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Introduction 
 Previous models for the interpretation of the creep behaviour of 
polymers are of course valuable, but mainly empirical or semi-
empirical, and do not directly take into account the physical 
(molecular) underlying mechanisms, namely the detailed 
conformational and other transitions responsible for the material’s 
non-linear viscoelastic behaviour [1-10]. 
 Any realistic and accurate model should predict and quantify the 
peculiar and coupled time-temperature-stress behaviour, and this is 
shown to be possible by adequate kinetic formulation of the 
frequencies (or retardation times) of the whole range of structural 
contributors to the material’s compliance. One should mention here 
the old but seminal work by Eyring et al. [11,12], which at least had 
the merit to suggest how one could physically and mathematically link 
the oldest, Voigt-Kelvin and other, phenomenological models to the 
actual non-linear physical behaviour at the molecular scale. 
 
Outline of a macromolecular dynamic model of creep 
 It is not difficult to understand and visualize the dynamic 
(compliance and/or relaxation) behaviour of any viscoelastic material 
as resulting from a range of motions/transitions at the molecular scale 
– whole molecule (or atom)/void interchanges in non-macromolecular 
materials, and gauche/trans conformational transitions or other 
motions (e.g. crankshaft) in macromolecular ones. Actually, in 
polymers, single-segment gauche/trans transitions are not possible 
without the simultaneous participation of a small set of neighbouring 
segments, which is exactly what happens in crankshaft motions, but 
the gauche/trans transitions could be taken as a simple and good 
paradigm for the microscopic modelling of macromolecular materials’ 
responses to a wide range of physical excitations, of which creep is the 
example studied here. 
 In separate contributions to Macro 2004 [13,14], the strategy of 
quantitatively modelling the cooperative, non-Arrhenius, non-linear 
response behaviour of macromolecules is addressed in greater detail. 
In the case of creep, the objective has been the modelling of the creep 
compliance function to include the effects of time, stress and 
temperature, duly taking into account that a relatively wide range of 
structural contributors to the overall material’s response are normally 
involved. In polymers, such contributors turn out to be clusters of n ≥ 
1 macromolecular “segments”, the “segments” being the shortest 
chain elements capable of independently contributing to the actual 
physical response being considered (chain uncoiling and disentangle-
ment, in creep), like those involved in crankshaft or other motions, 
rather than the actual individual chain segments capable of 
conformational changes in isolated macromolecules. Calculations 
detailed in the above contributions to Macro 2004 suggest that the 
greatest contributors to the final overall behaviour turn out to be 
clusters of 2 to 5 “segments”. For example, in a polypropylene, a 
typical “segment” would include at least four main chain carbon 
atoms and their associated methyls and hydrogens. 
 It was shown [14,15] that the creep compliance function of each 
of the above elementary contributors, may be formulated as a function 
of time, t, mechanical stress, σ0, and temperature, T, as a generalized, 
non-linear, modified Voigt-Kelvin unit, i.e. 
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where β is an activation volume divided by kBT, kB being Boltzmann’s 
constant and T the absolute temperature. It may be observed that 
Equation 1 includes the linear, stress-independent, viscoelastic 

behaviour at low stress values, where sinh(βσ0) converges to βσ0. The 
corresponding (linear or non-linear) characteristic retardation time is  
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 Given the wide variety of contributing structural elements that 
are involved in the entire range of cooperative motions (with 
activation energies, E’0, and entropies proportional to the various 
cluster sizes), the logical step to take is to consider an adequate 
distribution of cluster sizes and corresponding retardation times. A 
long time ago, Feltham [16] had already shown that a log-normal 
distribution would be a physically reasonable approximation to the 
retardation spectra of a wide range of viscoelastic materials. As a 
matter of fact, however, the analysis of the present and other 
experimental data [15], showed that there is a minimum retardation 
time, corresponding to the smallest contributing clusters (n = 1) in the 
least constrained local environment within the structure. So, the 
overall (real) creep compliance may be formulated [14,15] as 
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which, under the usual and useful approximation that ( )τ/1 te−−  is ~ 
0 for τ > t and ~ 1 for τ ≤ t, simplifies to 
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where τ* is the average retardation time, formulated similarly to 
Equation 2 with β substituted by a β* and c’0 by a c’0*, τ1 is the 
minimum retardation time, also similarly formulated with β 
substituted by a β1 (smallest of the β values) and c’0 by a c’0,1 , and b is 
proportional to the reciprocal of the standard deviation of the ln τ 
values, i.e. b = b0 / ln (τ*/ τ1), b0 being a constant parameter, 
expectedly between 1.5 and 3. In the above two equations, D0 and D∞ 
are the instantaneous and infinite time creep compliances. 
 
Creep experiments 
 The creep measurements were carried out with a Zwick Z100 
Universal Tensile Testing Machine, equipped with a 2.5 kN load cell 
and using a Macro extensometer with a deformation measurement 
range of 100 mm. The strain/force vs. time experimental data were 
automatically recorded, stored and treated on a personal computer. 
The test specimens were previously conditioned at 23 oC, and the 
creep tests were conducted at each selected temperature (30, 40 and 50 
oC) in a thermostatic chamber, under applied stresses of 10, 16, 20, 25 
and 32 MPa, for a polymetylmethacrylate (PMMA), and 2, 4, 6, 8 and 
10 MPa, for a polypropylene (PP). 
 
Presentation and discussion of the experimental results 
 The small average relative deviations between the predictions of 
this analytical, non-simulative, molecular dynamics model and the 
experimental creep compliances - 1.15% for PMMA (Figure 1) and 
1.32% for PP (cf. Poster), at 40 oC, and other small values at other 
temperatures and with other materials [15] – quantify their very good 
agreement. 
 The plots of Figures 2 and 3 document the validity of Equations 2 
and 4, with b0 ~ 3 and 1.5 for PMMA and PP, respectively. The ratio 
between the slopes of τ* and τ1 is ~ 2 to 4 for PMMA and 5 to 6 for PP 
(cf. Poster), which measure the corresponding ratio of the activation 
volumes, and therefore the relative size of the corresponding segment 
clusters that contribute to creep. 
 The increase of stress (Figures 3 and 4) and/or temperature (cf. 
Poster) yields increases of b, i.e. a decrease in the width of the 



material’s retardation spectrum. This is the main reason why the 
applicability of a strict stress-time equivalence or superposition may 
be seriously questioned, even though a time-temperature equivalent at 
constant stress still appears to hold [15]. This feature of the behaviour 
is not surprising, in view of the inseparability of stress and time in 
Equation 4. 
 

 

Figure 1. Model fitting (Equation 4) of the creep compliance of 
PMMA at 40 oC, for the stress values indicated. 

 

Figure 2. PMMA minimum (empty symbols – o. <, >, at 30, 40 and 
50 oC, respectively) and average retardation times (filled symbols) as 
functions of the applied stress. 

 

Figure 3. Variation of the parameter b with the minimum and 
average retardation times, for PMMA at 30 (o), 40 (*) and 50 oC (+). 

 
 
Figure 4. Retardation time spectra of PMMA, at 40 oC, for the stress 
values indicated. 
 
 Finally, it should be stressed that the model and the corresponding 
parameter calculation algorithm are successful in predicting the same 
instantaneous, D0, and infinite time, D∞, compliances, for all stress 
values (and all test specimens of the same material), and that they 
agree with the expected typical values (~10-9 and 10-6 Pa-1, for 
amorphous, and ~ 10-9 and 10-8 to -7 Pa-1, for semi-crystalline polymers, 
respectively – cf. Poster and [15]). The prediction of the correct D∞ is 
particularly significant, in view of the fact that the creep experiments 
lasted not longer than 9·103 seconds, barely enough to initiate a truly 
significant rise in compliance (cf. Poster). Equation (4) predicts a 
smooth sigmoid compliance change from D0 to D∞. 
 
Conclusions 
 The non-linear viscoelastic behaviour of polymers, namely creep, 
may be meaningfully and accurately modelled at the (macro)-
molecular scale, to account for its characteristic, temperature-
dependent, cooperative nature and intrinsic inseparability of the 
effects of time and stress. 
 The model correctly portrays the essentials of the true macro-
molecular dynamics, without the need for complex and time-
consuming computer simulations. 
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