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Abstract. With the growth and development of data, the empirical
evidence supporting a link between the distance metrics that are used in
the instance-based algorithms and generalization has been mounting. In
this paper, we look at distinct similarity measures to study its impact
on the performance accuracy of incremental instance-based algorithms
in pattern recognition problems. An in-depth analysis of the results of
the proposed study for a variety of classification tasks (binary and multi-
way) from various different domains shines light on the trade off between
the distance metrics and yielded accuracy.
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1 Introduction

In recent years there has been much interest in incremental learning algorithms,
mainly due to their potential to deal with large scale datasets and data streams.
Contrasting with batch learning algorithms, commonly designed with the em-
phasis on effectiveness (e.g. classification performance) and under the assump-
tions that data is static and its volume manageable, incremental algorithms are
typically designed with emphasis on efficiency (e.g. time required to produce a
model) [11]. Rather than requiring access to the complete dataset, incremental
algorithms are designed to rapidly update their models to incorporate new infor-
mation on a sample-by-sample basis and therefore suitable for high-throughput.

In previous work we presented a novel incremental instance-based learning al-
gorithm which presents good properties in terms of multi-class support, complex-
ity, scalability and interpretability. The algorithm named Incremental Hyper-
sphere Classifier (IHC) algorithm [6] is extremely versatile and highly-scalable,
being able to accommodate memory and computational restrictions, while cre-
ating the best possible model with the amount of given resources. Moreover,
since the algorithm’s execution time grows linearly with the number of samples
stored in the memory, creating adaptive models and extracting information in
real-time from large-scale datasets and data streams is feasible.

Experimental results, using well-known datasets, demonstrated that the IHC
is able to handle concept drifts scenarios, while maintaining superior classifica-
tion performance. Additionally, the resulting models are interpretable, making



Table 1. Distance metrics’ formulas. Note that Euclidean, Manhattan and Chebychev
are special cases of Minkowsky, obtained respectively for p = 2, p = 1 and p → ∞.

Metric Formula

Euclidean d(xi,xj) =

(
D∑

k=1

(xik − xjk)
2

) 1
2

Manhattan d(xi,xj) =
D∑

k=1

|xik − xjk|

Canberra d(xi,xj) =
D∑

k=1

|xik−xjk|
|xik|+|xjk|

Chebychev d(xi,xj) = max(|xik − xjk|)

Minkowsky d(xi,xj) =

(
D∑

k=1

|xik − xjk|p
) 1

p

this algorithm useful even in domains where interpretability is a key factor. Fi-
nally, since the IHC keeps samples that are at the odds of lying on the decision
boundary while removing the noisy and less relevant ones, it represents a good
choice for selecting a representative subset of the data for applying more sophis-
ticated algorithms in a fraction of the time required for the complete dataset [7].

Despite these advantages, IHC is a distance based learning method and nat-
urally sensitive to the choice of distance metrics. Therefore it is important to
study their impact on IHC performance, in particular concerning incremental
learning scenarios. Accordingly, in this paper we analyze the impact of distinct
distance metrics in the IHC algorithm, which proved to be efficient in large-
scale recognition problems and online learning. We provide a detailed empirical
evaluation on fifteen datasets with several sizes and dimensionality.

The remainder of this paper is organized as follows. The next Section in-
troduces the IHC algorithm. Section 3 presents and discusses the experimental
results. Finally, in Section 4 the conclusions and future work are addressed.

2 Incremental Hypersphere Classifier (IHC) algorithm

Let us consider a training dataset, {(xi, yi) : i = 1, . . . , N}, composed by N
samples, each encompassing an input vector, xi ∈ IRD, with D features, and the
associated class label, yi ∈ {1, . . . , C}, where C is the number of classes. For
each sample, i, IHC defines an hypersphere with center xi and radius ρi:

ρi =
min(d(xi,xj))

2
, for all j where yj 6= yi (1)

where d(xi,xj) is the distance between xi and xj input vectors. Table 1 presents
the distance metrics used in this study. For the Minkowsky metric, p was set
to the number of features, D, in order to give more weight to the individual
distance components as the space dimensionality increases [4].

The hypersphere’s delineate the regions of influence of the associated samples
and are used to classify new instances. Basically, given a new data point, xk, it
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(a) Before adding sample k. (b) After adding a new sample, k.

Fig. 1. Hypersphere’s and decision surface generated by IHC (g = 1) for a toy problem.

is classified with the class associated to the nearest hypersphere (not the nearest
sample). More precisely, xk is associated to class yi (i.e. yk = yi) provided that:

d(xi,xk)− gaiρi ≤ d(xj,xk)− gajρj , for all j 6= i (2)

where g (gravity) controls the extension of the zones of influence and ai is the
accuracy of sample i when classifying itself and the forgotten training samples
for which i was the nearest sample in memory.

Note that for g = 0 the decision rule of the IHC is exactly the same as the
one of the 1-Nearest Neighbor (NN) (see eq. 2). Hence, by fine-tuning g, IHC will
always yield better or equal performance than 1-NN. This is important because
Cover and Hart [3] demonstrated that for N →∞, the 1-NN error rate is never
more than twice the minimum achievable error rate of an optimal classifier [2].

A major advantage of the IHC algorithm relies on the possibility of building
models on a sample-by-sample basis. Figure 1 presents the hypersphere’s gen-
erated by IHC and the resulting decision surface, (a) prior to and (b) after the
addition of a new sample, for a toy problem. Note that adding a new sample
might affect the radius of samples already in the model (in this case the ones
with input vectors x1 and x2). Notice also that samples near the decision border
have smaller radius than those far away (see Figure 1). Hence, when the memory
is full, samples with smaller radius – that play the most significant role in the
construction of the decision surface – are kept, while those with bigger radius –
that have less or no impact in the model – are discarded. Unfortunately, outliers
will most likely have a small radius and end-up occupying the limited memory
resources. Thus, although their impact is diminished by the accuracy variable in
eq. 2, it is still important to identify and remove them from memory. To address
this problem IHC mimics the process used by the IB3 algorithm [9, 1], which
uses a significance test to remove all samples that are believed to be noisy.

Another advantage of IHC is that it can accommodate restrictions in terms
of memory and computational power, creating the best model possible for the
amount of resources given, instead of requiring systems to comply with its own



requirements. Since we can control the amount of memory and computational
power required by the algorithm and due to its scalability creating up-to-date
models in real-time is feasible [7]. A more detailed description of the IHC can be
found elsewhere [6, 7] and a working version of the algorithm, including its source
code, can be found at http://sourceforge.net/projects/ihclassifier/.

3 Experimental Results

Our goal consists of determining the impact of distance metrics in the IHC classi-
fication performance. Recently, we have analyzed the impact of distance metrics
in batch scenarios, for both the NN and IHC algorithms [8]. Among the conclu-
sions, we have found that the No-Free-Lunch theorem [10] still applies and the
best distance metric is problem dependent. Accordingly, in batch learning con-
figurations, it is desirable to perform a grid search both for the distance metric
and g parameters in order to determine favorable parameter configurations [8].
Unfortunately, in incremental scenarios, performing a grid search is not feasible
and knowing beforehand which distance metrics are likely to yield quality mod-
els becomes a fundamental aspect. Moreover, typically in incremental learning
configurations, IHC must work with limited memory settings, being able to store
only a small fraction of the samples. Therefore, adequate distance metrics play
a vital role in choosing the core samples that delineate the decision borders.

In order to analyze the performance of distance metrics in incremental learn-
ing scenarios, we carried out extensive experiments in the same fifteen UCI
databases [5] that were previously investigated in [8], comprehending distinct
data distributions and characteristics (see Table 2). Altogether, five distinct
memory configurations were considered, allowing IHC to store approximately
20%, 40%, 60%, 80% and 100% of the training samples. For statistical sig-
nificance, each experiment was executed using repeated 5-fold stratified cross-
validation. Altogether 30 different random cross-validation partitions were cre-
ated, accounting for a total of 150 runs per benchmark and memory configu-
ration. Overall, 2250 runs per benchmark (dataset) were performed. Given the
large number of runs (33,750 in total) the experiments were performed only for
g = 1. The results were compiled both for the unseen test data and for all the
data (encompassing both training and test data). The latter, reflects the IHC
performance on forgotten data and it is important because real-world databases
often present a high-degree of redundancy with similar records being common [7].
Figure 2 presents the IHC results, obtained for the different memory settings.
Note that, in general, higher memory configurations correspond to better results.

On average Euclidean and Manhattan metrics present the best performance
results for most memory settings (except for the 100% memory configuration,
in which case Canberra yields better results for the test data). In fact, there is
strong statistical evidence compelling the choice of these two distance metrics
(see Table 3). Overall, these two metrics attained competitive and in many cases
top classification performance results for most benchmarks (Breast cancer, Ecoli,
German, Heart-statlog, Ionosphere, Pima, Sonar, Vehicle, Wine and Yeast).



Table 2. Experimental dataset characteristics.

Database Samples Inputs Classes

Balance 625 4 3
Breast cancer 569 30 2
Ecoli 336 7 8
German 1000 59 2
Glass 214 9 6
Haberman 306 3 2
Heart-statlog 270 20 2
Ionosphere 351 34 2
Iris 150 4 3
Pima 768 8 2
Sonar 208 60 2
Tic-tac-toe 958 9 2
Vehicle 946 18 4
Wine 178 13 3
Yeast 1484 8 10

Moreover, Manhattan also attained good results in the Glass dataset, achiev-
ing top results for the 20% and 100% memory configurations. In the remaining
configurations, Canberra yielded the highest F-Scores. Additionally, Manhattan
outperforms all other metrics for the Breast cancer and wine datasets.

Concerning performance in the individual datasets, for the Vehicle dataset
both Manhattan and Euclidean yield superior classification performance, with
Manhattan presenting better results when less memory is available. These two
metrics also present good results in the Sonar dataset, with the Manhattan at-
taining the top performance for the 20%, 40% and 80% memory configurations
and Euclidean and Canberra yielding the highest results respectively for the
60% and 40% configurations. In the German dataset, overall both Manhattan
and Euclidean attained competitive results. Moreover, Manhattan achieved the
top results on the test data for memory configurations of 20%, 40% and 60%,
while the highest results for 80% and 100% were yielded by Canberra. Inter-
estingly, despite Chebychev yielding the worst results for the test datasets, this
metric attained some of the best results when considering all data, evidencing
that the model is overfitting the training data. Concerning the Heart-statlog
dataset, with the exception of the 100% memory configuration, once again both
Manhattan and Euclidean attained competitive results. Moreover, Manhattan
yielded top results on the test dataset for the 20% and 40% memory configura-
tions, while Canberra attained the top results for the remaining configurations.
Manhattan and Euclidean also yielded good results for the Ecoli dataset, with
the highest F-Score being obtained by Euclidean for the 20% memory setting,
by Manhattan for the 40% memory configuration and by Minkowsky for the
remaining configurations. With respect to the Haberman dataset, Manhattan
yielded the highest results for the 60% and 80% memory settings, while Eu-
clidean, Minkowsky and Chebychev attained the best F-Scores respectively for
the 100%, 20% and 40% configurations. Regarding the Ionosphere, Manhattan
yielded the dominant classification performance in the 40%, 60% and 80% mem-
ory settings, while the 20% and 100% were attained respectively by Canberra
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Fig. 2. IHC performance (macro-average F-Score).



Table 3. Null hypotheses (H0 : F-ScoreX >= F-ScoreY) rejected using the Wilcoxon
signed rank test, for the (a) test data and for (b) all data.

Samples
retained

Significance
level

X distance
metric

Y distance
metric

Samples
retained

Significance
level

X distance
metric

Y distance
metric

(a) Test data (b) All data

20%

40%

60%

80%

100%

20%

40%

60%

80%

100%

20%

20%

40%

60%

80%

100%

20%

40%

80%

100%

20%

100%

Canberra0.010

Chebychev0.025

Minkowsky0.025

Canberra0.025

Chebychev0.025

Minkowsky0.010

Canberra0.025

Chebychev0.025

Minkowsky0.050

Canberra0.025

Chebychev0.050

Canberra0.050

Chebychev0.025

Minkowsky0.010

Chebychev0.025

Minkowsky0.005

Chebychev0.005

Minkowsky0.010

Chebychev0.025

Minkowsky0.010

Chebychev0.050

Minkowsky0.025

Chebychev0.010

Canberra0.050

Canberra0.025

Chebychev0.050

Canberra0.050

Chebychev0.050

Chebychev0.025

Minkowsky0.025

Chebychev0.050

Minkowsky0.050

Chebychev0.025

Minkowsky0.050

Chebychev0.005

Minkowsky0.005

Chebychev0.005

Minkowsky0.050

Manhattan

Euclidean

Minkowsky

Manhattan

Euclidean

Minkowsky

and Chebychev. The Euclidean distance metric excel all the others in the Yeast
dataset. Moreover, concerning the Pima dataset, it also outperformed the other
distance metrics, except in the 100% memory configuration for which Minkowsky
yielded the best F-Score. The Canberra distance metric performed particularly
well on the Tic-tac-toe problem, excelling by far the remaining distance metrics.
Chebychev, on the other hand, yielded the worst results for this dataset and
its performance significantly dropped with increase of available memory. As in
the case of the German, the model overfits the training data, indicating that
Chebychev-based IHC models are prone to overfitting the training data. In fact,
on average Chebychev yielded the worst F-Scores for all memory settings. Nev-
ertheless, this metric excelled all the others performance in the Balance dataset.
Moreover, Chebychev also performed quite well on the Iris dataset attaining to-
gether with the Minkowsky distance metric the top classification performances.

4 Conclusions and Future Work

We are seeing a torrent of data coming in from sensors everywhere. This data
is compounding daily, creating what is called “fast data”. In this context, incre-
mental algorithms are part of the solution for dealing with the data explosion
that is happening at a massive scale. The big challenge is now speed and agility
when building systems, in particular for dealing with anomaly detection and
concept drifts that occur in many fields of science and society in general.



In this paper, we looked at the importance of distance metrics for assess-
ment of similarity of patterns in incremental learning. To reinforce this idea, we
interpreted the distance metric as a pivotal parameter for the success of many
machine learning algorithms and models. We extended our previous research on
the impact of distance metrics on batch learning to incremental scenarios. In the
latter using grid-search like methods for determining favorable metrics is not fea-
sible. Therefore, distance metrics play a vital role in the choice of core samples,
which are expected to be representative of the whole dataset and will in practice
shape the boundary decisions. To analyze the performance of distance metrics
in incremental scenarios, we carried out extensive experiments using fifteen UCI
databases, with distinct data distributions and characteristics. Altogether, five
memory configurations were considered, allowing IHC to store approximately
20%, 40%, 60%, 80% and 100% of the samples and for statistical significance,
each experiment was executed using repeated 5-fold stratified cross-validation.

This study demonstrates that the Euclidean and Manhattan, two of the most
commonly used distance metrics, which consistently yield good results over a
wide range of problems as shown in the experimental tests, are probably the
best choices for distance based learning methods when performing a grid-search
method is not a viable option. In this scenario, the Manhattan distance is pre-
ferred, in particular for large datasets, since it is computationally less demanding.
Future work will focus as building ensembles using distinct distance metrics.
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