 r; t and r þ t 6 n with
AS ¼ BSJ and BT ¼ ATN;
if and only if all eigenvalues of J are finite eigenvalues of kB� A and the eigenvalue zero of the nilpotent matrix N corre-
sponds to the infinite eigenvalue of kB� A, with BS and AT being also of full rank.

Moreover if r þ t ¼ n, the matrix
ðkI � JÞ � ðkN � IÞ ð1Þ
is equivalent to kB� A and if J and N are in Jordan form, the matrix (1) is the Kronecker form of kB� A. In this case we will
refer J and N as being the finite and infinite forms of kB� A.

For each finite eigenvalue kk of kB� A, the number of respective Jordan blocks in J is the geometric multiplicity. The orders
of these blocks are the partial multiplicities and the sum of these gives the algebraic multiplicity.

If Jkk
is a diagonal block matrix with the all Jordan blocks of kk, then there exist Vkk

and Wkk
of full rank, such that
ðkB� AÞVkk
¼Wkk

ðkI � Jkk
Þ:
Similarly, for the infinite eigenvalue we have the same definitions for the multiplicities and
ðkB� AÞVN ¼WNðkN � IÞ;
where N is a nilpotent Jordan matrix, with VN and WN being of full rank.
Furthermore, if
. All rights reserved.
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AS1 ¼ BS1J1 and BT1 ¼ AT1N1;
with J1 being a Jordan block, N1 being a nilpotent Jordan block and S1 and T1 being of full rank, then we call ðS1; J1Þ and
ðT1;N1Þ finite and infinite eigenpairs of kB� A respectively.

We now mention some literature concerning our subject. The basic theory for matrix pencils, or simply pencils, is formal-
ized in [1], scalar deflation procedures for pencils have a development in [5]. Furthermore, generalized deflation for complex
matrices have been studied in [2,7,4], while equivalence relations between a pencil and a triangular form with pencils of
small orders can be found in [6,3].

This article is organized as follows: in Section 2 a basic theory for eigenpencils is introduced. In Section 3 a deflation
method is developed; first, separately for the finite and infinite parts, and then combined in a unique deflation. Section 4
contains a numerical example and in Section 5 the conclusions are present.

2. Eigenpencil theory

The equation considered in the next definition is not particularly new; what is new is the formulation and the possibility
of manipulation that it permits.

Definition 2.1. Let kB� A be a matrix pencil of order n. If a matrix pencil kY � X of order m, with m < n is such that
ðkB� AÞV ¼WðkY � XÞ; ð2Þ
where V and W are matrices of full rank of dimension n�m, we call kY � X an eigenpencil of kB� A.
Remark 2.1. If detðkY � XÞX0, the eigenpencil is regular, otherwise is singular. In particular, the eigenpencil kK � 0m is reg-
ular if K is a nonsingular matrix, and 0m ¼ ðk0m � 0mÞ is a singular eigenpencil.

Direct consequences of Definition 2.1 are:

Theorem 2.1. Any matrix pencil equivalent to an eigenpencil kY � X of a matrix pencil kB� A is also an eigenpencil of kB� A.
Theorem 2.2. If kY � X is an eigenpencil of kB� A, then there exist matrices L and G of full rank such that
GðkB� AÞ ¼ ðkY � XÞL:
In addition, L and G can be chosen with LV ¼ I and GW ¼ I.
Theorem 2.3. An eigenpencil of a regular matrix pencil is also regular and a matrix pencil is singular if and only if it has a singular
eigenpencil.

We assume now that kB� A is regular. The next theorem establishes the strong relation between pencil and eigenpencil,
under this assumption.

Theorem 2.4. Let kB� A and kY � X be regular matrices pencils of orders n and m respectively, with m < n, then kY � X is an
eigenpencil of kB� A, if and only if the eigenvalues of kY � X are also eigenvalues of kB� A, and for each common finite eigenvalue
k1, with partial multiplicities ae1 ;ae2 ; . . . ;aek in kY � X and ap1

;ap2
; . . . ;apl

in kB� A and for a common infinite eigenvalue, with
partial multiplicities be1

; be2
; . . . ; bet

in kY � X and bp1
; bp2

; . . . ; bpu
in kB� A, where the partial multiplicities are in decreasing order

of magnitude, we have
k 6 l and aei
6 api

; t 6 u and bej
6 bpj

:

Proof. Let Jp and Np be the finite and infinite forms of kB� A. Consider now the Kronecker form of kY � X, that is
kY � X ¼ U
kIr � Je 0

0 kNe � Is

� �
R�1;
with R and U being nonsingular.
From Definition 2.1 we have ðkB� AÞV ¼WðkY � XÞ, and so
ðkB� AÞVR ¼WU
kIr � Je 0

0 kNe � Is

� �
and VR and WU are of full rank. So it is clear that the diagonal blocks of Je and Ne are principal submatrices of the diagonal
blocks of Jp and Np respectively, thus for a finite eigenvalue k1 each Je1i

; i ¼ 1; . . . ; k has a correspondent block in one of the
Jp1j

; j ¼ 1; . . . ; l, hence k 6 l. Furthermore, for simplicity, supposing that the blocks are in decreasing order, we have aei
6 api

.
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The same argument is valid for the infinite eigenvalue.
Conversely, we suppose that each finite eigenvalue and the infinite eigenvalue of kY � X, are also of kB� A with
k 6 l and aei
6 api

;

t 6 u and bej
6 bpj

;

so we can write AV1 ¼ BV1Je and BV2 ¼ AV2Ne, thus
ðkB� AÞ½V1V2� ¼ ½BV1AV2�
kIr � Je 0

0 kNe � Is

� �
;

writing V ¼ ½V1V2� and W ¼ ½BV1AV2�, it follows:
ðkB� AÞV ¼WU�1ðkY � XÞR
and hence
ðkB� AÞVR�1 ¼WU�1ðkY � XÞ;
where VR�1 and WU�1 are of full rank, then kY � X is an eigenpencil of kB� A. h
3. Deflation method

We draw attention to the fact that in this section the algebraic multiplicities of eigenvalues will be taken into account, so
it means that we can say eigenvalues even when it refers to the same eigenvalue.

Now we present a block deflation procedure for regular matrix pencils. First we consider the finite and the infinite cases
separately, then we join them in a single deflation formula.

� The finite case:
Considering kB� A a regular matrix pencil and kY � X being its respective eigenpencil. Then supposing that X1 of order r is
any matrix similar to the finite form of kY � X, that is
AV1 ¼ BV1X1
for an n� r matrix V1 of full rank, we define
A ¼ A� BV1X1L1;

B ¼ B

(
ð3Þ
in which L1 is any r � n matrix such that L1V1 ¼ Ir . It can be verified that the deflated pencil kB� A has all eigenvalues of
kB� A except the finite eigenvalues of kY � X, which have been replaced by zeros.
� The infinite case:

In a similar way we suppose that X2 of order t is any matrix similar to the infinite form of kY � X and V2 is an n� t matrix
of full rank with
BV2 ¼ AV2X2:
We define
�A ¼ A� AV2L2;
�B ¼ B� AV2ðX2 � ItÞL2

(
ð4Þ
in which L2 of order t � n is such that L2V2 ¼ It . Also, it can be verified that the deflated pencil k�B� �A has all eigenvalues of
kB� A except the infinite eigenvalues of kY � X, which have been replaced by zeros.
� The general case:

Putting together (3) and (4) we obtain
Â ¼ A� BV1X1L1 � AV2L2;

B̂ ¼ B� AV2ðX2 � ItÞL2

(

With these two equations, taking W1 ¼ BV1 and W2 ¼ AV2, which are of full rank due to the fact that kB� A are regular, we
construct the pencil
kB̂� Â ¼ kB� A� kAV2ðX2 � ItÞL2 þ BV1X1L1 þ AV2L2 ¼ kB� A� kW2ðX2 � ItÞL2 þW1X1L1 þW2L2

¼ kB� A� W1 W2½ � �X1 0
0 kðX2 � ItÞ � It

� �
L1

L2

� �
;
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so, if we write V ¼ V1 V2½ �, W ¼ W1 W2½ � and L ¼ L1

L2

� �
, it follows that LV ¼ Im and we get� �
kB̂� Â ¼ kB� A�W
�X1 0

0 kðX2 � ItÞ � It
L;
which has all eigenvalues (finite and infinite) of kB� A except those of kY � X.

Now, considering that there exist P and Q nonsingular matrices of order m, such that
kB̂� Â ¼ kB� A�WP
�Je 0
0 kðNe � ItÞ � It

� �
QL;
where Je and Ne are respectively the finite and infinite forms of kY � X, it follows:
kB̂� Â ¼ kB� A�WP
kIr � Je 0

0 kNe � It

� �
� kIm

� �
QL ¼ kB� A�W P

kIr � Je 0
0 kNe � It

� �
Q � kPQ

� �
L:
Then taking K ¼ PQ and defining
kY 0 � X 0 ¼ P
kIr � Je 0

0 kNe � It

� �
Q ;
which is equivalent to kY � X, that is, it has the same Kronecker form and considering, by Theorem 2.1, that it is also an
eigenpencil of kB� A, we can discard the prime symbol and write
kB̂� Â ¼ kB� A�WðkY � X � kKÞL:
This deflation is formalized in the next theorem in a more general context, where we do not need to assume that K is
nonsingular.

Theorem 3.1. Let kB� A be a regular matrix pencil and let kY � X be an eigenpencil, that is ðkB� AÞV ¼WðkY � XÞ, with V and W
of full rank. If
kB̂� Â ¼ kB� A�WðkY � X � kKÞL; ð5Þ
for an arbitrary m�m matrix K and L is such that LV ¼ Im, then

(i) kK is an eigenpencil of kB̂� Â corresponding to V and W;
(ii) kB̂� Â has the eigenvalues (both finite and infinite) of kB� A except those (finite and infinite) of kY � X.
Proof.

(i)
ðkB̂� ÂÞV ¼ ðkB� AÞV �WðkY � X � kKÞLV ¼WðkY � XÞ �WðkY � X � kKÞ ¼WðkY � X � kY þ X þ kKÞ ¼WðkKÞ:
(ii) The relationship between the partial multiplicities of the eigenvalues of kY � X and of kB� A is stated in Theorem 2.4.

First we consider the case where the different eigenvalues of kY � X have the same partial multiplicities in kB� A.
Let now kp be a finite eigenvalue of kB� A, which it is not an eigenvalue of kY � X, that is detðkpB� AÞ ¼ 0 and

detðkpY � XÞ – 0. We suppose now k� ¼ kp þ �; � > 0, such that k� is not eigenvalue of kB� A nor of kY � X. Thus, from
ðk�B� AÞV ¼Wðk�Y � XÞ
it follows:
Vðk�Y � XÞ�1 ¼ ðk�B� AÞ�1W
and hence
detðk�B̂� ÂÞ ¼ detðk�B� A�Wðk�Y � X � k�KÞLÞ ¼ detðk�B� AÞdet½In � ðk�B� AÞ�1Wðk�Y � X � k�KÞL�

¼ detðk�B� AÞdet½In � Vðk�Y � XÞ�1ðk�Y � X � k�KÞL� ¼ detðk�B� AÞdet½In � VðIm � ðk�Y � XÞ�1k�KÞL�

¼ detðk�B� AÞdet½Im � LVðIm � ðk�Y � XÞ�1k�KÞ� ¼ detðk�B� AÞdet½Im � ðIm � ðk�Y � XÞ�1k�KÞ�

¼ detðk�B� AÞdet½ðk�Y � XÞ�1k�K� ¼ detðk�B� AÞdetðk�Y � XÞ�1detðk�KÞ

¼ detðk�B� AÞdetðk�Y � XÞ�1ðk�ÞmdetðKÞ
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so we have from lim�!0k� ¼ kp, that lim�!0detðk�B� AÞ ¼ 0 and then lim�!0detðk�B̂� ÂÞ ¼ 0.
For the infinite eigenvalue we consider the pencil lA� B and lt being the respective zero eigenvalue and not being an

eigenvalue of lX � Y and thus we make a similar development as above.
We consider now the case where there are some eigenvalues in kY � X in which the partial multiplicities are greater in

kB� A (this means that these eigenvalues, finite or infinite, will remain in the deflated pencil with smaller multiplicities).
Thus we suppose that there are Vs and Ws of dimensions n� s, s = n�m, such that
ðkB� AÞ V Vs� �
¼ W Ws� � kY � X kYs1 � Xs1

0 kYs2 � Xs2

� �
¼ W Ws� �

ðkY ðaÞ � XðaÞÞ;
in which V Vs� �
and W Ws� �

are nonsingular matrices and the pencil kY ðaÞ � XðaÞ is equivalent to kB� A.
Now, we define V̂ s ¼ Vs � VLVs, and using Theorem 2.2, it follows:
ðkB̂� ÂÞV̂ s ¼ ðkB̂� ÂÞVs � ðkB̂� ÂÞVLVs ¼ ðkB� AÞVs �WðkY � XÞLVs þWðkKÞLVs �WðkKÞLVs

¼WðkYs1 � Xs1 Þ þWsðkYs2 � Xs2 Þ �WGðkB� AÞVs

¼WðkYs1 � Xs1 Þ þWsðkYs2 � Xs2 Þ �WGWðkYs1 � Xs1 Þ �WGWsðkYs2 � Xs2 Þ
¼WsðkYs2 � Xs2 Þ �WGWsðkYs2 � Xs2 Þ ¼ ðWs �WGWsÞðkYs2 � Xs2 Þ;
with Ŵs ¼Ws �WGWs, and considering that V Vs� �
and W Ws� �

are of full rank, it follows that V̂ s and Ŵs are also of full
rank. h

Furthermore, by Theorems 2.4 and 3.1 the following can be verified:
Corollary 3.1. If K is nonsingular,
ðSp1
; Jp1
Þ; ðSp2

; Jp2
Þ; . . . ; ðSpr

; Jpr
Þ and ðTp1

;Np1
Þ; ðTp2

;Np2
Þ; . . . ; ðTpq

;Npq
Þ

are the finite and infinite eigenpairs of kB� A and
ðSe1 ; Je1
Þ; ðSe2 ; Je2

Þ; . . . ; ðSeg ; Jeg
Þ and ðTe1 ;Ne1 Þ; ðTe2 ;Ne2 Þ; . . . ; ðTeh

;Neh
Þ

are the finite and the infinite eigenpairs of kY � X, all in an arbitrary order, then for a suitable order the eigenpairs of kB̂� Â will be:
I-ðS0p1
;0k1 Þ; ðS

0
p2
;0k2 Þ; . . . ; ðS0pg

;0kg Þ;
where S0pi
; i ¼ 1; . . . ; g, is formed by the first ki columns of Spi

with ki being the order of Jei
.

II-ðŜp1
; Ĵp1
Þ; ðŜp2

; Ĵp2
Þ; . . . ; ðŜpg

; Ĵpg
Þ;
where the Jordan block Ĵpi
; i ¼ 1; . . . ; g of order li � ki is a principal submatrix of Jpi

of order li.
III-ðŜpgþ1
; Jpgþ1

Þ; ðŜpgþ2
; Jpgþ2

Þ; . . . ; ðŜpr
; Jpr
Þ;
where Jpi
; i ¼ g þ 1; . . . ; r is a Jordan block of the original pencil.
IV-ðT 0p1
;0s1 Þ; ðT

0
p2
;0s2 Þ; . . . ; ðT 0ph

;0sh
Þ;
where T 0pi
; i ¼ 1; . . . ;h, is formed by the first si columns of Tpi

with si being the order of Npi
.

V-ðT̂p1; N̂p1
Þ; ðT̂p2; N̂p2

Þ; . . . ; ðT̂ph
; N̂ph
Þ;
where the nilpotent Jordan block N̂pi
; i ¼ 1; . . . ;h, is of order ti � si, with ti being the order of Npi

.

VI-ðT̂phþ1
;Nphþ1

Þ; ðT̂phþ2
;Nphþ2

Þ; . . . ; ðT̂pq
;Npq
Þ;
where Npi
; i ¼ hþ 1; . . . ; q, is a nilpotent Jordan block of the original pencil.

We note that in Theorem 3.1, if we consider K nonsingular, the eigenvalues of kK are all zeros and it means that the de-
flated pencil kB̂� Â is regular. Furthermore, the eigenpairs of items I and IV in Corollary 3.1 are finite.

On the other hand, if kB̂� Â is defined with K singular, kB̂� Â will be a singular pencil and the structures of items I and IV
in Corollary 3.1 will be singular. We do not pursue a definition for such structures here. However, we will see below that
defining K ¼ 0m can be useful for continuing the deflation to the next step.

Reporting again to Theorem 3.1, V and W are of full rank, so there are m rows which are linearly independent and for the
sake of simplicity, we can suppose that these m rows are the first rows. Hence, with these rows we can construct nonsingular
matrices H1 and H2 of order m, such that VH�1

1 and WH�1
2 are normalized with the first m rows being the block Im.

Thus we can enunciate.



2918 E. Pereira, C. Rosa / Applied Mathematics and Computation 218 (2011) 2913–2920
Corollary 3.2. If K ¼ 0m;V ðmÞH
�1
1 ¼WðmÞH

�1
2 ¼ Im and H2ðkY � XÞH�1

1 L ¼ ðkB� AÞðmÞ, where the subscripts (m) indicate the first
m rows,
kB̂� Â ¼ kB� A�WH�1
2 ðkB� AÞðmÞ
in which

(i) the first m rows are null;
(ii) we can construct a pencil k~B� ~A of order n�m from kB̂� Â by taking off the first m rows and the first m columns, such that

k~B� ~A has only the eigenvalues of kB� A that are not eigenvalues of kY � X.
Proof.

(i) Let
ðkB� AÞVH�1
1 ¼WH�1

2 H2ðkY � XÞH�1
1 ;
where H2ðkY � XÞH�1
1 is equivalent to kY � X, and so it is also an eigenpencil of kB� A.

Now, we write V 0 ¼ VH�1
1 ; W 0 ¼WH�1

2 and kY 0 � X0 ¼ H2ðkY � XÞH�1
1 .

We verify that
LV 0 ¼ ðkY 0 � X 0Þ�1ðkB� AÞðmÞV
0 ¼ ðkY 0 � X0Þ�1ðW 0ÞðmÞðkY 0 � X 0Þ ¼ ðkY 0 � X0Þ�1ðkY 0 � X0Þ ¼ Im:
Thus considering K ¼ 0 in Theorem 3.1,
kB̂� Â ¼ kB� A�W 0ðkY 0 � X 0ÞL ¼ kB� A�W 0ðkB� AÞðmÞ;
then the first m rows of kB̂� Â are
ðkB̂� ÂÞðmÞ ¼ ðkB� AÞðmÞ � ðW
0ÞðmÞðkB� AÞðmÞ ¼ 0m�n:
(ii) By Theorem 3.1, kB̂� Â will have n�m eigenvalues from kB� A that are not eigenvalues of kY 0 � X0, and thus, they are
not eigenvalues of kY � X either.
Therefore there are matrices V1 and W1 of full rank such that
ðkB� AÞV1 ¼W1ðkY1 � X1Þ;
where kY1 � X1 has the remaining n�m eigenvalues.
Let
Ŵ ¼W1 �W 0ðW1ÞðmÞ and V̂ ¼ V1 � V 0ðV1ÞðmÞ;
then
ðŴÞðmÞ ¼ 0m and ðV̂ÞðmÞ ¼ 0m
and so
ðkB̂� ÂÞV̂ ¼ ðkB� AÞV̂ �W 0ðkB� AÞðmÞV̂ ¼ ðkB� AÞðV1 � V 0ðV1ÞðmÞÞ �W 0ðkB� AÞðmÞðV1 � V 0ðV1ÞðmÞÞ

¼ ðkB� AÞV1 � ðkB� AÞV 0ðV1ÞðmÞ �W 0ðkB� AÞðmÞV1 þW 0ðkB� AÞðmÞV
0ðV1ÞðmÞ

¼W1ðkY1 � X1Þ �W 0ðkY 0 � X0ÞðV1ÞðmÞ �W 0ðW1ÞðmÞðkY1 � X1Þ þW 0ðW 0ÞðmÞðkY 0 � X0ÞðV1ÞðmÞ
¼W1ðkY1 � X1Þ �W 0ðW1ÞðmÞðkY1 � X1Þ ¼ ðW1 �W 0ðW1ÞðmÞÞðkY1 � X1Þ ¼ ŴðkY1 � X1Þ:
Hence
ðkB̂� ÂÞV̂ ¼ ŴðkY1 � X1Þ;
that is
0m 0ðn�mÞ�m

� k~B� ~A

" #
0m

~V

� �
¼

0m

~W

� �
ðkY1 � X1Þ
and thus,
ðk~B� ~AÞ~V ¼ ~WðkY1 � X1Þ: �
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Besides that, k~B� ~A will have the Kronecker form according to II, III, V, and VI of Corollary 3.1.
Concluding, as we mentioned before, now we have a deflated pencil kB̂� Â singular, but k~B� ~A is a regular pencil, which

permits us to continue the deflation process.

4. Numerical example

If we consider a regular matrix pencil containing finite and infinite forms, then we can deflate it with 3 possibilities,
where an eigenpencil can have only finite eigenvalues; only infinite ones; or both, finite and infinite. In the next example
it is explored the case where the eigenpencil has both finite and infinite eigenvalues.

The normalization is carried out with the first m rows which we can construct a nonsingular block simultaneously in V
and W. If it is not possible to find it, we can always multiply V (or W) for a nonsingular elementary matrix to interchange
some of the rows.

Let
kB� A ¼

3k� 1 2� 3k k� 2 2k� 1 1� 2k k� 3 3k� 4 1

�k 3k� 1 0 1� k k 2� 2k 1� 2k k

11k� 18 14� 5k k� 2 6k� 10 12� 6k 4� 4k 2k� 5 3

3� 2k �k� 2 0 2� k �1 3k� 1 kþ 1 1� 2k

10� 5k 5k� 7 2� k 5� 2k 4k� 7 �k 4� 3k 2k� 1

k� 3 �2k 0 �1 1� k 2k� 1 2k� 2 �k� 1

k� 1 3� 3k k� 2 k� 1 3� 2k 3k� 4 3k� 4 3� 2k

3k� 11 5� k 0 k� 4 6� 2k kþ 1 2k� 5 1� k

2
6666666666666664

3
7777777777777775
whose Kronecker canonical form is
�1 k 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

0 0 0 k� 1 �1 0 0 0

0 0 0 0 k� 1 0 0 0

0 0 0 0 0 k� 2 �1 0

0 0 0 0 0 0 k� 2 0

0 0 0 0 0 0 0 k� 2

2
6666666666666664

3
7777777777777775

:

The pencil
kY1 � X1 ¼
3k� 8 2� 2k

3k� 2 8� 2k

" #
is an eigenpencil of kB� A. We have that
V1 ¼

�2 �2

0 0

�5 0

0 0

�2 �2

�2 �2

2 2

0 0

2
6666666666666664

3
7777777777777775

and W1 ¼

�1 0
1
3 � 1

3

� 1
3 � 2

3

0 0

1 0

� 1
3

1
3

� 2
3 � 1

3
1
3 � 1

3

2
6666666666666664

3
7777777777777775
are of full rank and ðkB� AÞV1 ¼W1ðkY1 � X1Þ.

The eigenpencil kY1 � X1 has one infinite eigenvalue and the finite eigenvalue 2. Its Kronecker canonical form is
�1 0
0 k� 2

� �
.

First we normalize V1 and W1, using the first and the third rows, so we have
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V 01 ¼

1 0
0 0
0 1
0 0
1 0
1 0
�1 0
0 0

2
66666666666664

3
77777777777775

and W 0
1 ¼

1 0
� 1

2
1
2

0 1
0 0
�1 0

1
2 � 1

2
1
2

1
2

� 1
2

1
2

2
66666666666664

3
77777777777775
:

Thus we consider the first and the third rows of kB� A,
ðkB� AÞð1;3Þ ¼
3k� 1 2� 3k k� 2 2k� 1 1� 2k k� 3 3k� 4 1

11k� 18 14� 5k k� 2 6k� 10 12� 6k 4� 4k 2k� 5 3

� �
so,
kB̂1 � Â1 ¼ kB� A�W 0
1ðkB� AÞð1;3Þ ¼

0 0 0 0 0 0 0 0
17
2 � 5k 4k� 7 0 11

2 � 3k 3k� 11
2

k�3
2 � 3

2 ðk� 1Þ k� 1
0 0 0 0 0 0 0 0

3� 2k �k� 2 0 2� k �1 3k� 1 kþ 1 1� 2k

9� 2k 2k� 5 0 4 2ðk� 3Þ �3 0 2k

5k� 23
2 6� 3k 0 2k� 11

2
13
2 � 3k 5�k

2
1
2 ð3k� 5Þ �k

17
2 � 6k k� 5 0 9

2� 3k 2k� 7
2

9ðk�1Þ
2

kþ1
2 1� 2k

�k� 5
2 �1 0 1

2� k 1
2

1
2 ð7k� 5Þ 1

2 ð5k� 9Þ �k

2
666666666666664

3
777777777777775

:

We take off the first and the third rows and columns, then we get the regular pencil
k~B� ~A ¼

4k� 7 11
2 � 3k 3k� 11

2
k�3

2 � 3
2 ðk� 1Þ k� 1

�k� 2 2� k �1 3k� 1 kþ 1 1� 2k

2k� 5 4 2ðk� 3Þ �3 0 2k

6� 3k 2k� 11
2

13
2 � 3k 5�k

2
1
2 ð3k� 5Þ �k

k� 5 9
2� 3k 2k� 7

2
9ðk�1Þ

2
kþ1

2 1� 2k

�1 1
2� k 1

2
1
2 ð7k� 5Þ 1

2 ð5k� 9Þ �k

2
6666666664

3
7777777775
;

whose Kronecker canonical form is
�1 0 0 0 0 0
0 �1 0 0 0 0
0 0 k� 1 �1 0 0
0 0 0 k� 1 0 0
0 0 0 0 k� 2 �1
0 0 0 0 0 k� 2

2
666666664

3
777777775
:

5. Conclusions

We used this new definition: eigenpencil, to extend the Wielandt deflation for regular matrix pencils to a block context
and to permit the deflation of finite and infinite eigenvalues at the same time. We supposed that an eigenpencil is known
without giving a method to compute them, but we believe that in future works this can be achieved with the generalization
of some scalar methods.
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