

Non-symmetric Number Triangles Arising from Hypercomplex Function Theory in \mathbb{R}^{n+1}

Isabel Cação¹, M. Irene Falcão², Helmuth R. Malonek¹, and Graça Tomaz^{1,3}

 CIDMA, Universidade de Aveiro, Aveiro, Portugal {isabel.cacao,hrmalon}@ua.pt
CMAT, Universidade do Minho, Braga, Portugal mif@math.uminho.pt
Instituto Politécnico da Guarda, Guarda, Portugal gtomaz@ipg.pt

Abstract. The paper is focused on *intrinsic properties* of a one-parameter family of non-symmetric number triangles $\mathcal{T}(n)$, $n \geq 2$, which arises in the construction of *hyperholomorphic Appell polynomials*.

Keywords: Non-symmetric Pascal triangle \cdot Clifford algebra \cdot Recurrence relation

1 Introduction

A one-parameter family of non-symmetric Pascal triangles was considered in [8] and a set of its basic properties was proved. Such family arises from studies on generalized Appell polynomials in the framework of Hypercomplex Function Theory in \mathbb{R}^{n+1} , $n \geq 1$, (cf. [7]). If $n \geq 2$, it is given by the infinite triangular array, $\mathcal{T}(n)$, of rational numbers

$$T_s^k(n) = \binom{k}{s} \frac{\left(\frac{n+1}{2}\right)_{k-s}\left(\frac{n-1}{2}\right)_s}{(n)_k}, \ k = 1, 2, \dots, ; s = 0, 1, \dots, k,$$
(1)

where $(a)_r := a(a+1)...(a+r-1)$, for any integer $r \ge 1$, is the Pochhammer symbol with $(a)_0 := 1, a \ge 0$. If n = 1, then the triangle degenerates to a unique column because $T_0^k(1) \equiv 1$ and, as usual $T_s^k(1) := 0, s > 0$.

The non-symmetric structure of this triangle $\mathcal{T}(n)$ is a consequence of the peculiarities of a non-commutative Clifford algebra $\mathcal{C}\ell_{0,n}$ frequently used in problems of higher dimensional Harmonic Analysis, like the solution of spinor systems as *n*-dimensional generalization of Dirac equations and their application in Quantum Mechanics and Quantum-Field Theory [6].

Hypercomplex Function Theory in \mathbb{R}^{n+1} is a natural generalization of the classical function theory of one complex variable in the framework of Clifford Algebras. The case n > 1 extends the complex case to paravector valued functions

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 O. Gervasi et al. (Eds.): ICCSA 2022 Workshops, LNCS 13377, pp. 420–434, 2022. https://doi.org/10.1007/978-3-031-10536-4_28